mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 b12fa0d1c1
			
		
	
	b12fa0d1c1
	
	
	
		
			
			* cmake : fix build when .git does not exist * cmake : simplify BUILD_INFO target * cmake : add missing dependencies on BUILD_INFO * build : link against build info instead of compiling against it * zig : make build info a .cpp source instead of a header Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com> * cmake : revert change to CMP0115 --------- Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
		
			
				
	
	
		
			202 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			202 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <vector>
 | |
| #include <string>
 | |
| 
 | |
| struct quant_option {
 | |
|     std::string name;
 | |
|     llama_ftype ftype;
 | |
|     std::string desc;
 | |
| };
 | |
| 
 | |
| static const std::vector<struct quant_option> QUANT_OPTIONS = {
 | |
|     { "Q4_0",   LLAMA_FTYPE_MOSTLY_Q4_0,   " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q4_1",   LLAMA_FTYPE_MOSTLY_Q4_1,   " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q5_0",   LLAMA_FTYPE_MOSTLY_Q5_0,   " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q5_1",   LLAMA_FTYPE_MOSTLY_Q5_1,   " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q2_K",   LLAMA_FTYPE_MOSTLY_Q2_K,   " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q3_K",   LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
 | |
|     { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q4_K",   LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
 | |
|     { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q5_K",   LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
 | |
|     { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q6_K",   LLAMA_FTYPE_MOSTLY_Q6_K,   " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q8_0",   LLAMA_FTYPE_MOSTLY_Q8_0,   " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
 | |
|     { "F16",    LLAMA_FTYPE_MOSTLY_F16,    "13.00G              @ 7B", },
 | |
|     { "F32",    LLAMA_FTYPE_ALL_F32,       "26.00G              @ 7B", },
 | |
|     // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
 | |
|     { "COPY",   LLAMA_FTYPE_ALL_F32,       "only copy tensors, no quantizing", },
 | |
| };
 | |
| 
 | |
| 
 | |
| static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
 | |
|     std::string ftype_str;
 | |
| 
 | |
|     for (auto ch : ftype_str_in) {
 | |
|         ftype_str.push_back(std::toupper(ch));
 | |
|     }
 | |
|     for (auto & it : QUANT_OPTIONS) {
 | |
|         if (it.name == ftype_str) {
 | |
|             ftype = it.ftype;
 | |
|             ftype_str_out = it.name;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     try {
 | |
|         int ftype_int = std::stoi(ftype_str);
 | |
|         for (auto & it : QUANT_OPTIONS) {
 | |
|             if (it.ftype == ftype_int) {
 | |
|                 ftype = it.ftype;
 | |
|                 ftype_str_out = it.name;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     catch (...) {
 | |
|         // stoi failed
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // usage:
 | |
| //  ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
 | |
| //
 | |
| [[noreturn]]
 | |
| static void usage(const char * executable) {
 | |
|     printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
 | |
|     printf("  --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
 | |
|     printf("  --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
 | |
|     printf("  --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
 | |
|     printf("\nAllowed quantization types:\n");
 | |
|     for (auto & it : QUANT_OPTIONS) {
 | |
|         if (it.name != "COPY") {
 | |
|             printf("  %2d  or  ", it.ftype);
 | |
|         } else {
 | |
|             printf("          ");
 | |
|         }
 | |
|         printf("%-6s : %s\n", it.name.c_str(), it.desc.c_str());
 | |
|     }
 | |
|     exit(1);
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     if (argc < 3) {
 | |
|         usage(argv[0]);
 | |
|     }
 | |
| 
 | |
|     llama_model_quantize_params params = llama_model_quantize_default_params();
 | |
| 
 | |
|     int arg_idx = 1;
 | |
| 
 | |
|     for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
 | |
|         if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
 | |
|             params.quantize_output_tensor = false;
 | |
|         } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
 | |
|             params.allow_requantize = true;
 | |
|         } else if (strcmp(argv[arg_idx], "--pure") == 0) {
 | |
|             params.pure = true;
 | |
|         } else {
 | |
|             usage(argv[0]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (argc - arg_idx < 2) {
 | |
|         usage(argv[0]);
 | |
|     }
 | |
| 
 | |
|     llama_backend_init(false);
 | |
| 
 | |
|     // parse command line arguments
 | |
|     const std::string fname_inp = argv[arg_idx];
 | |
|     arg_idx++;
 | |
|     std::string fname_out;
 | |
| 
 | |
|     std::string ftype_str;
 | |
|     if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
 | |
|         std::string fpath;
 | |
|         const size_t pos = fname_inp.find_last_of("/\\");
 | |
|         if (pos != std::string::npos) {
 | |
|             fpath = fname_inp.substr(0, pos + 1);
 | |
|         }
 | |
|         // export as [inp path]/ggml-model-[ftype].gguf
 | |
|         fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
 | |
|         arg_idx++;
 | |
|         if (ftype_str == "COPY") {
 | |
|             params.only_copy = true;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         fname_out = argv[arg_idx];
 | |
|         arg_idx++;
 | |
| 
 | |
|         if (argc <= arg_idx) {
 | |
|             fprintf(stderr, "%s: missing ftype\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
 | |
|             fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
 | |
|             return 1;
 | |
|         }
 | |
|         if (ftype_str == "COPY") {
 | |
|            params.only_copy = true;
 | |
|         }
 | |
|         arg_idx++;
 | |
|     }
 | |
| 
 | |
|     // parse nthreads
 | |
|     if (argc > arg_idx) {
 | |
|         try {
 | |
|             params.nthread = std::stoi(argv[arg_idx]);
 | |
|         }
 | |
|         catch (const std::exception & e) {
 | |
|             fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     print_build_info();
 | |
| 
 | |
|     fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
 | |
|     if (params.nthread > 0) {
 | |
|         fprintf(stderr, " using %d threads", params.nthread);
 | |
|     }
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     const int64_t t_main_start_us = llama_time_us();
 | |
| 
 | |
|     int64_t t_quantize_us = 0;
 | |
| 
 | |
|     // load the model
 | |
|     {
 | |
|         const int64_t t_start_us = llama_time_us();
 | |
| 
 | |
|         if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
 | |
|             fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         t_quantize_us = llama_time_us() - t_start_us;
 | |
|     }
 | |
| 
 | |
|     // report timing
 | |
|     {
 | |
|         const int64_t t_main_end_us = llama_time_us();
 | |
| 
 | |
|         printf("\n");
 | |
|         printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
 | |
|         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
 | |
|     }
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |