mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 6db2b41a76
			
		
	
	6db2b41a76
	
	
	
		
			
			* Support for Yi-VL, templating fix for mobileVLM * ws * Update examples/llava/clip.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update llava-cli.cpp * Update clip.cpp bugfix for new conversions --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			1510 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1510 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // NOTE: This is modified from clip.cpp only for LLaVA,
 | |
| // so there might be still unnecessary artifacts hanging around
 | |
| // I'll gradually clean and extend it
 | |
| 
 | |
| #include "clip.h"
 | |
| #include "ggml.h"
 | |
| #include "ggml-alloc.h"
 | |
| #include "ggml-backend.h"
 | |
| 
 | |
| #ifdef GGML_USE_CUBLAS
 | |
| #include "ggml-cuda.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
| #include "ggml-metal.h"
 | |
| #endif
 | |
| 
 | |
| #define STB_IMAGE_IMPLEMENTATION
 | |
| #include "stb_image.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <map>
 | |
| #include <regex>
 | |
| #include <stdexcept>
 | |
| #include <vector>
 | |
| #include <sstream>
 | |
| #include <cinttypes>
 | |
| 
 | |
| static std::string format(const char * fmt, ...) {
 | |
|     va_list ap;
 | |
|     va_list ap2;
 | |
|     va_start(ap, fmt);
 | |
|     va_copy(ap2, ap);
 | |
|     int size = vsnprintf(NULL, 0, fmt, ap);
 | |
|     GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
 | |
|     std::vector<char> buf(size + 1);
 | |
|     int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
 | |
|     GGML_ASSERT(size2 == size);
 | |
|     va_end(ap2);
 | |
|     va_end(ap);
 | |
|     return std::string(buf.data(), buf.size());
 | |
| }
 | |
| 
 | |
| //
 | |
| // key constants
 | |
| //
 | |
| 
 | |
| #define KEY_FTYPE "general.file_type"
 | |
| #define KEY_NAME "general.name"
 | |
| #define KEY_DESCRIPTION "general.description"
 | |
| #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
 | |
| #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
 | |
| #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
 | |
| #define KEY_USE_GELU "clip.use_gelu"
 | |
| #define KEY_N_EMBD "clip.%s.embedding_length"
 | |
| #define KEY_N_FF "clip.%s.feed_forward_length"
 | |
| #define KEY_N_BLOCK "clip.%s.block_count"
 | |
| #define KEY_N_HEAD "clip.%s.attention.head_count"
 | |
| #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
 | |
| #define KEY_PROJ_DIM "clip.%s.projection_dim"
 | |
| #define KEY_TOKENS "tokenizer.ggml.tokens"
 | |
| #define KEY_N_POSITIONS "clip.text.context_length"
 | |
| #define KEY_IMAGE_SIZE "clip.vision.image_size"
 | |
| #define KEY_PATCH_SIZE "clip.vision.patch_size"
 | |
| #define KEY_IMAGE_MEAN "clip.vision.image_mean"
 | |
| #define KEY_IMAGE_STD "clip.vision.image_std"
 | |
| #define KEY_PROJ_TYPE "clip.projector_type"
 | |
| 
 | |
| //
 | |
| // tensor name constants
 | |
| //
 | |
| 
 | |
| #define TN_TOKEN_EMBD "%s.token_embd.weight"
 | |
| #define TN_POS_EMBD "%s.position_embd.weight"
 | |
| #define TN_CLASS_EMBD "v.class_embd"
 | |
| #define TN_PATCH_EMBD "v.patch_embd.weight"
 | |
| #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
 | |
| #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
 | |
| #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
 | |
| #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
 | |
| #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
 | |
| #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
 | |
| #define TN_LN_1 "%s.blk.%d.ln1.%s"
 | |
| #define TN_LN_2 "%s.blk.%d.ln2.%s"
 | |
| #define TN_LN_PRE "%s.pre_ln.%s"
 | |
| #define TN_LN_POST "%s.post_ln.%s"
 | |
| #define TN_TEXT_PROJ "text_projection.weight"
 | |
| #define TN_VIS_PROJ "visual_projection.weight"
 | |
| #define TN_LLAVA_PROJ "mm.%d.%s"
 | |
| #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
 | |
| #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
 | |
| 
 | |
| 
 | |
| enum projector_type {
 | |
|     PROJECTOR_TYPE_MLP,
 | |
|     PROJECTOR_TYPE_MLP_NORM,
 | |
|     PROJECTOR_TYPE_LDP,
 | |
|     PROJECTOR_TYPE_UNKNOWN,
 | |
| };
 | |
| 
 | |
| static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
 | |
|     { PROJECTOR_TYPE_MLP,           "mlp"     },
 | |
|     { PROJECTOR_TYPE_LDP,          "ldp"    },
 | |
| };
 | |
| 
 | |
| 
 | |
| //
 | |
| // utilities to get data from a gguf file
 | |
| //
 | |
| 
 | |
| static int get_key_idx(const gguf_context * ctx, const char * key) {
 | |
|     int i = gguf_find_key(ctx, key);
 | |
|     if (i == -1) {
 | |
|         fprintf(stderr, "key %s not found in file\n", key);
 | |
|         throw std::runtime_error(format("Missing required key: %s", key));
 | |
|     }
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
 | |
|     const int i = get_key_idx(ctx, key.c_str());
 | |
| 
 | |
|     return gguf_get_val_u32(ctx, i);
 | |
| }
 | |
| 
 | |
| static float get_f32(const gguf_context * ctx, const std::string & key) {
 | |
|     const int i = get_key_idx(ctx, key.c_str());
 | |
| 
 | |
|     return gguf_get_val_f32(ctx, i);
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
 | |
|     struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
 | |
|     if (!cur) {
 | |
|         throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| static std::string get_ftype(int ftype) {
 | |
|     return ggml_type_name(static_cast<ggml_type>(ftype));
 | |
| }
 | |
| 
 | |
| static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
 | |
|     switch (type) {
 | |
|         case GGUF_TYPE_UINT8:   return std::to_string(((const uint8_t  *)data)[i]);
 | |
|         case GGUF_TYPE_INT8:    return std::to_string(((const int8_t   *)data)[i]);
 | |
|         case GGUF_TYPE_UINT16:  return std::to_string(((const uint16_t *)data)[i]);
 | |
|         case GGUF_TYPE_INT16:   return std::to_string(((const int16_t  *)data)[i]);
 | |
|         case GGUF_TYPE_UINT32:  return std::to_string(((const uint32_t *)data)[i]);
 | |
|         case GGUF_TYPE_INT32:   return std::to_string(((const int32_t  *)data)[i]);
 | |
|         case GGUF_TYPE_UINT64:  return std::to_string(((const uint64_t *)data)[i]);
 | |
|         case GGUF_TYPE_INT64:   return std::to_string(((const int64_t  *)data)[i]);
 | |
|         case GGUF_TYPE_FLOAT32: return std::to_string(((const float    *)data)[i]);
 | |
|         case GGUF_TYPE_FLOAT64: return std::to_string(((const double   *)data)[i]);
 | |
|         case GGUF_TYPE_BOOL:    return ((const bool *)data)[i] ? "true" : "false";
 | |
|         default:                return format("unknown type %d", type);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
 | |
|     std::string result;
 | |
|     for (size_t pos = 0; ; pos += search.length()) {
 | |
|         auto new_pos = s.find(search, pos);
 | |
|         if (new_pos == std::string::npos) {
 | |
|             result += s.substr(pos, s.size() - pos);
 | |
|             break;
 | |
|         }
 | |
|         result += s.substr(pos, new_pos - pos) + replace;
 | |
|         pos = new_pos;
 | |
|     }
 | |
|     s = std::move(result);
 | |
| }
 | |
| 
 | |
| static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
 | |
|     const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
 | |
| 
 | |
|     switch (type) {
 | |
|         case GGUF_TYPE_STRING:
 | |
|             return gguf_get_val_str(ctx_gguf, i);
 | |
|         case GGUF_TYPE_ARRAY:
 | |
|             {
 | |
|                 const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
 | |
|                 int arr_n = gguf_get_arr_n(ctx_gguf, i);
 | |
|                 const void * data = gguf_get_arr_data(ctx_gguf, i);
 | |
|                 std::stringstream ss;
 | |
|                 ss << "[";
 | |
|                 for (int j = 0; j < arr_n; j++) {
 | |
|                     if (arr_type == GGUF_TYPE_STRING) {
 | |
|                         std::string val = gguf_get_arr_str(ctx_gguf, i, j);
 | |
|                         // escape quotes
 | |
|                         replace_all(val, "\\", "\\\\");
 | |
|                         replace_all(val, "\"", "\\\"");
 | |
|                         ss << '"' << val << '"';
 | |
|                     } else if (arr_type == GGUF_TYPE_ARRAY) {
 | |
|                         ss << "???";
 | |
|                     } else {
 | |
|                         ss << gguf_data_to_str(arr_type, data, j);
 | |
|                     }
 | |
|                     if (j < arr_n - 1) {
 | |
|                         ss << ", ";
 | |
|                     }
 | |
|                 }
 | |
|                 ss << "]";
 | |
|                 return ss.str();
 | |
|             }
 | |
|         default:
 | |
|             return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void print_tensor_info(const ggml_tensor* tensor, const char* prefix = "") {
 | |
|     size_t tensor_size = ggml_nbytes(tensor);
 | |
|     printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
 | |
|             prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
 | |
|             tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
 | |
| }
 | |
| 
 | |
| static projector_type clip_projector_type_from_string(const std::string & name) {
 | |
|     for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
 | |
|         if (kv.second == name) {
 | |
|             return kv.first;
 | |
|         }
 | |
|     }
 | |
|     return PROJECTOR_TYPE_UNKNOWN;
 | |
| }
 | |
| 
 | |
| //
 | |
| // image data
 | |
| //
 | |
| 
 | |
| // RGB uint8 image
 | |
| struct clip_image_u8 {
 | |
|     int nx;
 | |
|     int ny;
 | |
| 
 | |
|     std::vector<uint8_t> buf;
 | |
| };
 | |
| 
 | |
| // RGB float32 image (NHWC)
 | |
| // Memory layout: RGBRGBRGB...
 | |
| struct clip_image_f32 {
 | |
|     int nx;
 | |
|     int ny;
 | |
| 
 | |
|     std::vector<float> buf;
 | |
| };
 | |
| 
 | |
| //
 | |
| // clip layers
 | |
| //
 | |
| 
 | |
| struct clip_layer {
 | |
|     // attention
 | |
|     struct ggml_tensor * k_w;
 | |
|     struct ggml_tensor * k_b;
 | |
|     struct ggml_tensor * q_w;
 | |
|     struct ggml_tensor * q_b;
 | |
|     struct ggml_tensor * v_w;
 | |
|     struct ggml_tensor * v_b;
 | |
| 
 | |
|     struct ggml_tensor * o_w;
 | |
|     struct ggml_tensor * o_b;
 | |
| 
 | |
|     // layernorm 1
 | |
|     struct ggml_tensor * ln_1_w;
 | |
|     struct ggml_tensor * ln_1_b;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * ff_i_w;
 | |
|     struct ggml_tensor * ff_i_b;
 | |
| 
 | |
|     struct ggml_tensor * ff_o_w;
 | |
|     struct ggml_tensor * ff_o_b;
 | |
| 
 | |
|     // layernorm 2
 | |
|     struct ggml_tensor * ln_2_w;
 | |
|     struct ggml_tensor * ln_2_b;
 | |
| };
 | |
| 
 | |
| struct clip_vision_model {
 | |
|     struct clip_vision_hparams hparams;
 | |
| 
 | |
|     // embeddings
 | |
|     struct ggml_tensor * class_embedding;
 | |
|     struct ggml_tensor * patch_embeddings;
 | |
|     struct ggml_tensor * position_embeddings;
 | |
| 
 | |
|     struct ggml_tensor * pre_ln_w;
 | |
|     struct ggml_tensor * pre_ln_b;
 | |
| 
 | |
|     std::vector<clip_layer> layers;
 | |
| 
 | |
|     struct ggml_tensor * post_ln_w;
 | |
|     struct ggml_tensor * post_ln_b;
 | |
| 
 | |
|     struct ggml_tensor * projection;
 | |
| 
 | |
|     // LLaVA projection
 | |
|     struct ggml_tensor * mm_0_w = NULL;
 | |
|     struct ggml_tensor * mm_0_b = NULL;
 | |
|     struct ggml_tensor * mm_2_w = NULL;
 | |
|     struct ggml_tensor * mm_2_b = NULL;
 | |
| 
 | |
|     // Yi type models with mlp+normalization projection
 | |
|     struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
 | |
|     struct ggml_tensor * mm_1_b = NULL;
 | |
|     struct ggml_tensor * mm_3_w = NULL;
 | |
|     struct ggml_tensor * mm_3_b = NULL;
 | |
|     struct ggml_tensor * mm_4_w = NULL;
 | |
|     struct ggml_tensor * mm_4_b = NULL;
 | |
| 
 | |
|     // MobileVLM projection
 | |
|     struct ggml_tensor * mm_model_mlp_1_w;
 | |
|     struct ggml_tensor * mm_model_mlp_1_b;
 | |
|     struct ggml_tensor * mm_model_mlp_3_w;
 | |
|     struct ggml_tensor * mm_model_mlp_3_b;
 | |
|     struct ggml_tensor * mm_model_block_1_block_0_0_w;
 | |
|     struct ggml_tensor * mm_model_block_1_block_0_1_w;
 | |
|     struct ggml_tensor * mm_model_block_1_block_0_1_b;
 | |
|     struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
 | |
|     struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
 | |
|     struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
 | |
|     struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
 | |
|     struct ggml_tensor * mm_model_block_1_block_2_0_w;
 | |
|     struct ggml_tensor * mm_model_block_1_block_2_1_w;
 | |
|     struct ggml_tensor * mm_model_block_1_block_2_1_b;
 | |
|     struct ggml_tensor * mm_model_block_2_block_0_0_w;
 | |
|     struct ggml_tensor * mm_model_block_2_block_0_1_w;
 | |
|     struct ggml_tensor * mm_model_block_2_block_0_1_b;
 | |
|     struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
 | |
|     struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
 | |
|     struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
 | |
|     struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
 | |
|     struct ggml_tensor * mm_model_block_2_block_2_0_w;
 | |
|     struct ggml_tensor * mm_model_block_2_block_2_1_w;
 | |
|     struct ggml_tensor * mm_model_block_2_block_2_1_b;
 | |
| };
 | |
| 
 | |
| struct clip_ctx {
 | |
|     bool has_text_encoder    = false;
 | |
|     bool has_vision_encoder  = false;
 | |
|     bool has_llava_projector = false;
 | |
| 
 | |
|     struct clip_vision_model vision_model;
 | |
|     projector_type proj_type = PROJECTOR_TYPE_MLP;
 | |
| 
 | |
|     float image_mean[3];
 | |
|     float image_std[3];
 | |
|     bool use_gelu = false;
 | |
|     int32_t ftype = 1;
 | |
| 
 | |
|     struct gguf_context * ctx_gguf;
 | |
|     struct ggml_context * ctx_data;
 | |
| 
 | |
|     std::vector<uint8_t> buf_compute_meta;
 | |
| 
 | |
|     // memory buffers to evaluate the model
 | |
|     ggml_backend_buffer_t params_buffer = NULL;
 | |
|     ggml_backend_buffer_t compute_buffer = NULL;
 | |
|     ggml_backend_t backend = NULL;
 | |
|     ggml_allocr * compute_alloc = NULL;
 | |
| };
 | |
| 
 | |
| static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
 | |
|     if (!ctx->has_vision_encoder) {
 | |
|         printf("This gguf file seems to have no vision encoder\n");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     const auto & model = ctx->vision_model;
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     const int image_size = hparams.image_size;
 | |
|     const int patch_size = hparams.patch_size;
 | |
|     const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
 | |
|     const int num_positions = num_patches + 1;
 | |
|     const int hidden_size = hparams.hidden_size;
 | |
|     const int n_head = hparams.n_head;
 | |
|     const int d_head = hidden_size / n_head;
 | |
|     const int n_layer = hparams.n_layer;
 | |
|     //const int n_intermediate = hparams.n_intermediate;
 | |
|     //const int projection_dim = hparams.projection_dim;
 | |
|     const float eps = hparams.eps;
 | |
|     int batch_size = imgs->size;
 | |
|     if (ctx->has_llava_projector) {
 | |
|         GGML_ASSERT(batch_size == 1);
 | |
|     }
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ ctx->buf_compute_meta.size(),
 | |
|         /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
 | |
|         /*.no_alloc   =*/ true,
 | |
|     };
 | |
| 
 | |
|     struct ggml_context * ctx0 = ggml_init(params);
 | |
|     struct ggml_cgraph * gf = ggml_new_graph(ctx0);
 | |
| 
 | |
|     struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
 | |
|     ggml_allocr_alloc(ctx->compute_alloc, inp_raw);
 | |
| 
 | |
|     if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
 | |
|         float * data = (float *)malloc(ggml_nbytes(inp_raw));
 | |
| 
 | |
|         for (size_t i = 0; i < imgs->size; i++) {
 | |
|             const int nx = imgs->data[i].nx;
 | |
|             const int ny = imgs->data[i].ny;
 | |
|             GGML_ASSERT(nx == image_size && ny == image_size);
 | |
| 
 | |
|             const int n = nx * ny;
 | |
| 
 | |
|             for (int b = 0; b < batch_size; b++) {
 | |
|                 for (int k = 0; k < 3; k++) {
 | |
|                     for (int y = 0; y < ny; y++) {
 | |
|                         for (int x = 0; x < nx; x++) {
 | |
|                             data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
 | |
|         free(data);
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
 | |
| 
 | |
|     inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
 | |
|     inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
 | |
| 
 | |
|     // concat class_embeddings and patch_embeddings
 | |
|     struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
 | |
|     ggml_allocr_alloc(ctx->compute_alloc, embeddings);
 | |
|     if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
 | |
|         void* zero_mem = malloc(ggml_nbytes(embeddings));
 | |
|         memset(zero_mem, 0, ggml_nbytes(embeddings));
 | |
|         ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
 | |
|         free(zero_mem);
 | |
|     }
 | |
| 
 | |
|     embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
 | |
|             embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
 | |
| 
 | |
|     embeddings = ggml_acc(ctx0, embeddings, inp,
 | |
|             embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
 | |
| 
 | |
|     struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
 | |
|     ggml_allocr_alloc(ctx->compute_alloc, positions);
 | |
|     if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
 | |
|         int* positions_data = (int*)malloc(ggml_nbytes(positions));
 | |
|         for (int i = 0; i < num_positions; i++) {
 | |
|             positions_data[i] = i;
 | |
|         }
 | |
|         ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
 | |
|         free(positions_data);
 | |
|     }
 | |
| 
 | |
|     embeddings =
 | |
|         ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
 | |
| 
 | |
|     // pre-layernorm
 | |
|     {
 | |
|         embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|         ggml_set_name(embeddings, "pre_ln");
 | |
| 
 | |
|         embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
 | |
|     }
 | |
| 
 | |
|     // loop over layers
 | |
|     for (int il = 0; il < n_layer - 1; il++) {
 | |
|         struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
 | |
| 
 | |
|         //const size_t nb_q_w = model.layers[il].q_w->nb[0];
 | |
| 
 | |
|         // layernorm1
 | |
|         {
 | |
|             cur = ggml_norm(ctx0, cur, eps);
 | |
| 
 | |
|             cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
 | |
|                            model.layers[il].ln_1_b);
 | |
|         }
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
| 
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
 | |
| 
 | |
|             Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
 | |
|             Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
 | |
|             Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
 | |
|             Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
 | |
| 
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
 | |
| 
 | |
|             K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
 | |
|             K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
 | |
|             K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
 | |
| 
 | |
|             struct ggml_tensor * V =
 | |
|                 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
 | |
| 
 | |
|             V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
 | |
|             V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
 | |
|             V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
 | |
| 
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
|             KQ = ggml_soft_max_inplace(ctx0, KQ);
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
 | |
|             KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
 | |
|             KQV = ggml_cont(ctx0, ggml_permute(ctx0, KQV, 0, 2, 1, 3));
 | |
| 
 | |
|             cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size));
 | |
|         }
 | |
| 
 | |
|         // attention output
 | |
|         cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
 | |
| 
 | |
|         // re-add the layer input, e.g., residual
 | |
|         cur = ggml_add(ctx0, cur, embeddings);
 | |
| 
 | |
|         embeddings = cur; // embeddings = residual, cur = hidden_states
 | |
| 
 | |
|         // layernorm2
 | |
|         {
 | |
|             cur = ggml_norm(ctx0, cur, eps);
 | |
| 
 | |
|             cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
 | |
|         }
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
 | |
|         cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
 | |
| 
 | |
|         if (ctx->use_gelu) {
 | |
|             cur = ggml_gelu_inplace(ctx0, cur);
 | |
|         } else {
 | |
|             cur = ggml_gelu_quick_inplace(ctx0, cur);
 | |
|         }
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
 | |
|         cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
 | |
| 
 | |
|         // residual 2
 | |
|         cur = ggml_add(ctx0, embeddings, cur);
 | |
| 
 | |
|         embeddings = cur;
 | |
|     }
 | |
| 
 | |
|     // llava projector
 | |
|     {
 | |
|         embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
 | |
| 
 | |
|         struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
 | |
|         ggml_allocr_alloc(ctx->compute_alloc, patches);
 | |
|         if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
 | |
|             int* patches_data = (int*)malloc(ggml_nbytes(patches));
 | |
|             for (int i = 0; i < num_patches; i++) {
 | |
|                 patches_data[i] = i + 1;
 | |
|             }
 | |
|             ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
 | |
|             free(patches_data);
 | |
|         }
 | |
| 
 | |
|         // shape [1, 576, 1024]
 | |
|         // ne is whcn, ne = [1024, 576, 1, 1]
 | |
|         embeddings = ggml_get_rows(ctx0, embeddings, patches);
 | |
| 
 | |
|         // print_tensor_info(embeddings, "embeddings");
 | |
| 
 | |
|         // llava projector
 | |
|         if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
 | |
|             embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
 | |
| 
 | |
|             embeddings = ggml_gelu(ctx0, embeddings);
 | |
| 
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
 | |
|             embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
 | |
| 
 | |
|         } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
 | |
|             embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
 | |
|             // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
 | |
|             // First LayerNorm
 | |
|             embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|             embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
 | |
|                                 model.mm_1_b);
 | |
| 
 | |
|             // GELU activation
 | |
|             embeddings = ggml_gelu(ctx0, embeddings);
 | |
| 
 | |
|             // Second linear layer
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
 | |
|             embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
 | |
| 
 | |
|             // Second LayerNorm
 | |
|             embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|             embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
 | |
|                                 model.mm_4_b);
 | |
|         }
 | |
|         else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
 | |
|             // MobileVLM projector
 | |
|             int n_patch = 24;
 | |
|             struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
 | |
|             mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
 | |
|             mlp_1 = ggml_gelu(ctx0, mlp_1);
 | |
|             struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
 | |
|             mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
 | |
|             // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
 | |
| 
 | |
|             // block 1
 | |
|             struct ggml_tensor * block_1 = nullptr;
 | |
|             {
 | |
|                 // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
 | |
|                 mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
 | |
|                 mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
 | |
|                 // stride = 1, padding = 1, bias is nullptr
 | |
|                 block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
 | |
| 
 | |
|                 // layer norm
 | |
|                 // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
 | |
|                 // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
 | |
|                 block_1 = ggml_norm(ctx0, block_1, eps);
 | |
|                 block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
 | |
| 
 | |
|                 // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
 | |
|                 // hardswish
 | |
|                 struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
 | |
| 
 | |
|                 block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
 | |
|                 // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
 | |
|                 // pointwise conv
 | |
|                 block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
 | |
|                 block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
 | |
|                 block_1 = ggml_relu(ctx0, block_1);
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
 | |
|                 block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
 | |
|                 block_1 = ggml_hardsigmoid(ctx0, block_1);
 | |
|                 // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
 | |
|                 block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
 | |
|                 block_1 = ggml_mul(ctx0, block_1_hw, block_1);
 | |
| 
 | |
|                 int w = block_1->ne[0], h = block_1->ne[1];
 | |
|                 block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
 | |
| 
 | |
|                 // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
 | |
|                 block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
 | |
| 
 | |
|                 // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
 | |
|                 block_1 = ggml_norm(ctx0, block_1, eps);
 | |
|                 block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
 | |
|                 // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
 | |
|                 // residual
 | |
|                 block_1 = ggml_add(ctx0, mlp_3, block_1);
 | |
|             }
 | |
| 
 | |
|             // block_2
 | |
|             {
 | |
|                 // stride = 2
 | |
|                 block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
 | |
| 
 | |
|                 // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
 | |
|                 // layer norm
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
 | |
|                 // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
 | |
|                 block_1 = ggml_norm(ctx0, block_1, eps);
 | |
|                 block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
 | |
|                 // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
 | |
|                 // hardswish
 | |
|                 struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
 | |
| 
 | |
|                 // not sure the parameters is right for globalAvgPooling
 | |
|                 block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
 | |
|                 // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
 | |
|                 // pointwise conv
 | |
|                 block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
 | |
|                 block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
 | |
|                 block_1 = ggml_relu(ctx0, block_1);
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
 | |
|                 block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
 | |
|                 block_1 = ggml_hardsigmoid(ctx0, block_1);
 | |
| 
 | |
|                 // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
 | |
|                 block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
 | |
|                 block_1 = ggml_mul(ctx0, block_1_hw, block_1);
 | |
| 
 | |
|                 int w = block_1->ne[0], h = block_1->ne[1];
 | |
|                 block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
 | |
|                 // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
 | |
|                 block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
 | |
| 
 | |
| 
 | |
|                 // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
 | |
|                 block_1 = ggml_norm(ctx0, block_1, eps);
 | |
|                 block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
 | |
|                 block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
 | |
|                 // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
 | |
|             }
 | |
|             embeddings = block_1;
 | |
|         }
 | |
|         else {
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // build the graph
 | |
|     ggml_build_forward_expand(gf, embeddings);
 | |
| 
 | |
|     ggml_free(ctx0);
 | |
| 
 | |
|     return gf;
 | |
| }
 | |
| 
 | |
| // read and create ggml_context containing the tensors and their data
 | |
| struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
 | |
|     struct ggml_context * meta = NULL;
 | |
| 
 | |
|     struct gguf_init_params params = {
 | |
|         /*.no_alloc = */ true,
 | |
|         /*.ctx      = */ &meta,
 | |
|     };
 | |
| 
 | |
|     struct gguf_context * ctx = gguf_init_from_file(fname, params);
 | |
|     if (!ctx) {
 | |
|         throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
 | |
|     }
 | |
| 
 | |
|     if (verbosity >= 1) {
 | |
|         const int n_tensors = gguf_get_n_tensors(ctx);
 | |
|         const int n_kv = gguf_get_n_kv(ctx);
 | |
|         const int ftype = get_u32(ctx, KEY_FTYPE);
 | |
|         const std::string ftype_str = get_ftype(ftype);
 | |
|         const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
 | |
|         const std::string description = gguf_get_val_str(ctx, idx_desc);
 | |
|         const int idx_name = gguf_find_key(ctx, KEY_NAME);
 | |
|         if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
 | |
|             const std::string name = gguf_get_val_str(ctx, idx_name);
 | |
|             printf("%s: model name:   %s\n", __func__, name.c_str());
 | |
|         }
 | |
|         printf("%s: description:  %s\n", __func__, description.c_str());
 | |
|         printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
 | |
|         printf("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx));
 | |
|         printf("%s: n_tensors:    %d\n", __func__, n_tensors);
 | |
|         printf("%s: n_kv:         %d\n", __func__, n_kv);
 | |
|         printf("%s: ftype:        %s\n", __func__, ftype_str.c_str());
 | |
|         printf("\n");
 | |
|     }
 | |
|     const int n_tensors = gguf_get_n_tensors(ctx);
 | |
| 
 | |
|     // kv
 | |
|     const int n_kv = gguf_get_n_kv(ctx);
 | |
|     printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
 | |
|         __func__, n_kv, n_tensors, fname);
 | |
|     {
 | |
|         std::map<enum ggml_type, uint32_t> n_type;
 | |
| 
 | |
|         for (int i = 0; i < n_tensors; i++) {
 | |
|             enum ggml_type type = gguf_get_tensor_type(ctx, i);
 | |
| 
 | |
|             n_type[type]++;
 | |
|         }
 | |
| 
 | |
|         printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
 | |
|         for (int i = 0; i < n_kv; i++) {
 | |
|             const char * name           = gguf_get_key(ctx, i);
 | |
|             const enum gguf_type type   = gguf_get_kv_type(ctx, i);
 | |
|             const std::string type_name =
 | |
|                 type == GGUF_TYPE_ARRAY
 | |
|                 ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
 | |
|                 : gguf_type_name(type);
 | |
| 
 | |
|             std::string value          = gguf_kv_to_str(ctx, i);
 | |
|             const size_t MAX_VALUE_LEN = 40;
 | |
|             if (value.size() > MAX_VALUE_LEN) {
 | |
|                 value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
 | |
|             }
 | |
|             replace_all(value, "\n", "\\n");
 | |
| 
 | |
|             printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
 | |
|         }
 | |
| 
 | |
|         // print type counts
 | |
|         for (auto & kv : n_type) {
 | |
|             if (kv.second == 0) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // data
 | |
|     size_t buffer_size = 0;
 | |
|     {
 | |
|         for (int i = 0; i < n_tensors; ++i) {
 | |
|             const char * name = gguf_get_tensor_name(ctx, i);
 | |
|             const size_t offset = gguf_get_tensor_offset(ctx, i);
 | |
|             enum ggml_type type = gguf_get_tensor_type(ctx, i);
 | |
|             struct ggml_tensor * cur = ggml_get_tensor(meta, name);
 | |
|             size_t tensor_size = ggml_nbytes(cur);
 | |
|             buffer_size += tensor_size;
 | |
|             if (verbosity >= 3) {
 | |
|                 printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
 | |
|                        __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     buffer_size += n_tensors * 128 /* CLIP PADDING */;
 | |
| 
 | |
|     clip_ctx * new_clip = new clip_ctx;
 | |
| 
 | |
|     // update projector type
 | |
|     {
 | |
|         int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
 | |
|         if (idx != -1) {
 | |
|             const std::string proj_type = gguf_get_val_str(ctx, idx);
 | |
|             new_clip->proj_type = clip_projector_type_from_string(proj_type);
 | |
|         }
 | |
|         else {
 | |
|             new_clip->proj_type = PROJECTOR_TYPE_MLP;
 | |
|         }
 | |
|         if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
 | |
|             if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
 | |
|                 new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|     new_clip->backend = ggml_backend_cuda_init(0);
 | |
|     printf("%s: CLIP using CUDA backend\n", __func__);
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
|     new_clip->backend = ggml_backend_metal_init();
 | |
|     printf("%s: CLIP using Metal backend\n", __func__);
 | |
| #endif
 | |
| 
 | |
| 
 | |
|     if (!new_clip->backend) {
 | |
|         new_clip->backend = ggml_backend_cpu_init();
 | |
|         printf("%s: CLIP using CPU backend\n", __func__);
 | |
|     }
 | |
| 
 | |
|     // model size and capabilities
 | |
|     {
 | |
|         int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
 | |
|         new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
 | |
| 
 | |
|         idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
 | |
|         new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
 | |
| 
 | |
|         idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
 | |
|         if (idx != -1) {
 | |
|             new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
 | |
|         }
 | |
| 
 | |
|         GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
 | |
|         GGML_ASSERT(new_clip->has_vision_encoder);
 | |
|         GGML_ASSERT(!new_clip->has_text_encoder);
 | |
| 
 | |
|         idx = get_key_idx(ctx, KEY_USE_GELU);
 | |
|         new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
 | |
| 
 | |
|         if (verbosity >= 1) {
 | |
|             printf("%s: text_encoder:   %d\n", __func__, new_clip->has_text_encoder);
 | |
|             printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
 | |
|             printf("%s: llava_projector:  %d\n", __func__, new_clip->has_llava_projector);
 | |
|             printf("%s: model size:     %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0);
 | |
|             printf("%s: metadata size:  %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors);
 | |
| 
 | |
|     // load tensors
 | |
|     {
 | |
|         std::vector<uint8_t> read_buf;
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|             /*.no_alloc =*/ true,
 | |
|         };
 | |
| 
 | |
|         new_clip->ctx_data = ggml_init(params);
 | |
|         if (!new_clip->ctx_data) {
 | |
|             fprintf(stderr, "%s: ggml_init() failed\n", __func__);
 | |
|             clip_free(new_clip);
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         auto fin = std::ifstream(fname, std::ios::binary);
 | |
|         if (!fin) {
 | |
|             printf("cannot open model file for loading tensors\n");
 | |
|             clip_free(new_clip);
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         // add tensors to context
 | |
|         for (int i = 0; i < n_tensors; ++i) {
 | |
|             const char * name = gguf_get_tensor_name(ctx, i);
 | |
|             struct ggml_tensor * t = ggml_get_tensor(meta, name);
 | |
|             struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
 | |
|             ggml_set_name(cur, name);
 | |
|         }
 | |
| 
 | |
|         // alloc memory and offload data
 | |
|         new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size);
 | |
|         ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer);
 | |
|         for (int i = 0; i < n_tensors; ++i) {
 | |
|             const char * name = gguf_get_tensor_name(ctx, i);
 | |
|             struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
 | |
|             ggml_allocr_alloc(alloc, cur);
 | |
|             const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
 | |
|             fin.seekg(offset, std::ios::beg);
 | |
|             if (!fin) {
 | |
|                 printf("%s: failed to seek for tensor %s\n", __func__, name);
 | |
|                 clip_free(new_clip);
 | |
|                 return nullptr;
 | |
|             }
 | |
|             int num_bytes = ggml_nbytes(cur);
 | |
|             if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
 | |
|                 // for the CPU and Metal backend, we can read directly into the tensor
 | |
|                 fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
 | |
|             } else {
 | |
|                 // read into a temporary buffer first, then copy to device memory
 | |
|                 read_buf.resize(num_bytes);
 | |
|                 fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
 | |
|                 ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
 | |
|             }
 | |
|         }
 | |
|         ggml_allocr_free(alloc);
 | |
|         fin.close();
 | |
|     }
 | |
| 
 | |
|     // vision model
 | |
|     if (new_clip->has_vision_encoder) {
 | |
|         // load vision model
 | |
|         auto & vision_model = new_clip->vision_model;
 | |
|         auto & hparams = vision_model.hparams;
 | |
|         hparams.hidden_size    = get_u32(ctx, format(KEY_N_EMBD, "vision"));
 | |
|         hparams.n_head         = get_u32(ctx, format(KEY_N_HEAD, "vision"));
 | |
|         hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
 | |
|         hparams.n_layer        = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
 | |
|         hparams.image_size     = get_u32(ctx, KEY_IMAGE_SIZE);
 | |
|         hparams.patch_size     = get_u32(ctx, KEY_PATCH_SIZE);
 | |
|         hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
 | |
|         hparams.eps            = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
 | |
| 
 | |
|         int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
 | |
|         int idx_std  = get_key_idx(ctx, KEY_IMAGE_STD);
 | |
|         for (int i = 0; i < 3; ++i) {
 | |
|             new_clip->image_mean[i] = *((const float *)gguf_get_arr_data(ctx, idx_mean));
 | |
|             new_clip->image_std[i]  = *((const float *)gguf_get_arr_data(ctx, idx_std));
 | |
|         }
 | |
| 
 | |
|         if (verbosity >= 2) {
 | |
|             printf("\n%s: vision model hparams\n", __func__);
 | |
|             printf("image_size         %d\n", hparams.image_size);
 | |
|             printf("patch_size         %d\n", hparams.patch_size);
 | |
|             printf("v_hidden_size      %d\n", hparams.hidden_size);
 | |
|             printf("v_n_intermediate   %d\n", hparams.n_intermediate);
 | |
|             printf("v_projection_dim   %d\n", hparams.projection_dim);
 | |
|             printf("v_n_head           %d\n", hparams.n_head);
 | |
|             printf("v_n_layer          %d\n", hparams.n_layer);
 | |
|         }
 | |
| 
 | |
|         vision_model.patch_embeddings    = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
 | |
|         vision_model.class_embedding     = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
 | |
|         vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
 | |
|         vision_model.pre_ln_w            = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
 | |
|         vision_model.pre_ln_b            = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
 | |
| 
 | |
|         // LLaVA projection
 | |
|         if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
 | |
|             vision_model.mm_0_w              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
 | |
|             vision_model.mm_0_b              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
 | |
|             try {
 | |
|                 // Yi-type llava
 | |
|                 vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
 | |
|                 vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
 | |
|             } catch (std::runtime_error & e) {  }
 | |
|             try {
 | |
|                 // missing in Yi-type llava
 | |
|                 vision_model.mm_2_w              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
 | |
|                 vision_model.mm_2_b              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
 | |
|             } catch (std::runtime_error & e) {  }
 | |
|             try {
 | |
|                 // Yi-type llava
 | |
|                 vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
 | |
|                 vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
 | |
|             } catch (std::runtime_error & e) {  }
 | |
|             try {
 | |
|                 // Yi-type llava
 | |
|                 vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
 | |
|                 vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
 | |
|             } catch (std::runtime_error & e) {  }
 | |
|         }
 | |
|         else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
 | |
|             // MobileVLM projection
 | |
|             vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
 | |
|             vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
 | |
|             vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
 | |
|             vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
 | |
|             vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
 | |
|             vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
 | |
|             vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
 | |
|             vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
 | |
|             vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
 | |
|             vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
 | |
|             vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
 | |
|             vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
 | |
|             vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
 | |
|             vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
 | |
|             vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
 | |
|             vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
 | |
|             vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
 | |
|             vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
 | |
|             vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
 | |
|             vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
 | |
|             vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
 | |
|             vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
 | |
|             vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
 | |
|             vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
 | |
|         }
 | |
|         else {
 | |
|             std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
 | |
|             throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
 | |
|         }
 | |
| 
 | |
|         vision_model.layers.resize(hparams.n_layer);
 | |
|         for (int il = 0; il < hparams.n_layer; ++il) {
 | |
|             auto & layer = vision_model.layers[il];
 | |
|             layer.k_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_K,      "v", il, "weight"));
 | |
|             layer.q_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q,      "v", il, "weight"));
 | |
|             layer.v_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_V,      "v", il, "weight"));
 | |
|             layer.o_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
 | |
|             layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1,        "v", il, "weight"));
 | |
|             layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2,        "v", il, "weight"));
 | |
|             layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN,    "v", il, "weight"));
 | |
|             layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP,      "v", il, "weight"));
 | |
|             layer.k_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_K,      "v", il, "bias"));
 | |
|             layer.q_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q,      "v", il, "bias"));
 | |
|             layer.v_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_V,      "v", il, "bias"));
 | |
|             layer.o_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
 | |
|             layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1,        "v", il, "bias"));
 | |
|             layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2,        "v", il, "bias"));
 | |
|             layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN,    "v", il, "bias"));
 | |
|             layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP,      "v", il, "bias"));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_free(meta);
 | |
| 
 | |
|     new_clip->ctx_gguf = ctx;
 | |
| 
 | |
|     // measure mem requirement and allocate
 | |
|     {
 | |
|         new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
 | |
|         new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend);
 | |
|         clip_image_f32_batch batch;
 | |
|         batch.size = 1;
 | |
|         ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
 | |
|         size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf);
 | |
|         ggml_allocr_free(new_clip->compute_alloc);
 | |
|         new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size);
 | |
|         new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer);
 | |
| 
 | |
|         printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
 | |
|     }
 | |
| 
 | |
|     return new_clip;
 | |
| }
 | |
| 
 | |
| struct clip_image_u8 * clip_image_u8_init() {
 | |
|     return new clip_image_u8();
 | |
| }
 | |
| 
 | |
| struct clip_image_f32 * clip_image_f32_init() {
 | |
|     return new clip_image_f32();
 | |
| }
 | |
| 
 | |
| void clip_image_u8_free (struct clip_image_u8  * img) { delete img; }
 | |
| void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
 | |
| 
 | |
| static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
 | |
|     img->nx = nx;
 | |
|     img->ny = ny;
 | |
|     img->buf.resize(3 * nx * ny);
 | |
|     memcpy(img->buf.data(), data, img->buf.size());
 | |
| }
 | |
| 
 | |
| bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
 | |
|     int nx, ny, nc;
 | |
|     auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
 | |
|     if (!data) {
 | |
|         fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname);
 | |
|         return false;
 | |
|     }
 | |
|     build_clip_img_from_data(data, nx, ny, img);
 | |
|     stbi_image_free(data);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
 | |
|     int nx, ny, nc;
 | |
|     auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
 | |
|     if (!data) {
 | |
|         fprintf(stderr, "%s: failed to decode image bytes\n", __func__);
 | |
|         return false;
 | |
|     }
 | |
|     build_clip_img_from_data(data, nx, ny, img);
 | |
|     stbi_image_free(data);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // normalize: x = (x - mean) / std
 | |
| // TODO: implement bicubic interpolation instead of linear.
 | |
| bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) {
 | |
|     if (!ctx->has_vision_encoder) {
 | |
|         printf("This gguf file seems to have no vision encoder\n");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
 | |
|     // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
 | |
| 
 | |
|     clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
 | |
|     if (pad2square && img->nx != img->ny) {
 | |
|         int longer_side = std::max(img->nx, img->ny);
 | |
|         temp->nx = longer_side;
 | |
|         temp->ny = longer_side;
 | |
|         temp->buf.resize(3 * longer_side * longer_side);
 | |
|         const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA
 | |
| 
 | |
|         // fill with background color
 | |
|         for (size_t i = 0; i < temp->buf.size(); i++) {
 | |
|             temp->buf[i] = bc[i % 3];
 | |
|         }
 | |
| 
 | |
|         // copy from the input image
 | |
|         for (int y = 0; y < img->ny; y++) {
 | |
|             for (int x = 0; x < img->nx; x++) {
 | |
|                 const int i = 3 * (y * img->nx + x);
 | |
|                 const int j = 3 * (y * temp->nx + x);
 | |
|                 temp->buf[j]   = img->buf[i];
 | |
|                 temp->buf[j+1] = img->buf[i+1];
 | |
|                 temp->buf[j+2] = img->buf[i+2];
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         temp->nx = img->nx;
 | |
|         temp->ny = img->ny;
 | |
|         temp->buf.resize(img->buf.size());
 | |
|         memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
 | |
|     }
 | |
| 
 | |
|     const int nx = temp->nx;
 | |
|     const int ny = temp->ny;
 | |
| 
 | |
|     const int nx2 = ctx->vision_model.hparams.image_size;
 | |
|     const int ny2 = ctx->vision_model.hparams.image_size;
 | |
| 
 | |
|     res->nx = nx2;
 | |
|     res->ny = ny2;
 | |
|     res->buf.resize(3 * nx2 * ny2);
 | |
| 
 | |
|     const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
 | |
| 
 | |
|     const int nx3 = int(nx / scale + 0.5f);
 | |
|     const int ny3 = int(ny / scale + 0.5f);
 | |
| 
 | |
|     const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
 | |
|     const auto & s3 = ctx->image_std;  // {0.26862954f, 0.26130258f, 0.27577711f};
 | |
| 
 | |
|     for (int y = 0; y < ny3; y++) {
 | |
|         for (int x = 0; x < nx3; x++) {
 | |
|             for (int c = 0; c < 3; c++) {
 | |
|                 // linear interpolation
 | |
|                 const float sx = (x + 0.5f) * scale - 0.5f;
 | |
|                 const float sy = (y + 0.5f) * scale - 0.5f;
 | |
| 
 | |
|                 const int x0 = std::max(0, (int)std::floor(sx));
 | |
|                 const int y0 = std::max(0, (int)std::floor(sy));
 | |
| 
 | |
|                 const int x1 = std::min(x0 + 1, nx - 1);
 | |
|                 const int y1 = std::min(y0 + 1, ny - 1);
 | |
| 
 | |
|                 const float dx = sx - x0;
 | |
|                 const float dy = sy - y0;
 | |
| 
 | |
|                 const int j00 = 3 * (y0 * nx + x0) + c;
 | |
|                 const int j01 = 3 * (y0 * nx + x1) + c;
 | |
|                 const int j10 = 3 * (y1 * nx + x0) + c;
 | |
|                 const int j11 = 3 * (y1 * nx + x1) + c;
 | |
| 
 | |
|                 const float v00 = temp->buf[j00];
 | |
|                 const float v01 = temp->buf[j01];
 | |
|                 const float v10 = temp->buf[j10];
 | |
|                 const float v11 = temp->buf[j11];
 | |
| 
 | |
|                 const float v0 = v00 * (1.0f - dx) + v01 * dx;
 | |
|                 const float v1 = v10 * (1.0f - dx) + v11 * dx;
 | |
| 
 | |
|                 const float v = v0 * (1.0f - dy) + v1 * dy;
 | |
| 
 | |
|                 const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
 | |
| 
 | |
|                 const int i = 3 * (y * nx3 + x) + c;
 | |
| 
 | |
|                 res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     clip_image_u8_free(temp);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void clip_free(clip_ctx * ctx) {
 | |
|     ggml_free(ctx->ctx_data);
 | |
|     gguf_free(ctx->ctx_gguf);
 | |
| 
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
 | |
|     if (!ctx->has_vision_encoder) {
 | |
|         printf("This gguf file seems to have no vision encoder\n");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     clip_image_f32_batch imgs{};
 | |
|     imgs.size = 1;
 | |
|     imgs.data = img;
 | |
|     return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
 | |
| }
 | |
| 
 | |
| bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
 | |
|     if (!ctx->has_vision_encoder) {
 | |
|         printf("This gguf file seems to have no vision encoder\n");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     int batch_size = imgs->size;
 | |
|     if(ctx->has_llava_projector) {
 | |
|         GGML_ASSERT(batch_size == 1); // TODO: support multiple images
 | |
|     }
 | |
| 
 | |
|     // reset alloc buffer to clean the memory from previous invocations
 | |
|     ggml_allocr_reset(ctx->compute_alloc);
 | |
| 
 | |
|     // build the inference graph
 | |
|     ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
 | |
|     ggml_allocr_alloc_graph(ctx->compute_alloc, gf);
 | |
| 
 | |
|     if (ggml_backend_is_cpu(ctx->backend)) {
 | |
|         ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
|     if (ggml_backend_is_metal(ctx->backend)) {
 | |
|         ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     ggml_backend_graph_compute(ctx->backend, gf);
 | |
| 
 | |
|     // the last node is the embedding tensor
 | |
|     struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
 | |
| 
 | |
|     // copy the embeddings to the location passed by the user
 | |
|     ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
 | |
| 
 | |
|     ggml_type type = GGML_TYPE_Q4_1;
 | |
| 
 | |
|     assert(itype < GGML_TYPE_COUNT);
 | |
|     type = static_cast<ggml_type>(itype);
 | |
| 
 | |
|     auto * ctx_clip = clip_model_load(fname_inp, 2);
 | |
| 
 | |
|     const auto & ctx_src = ctx_clip->ctx_gguf;
 | |
|     const auto & ctx_data = ctx_clip->ctx_data;
 | |
| 
 | |
|     auto * ctx_out = gguf_init_empty();
 | |
|     gguf_set_kv(ctx_out, ctx_src);
 | |
|     gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
 | |
|     gguf_set_val_u32(ctx_out, "general.file_type", itype);
 | |
| 
 | |
|     auto fout = std::ofstream(fname_out, std::ios::binary);
 | |
| 
 | |
|     const int n_tensors = gguf_get_n_tensors(ctx_src);
 | |
| 
 | |
|     for (int i = 0; i < n_tensors; ++i) {
 | |
|         const char * name = gguf_get_tensor_name(ctx_src, i);
 | |
|         struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
 | |
|         gguf_add_tensor(ctx_out, cur);
 | |
|     }
 | |
| 
 | |
|     const size_t meta_size = gguf_get_meta_size(ctx_out);
 | |
|     for (size_t i = 0; i < meta_size; ++i) {
 | |
|         fout.put(0);
 | |
|     }
 | |
| 
 | |
|     // regexes of tensor names to be quantized
 | |
|     const std::vector<std::string> k_names = {
 | |
|         ".*weight",
 | |
|     };
 | |
| 
 | |
|     std::vector<uint8_t> work(512);
 | |
|     std::vector<float> conv_buf(512);
 | |
|     std::vector<int64_t> hist_all(1 << 4, 0);
 | |
|     size_t total_size_org = 0;
 | |
|     size_t total_size_new = 0;
 | |
| 
 | |
|     for (int i = 0; i < n_tensors; ++i) {
 | |
|         const std::string name = gguf_get_tensor_name(ctx_src, i);
 | |
|         struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
 | |
| 
 | |
|         enum ggml_type new_type;
 | |
|         void * new_data;
 | |
|         size_t new_size;
 | |
| 
 | |
|         bool quantize = false;
 | |
|         for (const auto & s : k_names) {
 | |
|             if (std::regex_match(name, std::regex(s))) {
 | |
|                 quantize = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // quantize only 2D tensors
 | |
|         quantize &= (ggml_n_dims(cur) == 2);
 | |
| 
 | |
|         if (quantize) {
 | |
|             new_type = type;
 | |
|             if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
 | |
|                 new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
 | |
|                 // fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
 | |
|             }
 | |
|             const size_t n_elms = ggml_nelements(cur);
 | |
|             float * f32_data;
 | |
| 
 | |
|             switch (cur->type) {
 | |
|             case GGML_TYPE_F32:
 | |
|                 f32_data = (float *)cur->data;
 | |
|                 break;
 | |
|             case GGML_TYPE_F16:
 | |
|                 if (conv_buf.size() < n_elms) {
 | |
|                     conv_buf.resize(n_elms);
 | |
|                 }
 | |
|                 for (size_t j = 0; j < n_elms; ++j) {
 | |
|                     conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
 | |
|                 }
 | |
|                 f32_data = (float *)conv_buf.data();
 | |
|                 break;
 | |
|             default:
 | |
|                 printf("Please use an input file in f32 or f16\n");
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             if (work.size() < n_elms * 4) {
 | |
|                 work.resize(n_elms * 4);
 | |
|             }
 | |
|             new_data = work.data();
 | |
| 
 | |
|             std::vector<int64_t> hist_cur(1 << 4, 0);
 | |
| 
 | |
|             switch (new_type) {
 | |
|                 case GGML_TYPE_Q4_0: {
 | |
|                     new_size = ggml_quantize_q4_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 case GGML_TYPE_Q4_1: {
 | |
|                     new_size = ggml_quantize_q4_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 case GGML_TYPE_Q5_0: {
 | |
|                     new_size = ggml_quantize_q5_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 case GGML_TYPE_Q5_1: {
 | |
|                     new_size = ggml_quantize_q5_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 case GGML_TYPE_Q8_0: {
 | |
|                     new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 case GGML_TYPE_Q2_K: {
 | |
|                     new_size = ggml_quantize_q2_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 case GGML_TYPE_Q3_K: {
 | |
|                     new_size = ggml_quantize_q3_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 case GGML_TYPE_Q4_K: {
 | |
|                     new_size = ggml_quantize_q4_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 case GGML_TYPE_Q5_K: {
 | |
|                     new_size = ggml_quantize_q5_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 case GGML_TYPE_Q6_K: {
 | |
|                     new_size = ggml_quantize_q6_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
 | |
|                 } break;
 | |
|                 default: {
 | |
|                     fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type);
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             for (size_t j = 0; j < hist_cur.size(); ++j) {
 | |
|                 hist_all[j] += hist_cur[j];
 | |
|             }
 | |
|         } else {
 | |
|             new_type = cur->type;
 | |
|             new_data = cur->data;
 | |
|             new_size = ggml_nbytes(cur);
 | |
|         }
 | |
|         const size_t orig_size = ggml_nbytes(cur);
 | |
|         total_size_org += orig_size;
 | |
|         total_size_new += new_size;
 | |
|         gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
 | |
|         gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
 | |
|         fout.write((const char *)new_data, new_size);
 | |
|         size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
 | |
|         for (size_t j = 0; j < pad; ++j) {
 | |
|             fout.put(0);
 | |
|         }
 | |
| 
 | |
|         printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
 | |
|                orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
 | |
|     }
 | |
| 
 | |
|     // go back to beginning of file and write the updated metadata
 | |
|     fout.seekp(0, std::ios::beg);
 | |
|     std::vector<uint8_t> meta(meta_size);
 | |
|     gguf_get_meta_data(ctx_out, meta.data());
 | |
|     fout.write((const char *)meta.data(), meta_size);
 | |
| 
 | |
|     fout.close();
 | |
| 
 | |
|     clip_free(ctx_clip);
 | |
|     gguf_free(ctx_out);
 | |
| 
 | |
|     {
 | |
|         printf("%s: original  size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
 | |
|         printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
 | |
| 
 | |
|         int64_t sum_all = 0;
 | |
|         for (size_t i = 0; i < hist_all.size(); ++i) {
 | |
|             sum_all += hist_all[i];
 | |
|         }
 | |
| 
 | |
|         printf("%s: hist: ", __func__);
 | |
|         for (size_t i = 0; i < hist_all.size(); ++i) {
 | |
|             printf("%5.3f ", hist_all[i] / (float)sum_all);
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
 | |
|     if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
 | |
|         return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
 | |
|     }
 | |
|     else if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
 | |
|         return ctx->vision_model.mm_2_b->ne[0];
 | |
|     } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
 | |
|         return ctx->vision_model.mm_3_b->ne[0];
 | |
|     }
 | |
|     else {
 | |
|         std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
 | |
|         throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
 | |
|     }
 | |
| }
 | |
| 
 | |
| int clip_n_patches(const struct clip_ctx * ctx) {
 | |
|     auto & params = ctx->vision_model.hparams;
 | |
|     int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
 | |
|     if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
 | |
|         n_patches /= 4;
 | |
|     }
 | |
|     return n_patches;
 | |
| }
 | |
| 
 | |
| size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
 | |
|     return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
 | |
| }
 |