mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			580 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			580 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "ggml-alloc.h"
 | |
| #include "ggml.h"
 | |
| #include <assert.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #define UNUSED(x) (void)(x)
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| 
 | |
| //#define GGML_ALLOCATOR_DEBUG
 | |
| 
 | |
| //#define AT_PRINTF printf
 | |
| #define AT_PRINTF(...) ((void)0)
 | |
| 
 | |
| struct hash_node {
 | |
|     struct ggml_tensor * t;
 | |
|     int n_children;
 | |
|     int n_views;
 | |
| };
 | |
| 
 | |
| static size_t hash(void * p) {
 | |
|     return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
 | |
| }
 | |
| 
 | |
| static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
 | |
|     size_t h = hash(t);
 | |
| 
 | |
|     // linear probing
 | |
|     size_t i = h;
 | |
|     while (hash_table[i].t != NULL) {
 | |
|         if (hash_table[i].t == t) {
 | |
|             return &hash_table[i];
 | |
|         }
 | |
|         i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
 | |
|         if (i == h) {
 | |
|             // hash table is full
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     hash_table[i].t = t;
 | |
|     return &hash_table[i];
 | |
| }
 | |
| 
 | |
| // TODO: GGML_PAD ?
 | |
| static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
 | |
|     assert(alignment && !(alignment & (alignment - 1))); // power of 2
 | |
|     size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
 | |
|     return offset + align;
 | |
| }
 | |
| 
 | |
| struct free_block {
 | |
|     void * addr;
 | |
|     size_t size;
 | |
| };
 | |
| 
 | |
| #define MAX_FREE_BLOCKS 128
 | |
| 
 | |
| struct ggml_allocr {
 | |
|     void * data;
 | |
|     size_t size;
 | |
|     size_t alignment;
 | |
|     int n_free_blocks;
 | |
|     struct free_block free_blocks[MAX_FREE_BLOCKS];
 | |
|     struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
 | |
|     size_t max_size;
 | |
|     bool measure;
 | |
|     int parse_seq[GGML_MAX_NODES];
 | |
|     bool has_parse_seq;
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|     struct ggml_tensor * allocated_tensors[1024];
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
| static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
 | |
|     for (int i = 0; i < 1024; i++) {
 | |
|         if (alloc->allocated_tensors[i] == NULL) {
 | |
|             alloc->allocated_tensors[i] = tensor;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     GGML_ASSERT(!"out of allocated_tensors");
 | |
| }
 | |
| static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
 | |
|     for (int i = 0; i < 1024; i++) {
 | |
|         if (alloc->allocated_tensors[i] == tensor ||
 | |
|             (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
 | |
|             alloc->allocated_tensors[i] = NULL;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     printf("tried to free tensor %s not found\n", tensor->name);
 | |
|     GGML_ASSERT(!"tensor not found");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
 | |
|     return ggml_nbytes(tensor);
 | |
| 
 | |
|     UNUSED(alloc);
 | |
| }
 | |
| 
 | |
| void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
 | |
|     size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
 | |
|     size = aligned_offset(NULL, size, alloc->alignment);
 | |
| 
 | |
|     AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
 | |
| 
 | |
|     size_t max_avail = 0;
 | |
| 
 | |
|     // find the best fitting free block besides the last block
 | |
|     int best_fit_block = -1;
 | |
|     size_t best_fit_size = SIZE_MAX;
 | |
|     for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
 | |
|         struct free_block * block = &alloc->free_blocks[i];
 | |
|         max_avail = MAX(max_avail, block->size);
 | |
|         if (block->size >= size && block->size <= best_fit_size) {
 | |
|             best_fit_block = i;
 | |
|             best_fit_size = block->size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     AT_PRINTF("block %d\n", best_fit_block);
 | |
| 
 | |
|     if (best_fit_block == -1) {
 | |
|         // the last block is our last resort
 | |
|         struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
 | |
|         if (block->size >= size) {
 | |
|             best_fit_block = alloc->n_free_blocks - 1;
 | |
|             max_avail = MAX(max_avail, block->size);
 | |
|         } else {
 | |
|             fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
 | |
|                     __func__, size, max_avail);
 | |
|             GGML_ASSERT(!"not enough space in the buffer");
 | |
|         return;
 | |
|         }
 | |
|     }
 | |
|     struct free_block * block = &alloc->free_blocks[best_fit_block];
 | |
|     void * addr = block->addr;
 | |
|     block->addr = (char*)block->addr + size;
 | |
|     block->size -= size;
 | |
|     if (block->size == 0) {
 | |
|         // remove block if empty
 | |
|         alloc->n_free_blocks--;
 | |
|         for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
 | |
|             alloc->free_blocks[j] = alloc->free_blocks[j+1];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tensor->data = addr;
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|     add_allocated_tensor(alloc, tensor);
 | |
|     size_t cur_max = (char*)addr - (char*)alloc->data + size;
 | |
|     if (cur_max > alloc->max_size) {
 | |
|         printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
 | |
|         for (int i = 0; i < 1024; i++) {
 | |
|             if (alloc->allocated_tensors[i]) {
 | |
|                 printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
 | |
|             }
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
 | |
| }
 | |
| 
 | |
| // this is a very naive implementation, but for our case the number of free blocks should be very small
 | |
| static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
 | |
|     void * ptr = tensor->data;
 | |
| 
 | |
|     if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
 | |
|         // the tensor was not allocated in this buffer
 | |
|         // this can happen because the graph allocator will try to free weights and other tensors from different buffers
 | |
|         // the easiest way to deal with this is just to ignore it
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
 | |
|     size = aligned_offset(NULL, size, alloc->alignment);
 | |
|     AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|     remove_allocated_tensor(alloc, tensor);
 | |
| #endif
 | |
| 
 | |
|     // see if we can merge with an existing block
 | |
|     for (int i = 0; i < alloc->n_free_blocks; i++) {
 | |
|         struct free_block * block = &alloc->free_blocks[i];
 | |
|         // check if ptr is at the end of the block
 | |
|         if ((char*)block->addr + block->size == ptr) {
 | |
|             block->size += size;
 | |
|             // check if we can merge with the next block
 | |
|             if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
 | |
|                 block->size += alloc->free_blocks[i+1].size;
 | |
|                 alloc->n_free_blocks--;
 | |
|                 for (int j = i+1; j < alloc->n_free_blocks; j++) {
 | |
|                     alloc->free_blocks[j] = alloc->free_blocks[j+1];
 | |
|                 }
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|         // check if ptr is at the beginning of the block
 | |
|         if ((char*)ptr + size == block->addr) {
 | |
|             block->addr = ptr;
 | |
|             block->size += size;
 | |
|             // check if we can merge with the previous block
 | |
|             if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
 | |
|                 alloc->free_blocks[i-1].size += block->size;
 | |
|                 alloc->n_free_blocks--;
 | |
|                 for (int j = i; j < alloc->n_free_blocks; j++) {
 | |
|                     alloc->free_blocks[j] = alloc->free_blocks[j+1];
 | |
|                 }
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     // otherwise, add a new block
 | |
|     GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
 | |
|     // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
 | |
|     int insert_pos = 0;
 | |
|     while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
 | |
|         insert_pos++;
 | |
|     }
 | |
|     // shift all blocks from insert_pos onward to make room for the new block
 | |
|     for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
 | |
|         alloc->free_blocks[i] = alloc->free_blocks[i-1];
 | |
|     }
 | |
|     // insert the new block
 | |
|     alloc->free_blocks[insert_pos].addr = ptr;
 | |
|     alloc->free_blocks[insert_pos].size = size;
 | |
|     alloc->n_free_blocks++;
 | |
| }
 | |
| 
 | |
| void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n) {
 | |
|     int pos = 0;
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         if (list[i] != -1) {
 | |
|             alloc->parse_seq[pos] = list[i];
 | |
|             pos++;
 | |
|         }
 | |
|     }
 | |
|     alloc->has_parse_seq = true;
 | |
| }
 | |
| 
 | |
| void ggml_allocr_reset(struct ggml_allocr * alloc) {
 | |
|     alloc->n_free_blocks = 1;
 | |
|     size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
 | |
|     alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
 | |
|     alloc->free_blocks[0].size = alloc->size - align_offset;
 | |
| }
 | |
| 
 | |
| struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
 | |
|     struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
 | |
| 
 | |
|     *alloc = (struct ggml_allocr){
 | |
|         /*.data          = */ data,
 | |
|         /*.size          = */ size,
 | |
|         /*.alignment     = */ alignment,
 | |
|         /*.n_free_blocks = */ 0,
 | |
|         /*.free_blocks   = */ {{0}},
 | |
|         /*.hash_table    = */ {{0}},
 | |
|         /*.max_size      = */ 0,
 | |
|         /*.measure       = */ false,
 | |
|         /*.parse_seq     = */ {0},
 | |
|         /*.has_parse_seq = */ false,
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|         /*.allocated_tensors = */ = {0},
 | |
| #endif
 | |
|     };
 | |
| 
 | |
|     ggml_allocr_reset(alloc);
 | |
| 
 | |
|     return alloc;
 | |
| }
 | |
| 
 | |
| // address and size of the buffer when measuring
 | |
| // it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
 | |
| static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
 | |
| static const size_t MEASURE_MAX_SIZE  = 1ULL<<40; // 1 TB
 | |
| 
 | |
| struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
 | |
|     struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
 | |
| 
 | |
|     *alloc = (struct ggml_allocr){
 | |
|         /*.data          = */ MEASURE_BASE_ADDR,
 | |
|         /*.size          = */ MEASURE_MAX_SIZE,
 | |
|         /*.alignment     = */ alignment,
 | |
|         /*.n_free_blocks = */ 0,
 | |
|         /*.free_blocks   = */ {{0}},
 | |
|         /*.hash_table    = */ {{0}},
 | |
|         /*.max_size      = */ 0,
 | |
|         /*.measure       = */ true,
 | |
|         /*.parse_seq     = */ {0},
 | |
|         /*.has_parse_seq = */ false,
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|         /*.allocated_tensors = */ = {0},
 | |
| #endif
 | |
|     };
 | |
| 
 | |
|     ggml_allocr_reset(alloc);
 | |
| 
 | |
|     return alloc;
 | |
| }
 | |
| 
 | |
| void ggml_allocr_free(struct ggml_allocr * alloc) {
 | |
|     free(alloc);
 | |
| }
 | |
| 
 | |
| bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
 | |
|     return alloc->measure;
 | |
| }
 | |
| 
 | |
| //////////// compute graph allocator
 | |
| 
 | |
| static bool ggml_is_view(struct ggml_tensor * t) {
 | |
|     return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
 | |
|            t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
 | |
| }
 | |
| 
 | |
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
 | |
|     if (a->type != b->type) {
 | |
|         return false;
 | |
|     }
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | |
|         if (a->ne[i] != b->ne[i]) {
 | |
|             return false;
 | |
|         }
 | |
|         if (a->nb[i] != b->nb[i]) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
 | |
|     switch (t->op) {
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|         case GGML_OP_VIEW:
 | |
|             return t->src[0];
 | |
|         case GGML_OP_CPY:
 | |
|             return t->src[1];
 | |
|         default:
 | |
|             return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
 | |
|     struct ggml_tensor * parent = t;
 | |
|     do {
 | |
|         parent = get_view_parent(parent);
 | |
|     } while (ggml_is_view(parent));
 | |
|     return parent;
 | |
| }
 | |
| 
 | |
| static bool ggml_op_can_inplace(enum ggml_op op) {
 | |
|     switch (op) {
 | |
|         case GGML_OP_SCALE:
 | |
|         case GGML_OP_DIAG_MASK_ZERO:
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|         case GGML_OP_ADD:
 | |
|         case GGML_OP_ADD1:
 | |
|         case GGML_OP_ACC:
 | |
|         case GGML_OP_SUB:
 | |
|         case GGML_OP_MUL:
 | |
|         case GGML_OP_DIV:
 | |
|         case GGML_OP_SQR:
 | |
|         case GGML_OP_SQRT:
 | |
|         case GGML_OP_LOG:
 | |
|         case GGML_OP_UNARY:
 | |
|         case GGML_OP_ROPE:
 | |
|         case GGML_OP_RMS_NORM:
 | |
|         case GGML_OP_SET:
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|         case GGML_OP_CONT:
 | |
|             return true;
 | |
| 
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
 | |
|     struct hash_node * ht = alloc->hash_table;
 | |
|     if (node->data == NULL) {
 | |
|         if (ggml_is_view(node)) {
 | |
|             size_t offset;
 | |
|             switch(node->op) {
 | |
|                 case GGML_OP_VIEW:
 | |
|                     memcpy(&offset, node->op_params, sizeof(size_t));
 | |
|                     node->data = (char *) node->src[0]->data + offset;
 | |
|                     break;
 | |
|                 case GGML_OP_PERMUTE:
 | |
|                 case GGML_OP_RESHAPE:
 | |
|                 case GGML_OP_TRANSPOSE:
 | |
|                     node->data = node->src[0]->data;
 | |
|                     break;
 | |
|                 case GGML_OP_CPY:
 | |
|                     node->data = node->src[1]->data;
 | |
|                     break;
 | |
|                 default:
 | |
|                     GGML_ASSERT(!"unknown view op");
 | |
|                     break;
 | |
|             }
 | |
|         } else {
 | |
|             // see if we can reuse a parent's buffer (inplace)
 | |
|             if (ggml_op_can_inplace(node->op)) {
 | |
|                 for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|                     struct ggml_tensor * parent = node->src[i];
 | |
|                     if (parent == NULL) {
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     // if the node's data is external, then we cannot re-use it
 | |
|                     if ((char *) parent->data < (char *) alloc->data ||
 | |
|                         (char *) parent->data >= ((char *) alloc->data + alloc->size)) {
 | |
|                         AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                     struct hash_node * p_hn = hash_get(ht, parent);
 | |
|                     if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
 | |
|                         if (ggml_is_view(parent)) {
 | |
|                             struct ggml_tensor * view_src = get_view_source(parent);
 | |
|                             struct hash_node * view_src_hn = hash_get(ht, view_src);
 | |
|                             if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
 | |
|                                 // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
 | |
|                                 // the parent's data that it will need later (same layout requirement). the problem is that then
 | |
|                                 // we cannot free the tensor because the original address of the allocation is lost.
 | |
|                                 // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
 | |
|                                 // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
 | |
|                                 AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
 | |
|                                 node->data = parent->data;
 | |
|                                 return;
 | |
|                             }
 | |
|                         }
 | |
|                         else {
 | |
|                             AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
 | |
|                             node->data = parent->data;
 | |
|                         }
 | |
|                         return;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             ggml_allocr_alloc(alloc, node);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static size_t ggml_allocator_alloc_graph_tensors_n(
 | |
|     struct ggml_allocr * alloc,
 | |
|     struct ggml_cgraph ** graphs, int n_graphs,
 | |
|     struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
 | |
| 
 | |
|     // reset hash table
 | |
|     struct hash_node * ht = alloc->hash_table;
 | |
|     memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
 | |
| 
 | |
|     // count number of children and views
 | |
|     for (int g = 0; g < n_graphs; g++) {
 | |
|         struct ggml_cgraph * gf = graphs[g];
 | |
|         for (int i = 0; i < gf->n_nodes; i++) {
 | |
|             struct ggml_tensor * node = gf->nodes[i];
 | |
| 
 | |
|             if (ggml_is_view(node)) {
 | |
|                 struct ggml_tensor * view_src = get_view_source(node);
 | |
|                 hash_get(ht, view_src)->n_views += 1;
 | |
|             }
 | |
| 
 | |
|             for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                 struct ggml_tensor * parent = node->src[j];
 | |
|                 if (parent == NULL) {
 | |
|                     break;
 | |
|                 }
 | |
|                 hash_get(ht, parent)->n_children += 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // allocate tensors
 | |
|     for (int g = 0; g < n_graphs; g++) {
 | |
|         struct ggml_cgraph * gf = graphs[g];
 | |
|         AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
 | |
|         // graph inputs are allocated first to ensure that they are not overwritten by each other
 | |
|         if (inputs != NULL && inputs[g] != NULL) {
 | |
|             for (int i = 0; inputs[g][i] != NULL; i++) {
 | |
|                 struct ggml_tensor * input = inputs[g][i];
 | |
|                 AT_PRINTF("input: %s\n", input->name);
 | |
|                 allocate_node(alloc, input);
 | |
|             }
 | |
|         }
 | |
|         for (int ind = 0; ind < gf->n_nodes; ind++) {
 | |
|             int i;
 | |
|             if (alloc->has_parse_seq) {
 | |
|                 i = alloc->parse_seq[ind];
 | |
|             } else {
 | |
|                 i = ind;
 | |
|             }
 | |
|             struct ggml_tensor * node = gf->nodes[i];
 | |
| 
 | |
|             // allocate parents (leafs)
 | |
|             for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                 struct ggml_tensor * parent = node->src[j];
 | |
|                 if (parent == NULL) {
 | |
|                     break;
 | |
|                 }
 | |
|                 allocate_node(alloc, parent);
 | |
|             }
 | |
| 
 | |
|             // allocate node
 | |
|             allocate_node(alloc, node);
 | |
| 
 | |
|             AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
 | |
|             for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                 struct ggml_tensor * parent = node->src[j];
 | |
|                 if (parent == NULL) {
 | |
|                     break;
 | |
|                 }
 | |
|                 AT_PRINTF("%s", parent->name);
 | |
|                 if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
 | |
|                     AT_PRINTF(", ");
 | |
|                 }
 | |
|             }
 | |
|             AT_PRINTF("\n");
 | |
| 
 | |
|             // update parents
 | |
|             for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                 struct ggml_tensor * parent = node->src[j];
 | |
|                 if (parent == NULL) {
 | |
|                     break;
 | |
|                 }
 | |
|                 struct hash_node * p_hn = hash_get(ht, parent);
 | |
|                 p_hn->n_children -= 1;
 | |
| 
 | |
|                 //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
 | |
| 
 | |
|                 if (p_hn->n_children == 0 && p_hn->n_views == 0) {
 | |
|                     if (ggml_is_view(parent)) {
 | |
|                         struct ggml_tensor * view_src = get_view_source(parent);
 | |
|                         struct hash_node * view_src_hn = hash_get(ht, view_src);
 | |
|                         view_src_hn->n_views -= 1;
 | |
|                         AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
 | |
|                         if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
 | |
|                             ggml_allocator_free_tensor(alloc, view_src);
 | |
|                         }
 | |
|                     }
 | |
|                     else {
 | |
|                         if (parent->data != node->data) {
 | |
|                             ggml_allocator_free_tensor(alloc, parent);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             AT_PRINTF("\n");
 | |
|         }
 | |
|         // free graph outputs here that wouldn't be freed otherwise because they have no children
 | |
|         if (outputs != NULL && outputs[g] != NULL) {
 | |
|             for (int i = 0; outputs[g][i] != NULL; i++) {
 | |
|                 struct ggml_tensor * output = outputs[g][i];
 | |
|                 AT_PRINTF("output: %s\n", output->name);
 | |
|                 ggml_allocator_free_tensor(alloc, output);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return alloc->max_size;
 | |
| }
 | |
| 
 | |
| size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
 | |
|     return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
 | |
| }
 | 
