mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 a5e7dbd614
			
		
	
	a5e7dbd614
	
	
	
		
			
			* Add validation for special token ids to llama.cpp Small optimization for llama_byte_to_token SPM mode * Fix BPE newline check, only I could break something so simple * Killll meeeeee * Account for GGUF_KEY_KEY only setting when the key exists * Minor code cleanups. * Fix convert.py error msg when added tokens are out of range * Make gguf SpecialVocab vocab size-aware Update conversion scripts accordingly * Avoid a string copy Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			264 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| # HF refact--> gguf conversion
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| import argparse
 | |
| import json
 | |
| import os
 | |
| import sys
 | |
| from pathlib import Path
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| from transformers import AutoTokenizer  # type: ignore[import]
 | |
| 
 | |
| if "NO_LOCAL_GGUF" not in os.environ:
 | |
|     sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
 | |
| import gguf
 | |
| 
 | |
| def count_model_parts(dir_model: Path) -> int:
 | |
|     num_parts = 0
 | |
|     for filename in os.listdir(dir_model):
 | |
|         if filename.startswith("pytorch_model-"):
 | |
|             num_parts += 1
 | |
| 
 | |
|     if num_parts > 0:
 | |
|         print("gguf: found " + str(num_parts) + " model parts")
 | |
|     return num_parts
 | |
| 
 | |
| 
 | |
| def parse_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="Convert a Refact model to a GGML compatible file"
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--vocab-only",
 | |
|         action="store_true",
 | |
|         help="extract only the vocab",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--outfile",
 | |
|         type=Path,
 | |
|         help="path to write to; default: based on input",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "model",
 | |
|         type=Path,
 | |
|         help="directory containing model file, or model file itself (*.bin)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "ftype",
 | |
|         type=int,
 | |
|         choices=[0, 1],
 | |
|         default=1,
 | |
|         nargs="?",
 | |
|         help="output format - use 0 for float32, 1 for float16",
 | |
|     )
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| args = parse_args()
 | |
| 
 | |
| dir_model = args.model
 | |
| ftype = args.ftype
 | |
| if not dir_model.is_dir():
 | |
|     print(f"Error: {args.model} is not a directory", file=sys.stderr)
 | |
|     sys.exit(1)
 | |
| 
 | |
| # possible tensor data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| 
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| if args.outfile is not None:
 | |
|     fname_out = args.outfile
 | |
| else:
 | |
|     # output in the same directory as the model by default
 | |
|     fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
 | |
| 
 | |
| print("gguf: loading model " + dir_model.name)
 | |
| 
 | |
| with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| if hparams["architectures"][0] != "GPTRefactForCausalLM":
 | |
|     print("Model architecture not supported: " + hparams["architectures"][0])
 | |
| 
 | |
|     sys.exit(1)
 | |
| 
 | |
| # get number of model parts
 | |
| num_parts = count_model_parts(dir_model)
 | |
| 
 | |
| ARCH = gguf.MODEL_ARCH.REFACT
 | |
| gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | |
| 
 | |
| print("gguf: get model metadata")
 | |
| 
 | |
| # Get refact feed forward dimension
 | |
| hidden_dim = hparams["n_embd"]
 | |
| inner_dim = 4 * hidden_dim
 | |
| hidden_dim = int(2 * inner_dim / 3)
 | |
| multiple_of = 256
 | |
| ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
 | |
| 
 | |
| block_count = hparams["n_layer"]
 | |
| 
 | |
| gguf_writer.add_name("Refact")
 | |
| # refact uses Alibi. So this is from config.json which might be used by training.
 | |
| gguf_writer.add_context_length(hparams["n_positions"])
 | |
| gguf_writer.add_embedding_length(hparams["n_embd"])
 | |
| 
 | |
| gguf_writer.add_feed_forward_length(ff_dim)
 | |
| gguf_writer.add_block_count(block_count)
 | |
| gguf_writer.add_head_count(hparams["n_head"])
 | |
| gguf_writer.add_head_count_kv(1)
 | |
| gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
 | |
| gguf_writer.add_file_type(ftype)
 | |
| 
 | |
| # TOKENIZATION
 | |
| 
 | |
| print("gguf: get tokenizer metadata")
 | |
| 
 | |
| tokens: list[bytearray] = []
 | |
| scores: list[float] = []
 | |
| toktypes: list[int] = []
 | |
| 
 | |
| # gpt2 tokenizer
 | |
| gguf_writer.add_tokenizer_model("gpt2")
 | |
| 
 | |
| print("gguf: get gpt2 tokenizer vocab")
 | |
| 
 | |
| # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
 | |
| tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | |
| 
 | |
| # The number of tokens in tokenizer.json can differ from the expected vocab size.
 | |
| # This causes downstream issues with mismatched tensor sizes when running the inference
 | |
| vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
 | |
| assert max(tokenizer.vocab.values()) < vocab_size
 | |
| 
 | |
| reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | |
| 
 | |
| for i in range(vocab_size):
 | |
|     tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
 | |
|     scores.append(0.0) # dummy
 | |
|     toktypes.append(gguf.TokenType.NORMAL)
 | |
| 
 | |
| gguf_writer.add_token_list(tokens)
 | |
| gguf_writer.add_token_scores(scores)
 | |
| gguf_writer.add_token_types(toktypes)
 | |
| 
 | |
| special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
 | |
| special_vocab.add_to_gguf(gguf_writer)
 | |
| 
 | |
| # TENSORS
 | |
| 
 | |
| tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
 | |
| 
 | |
| # params for qkv transform
 | |
| n_head = hparams["n_head"]
 | |
| n_head_kv = 1
 | |
| 
 | |
| head_dim = hparams["n_embd"] // n_head
 | |
| 
 | |
| # tensor info
 | |
| print("gguf: get tensor metadata")
 | |
| 
 | |
| if num_parts == 0:
 | |
|     part_names = iter(("pytorch_model.bin",))
 | |
| else:
 | |
|     part_names = (
 | |
|         f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | |
|     )
 | |
| for part_name in part_names:
 | |
|     if args.vocab_only:
 | |
|         break
 | |
|     print("gguf: loading model part '" + part_name + "'")
 | |
|     model_part = torch.load(dir_model / part_name, map_location="cpu")
 | |
| 
 | |
|     for i in range(block_count):
 | |
|         if f"transformer.h.{i}.attn.kv.weight" in model_part:
 | |
|             data = model_part[f"transformer.h.{i}.attn.kv.weight"]
 | |
|             model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
 | |
|                 : n_head_kv * head_dim
 | |
|             ]
 | |
|             model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
 | |
|                 n_head_kv * head_dim :
 | |
|             ]
 | |
|             del model_part[f"transformer.h.{i}.attn.kv.weight"]
 | |
|         if f"transformer.h.{i}.attn.q.weight" in model_part:
 | |
|             model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
 | |
|                 f"transformer.h.{i}.attn.q.weight"
 | |
|             ]
 | |
|             del model_part[f"transformer.h.{i}.attn.q.weight"]
 | |
|         if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
 | |
|             data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
 | |
|             model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
 | |
|             model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
 | |
|             del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
 | |
| 
 | |
|     for name in model_part.keys():
 | |
|         data = model_part[name]
 | |
| 
 | |
|         old_dtype = data.dtype
 | |
| 
 | |
|         # convert any unsupported data types to float32
 | |
|         if data.dtype != torch.float16 and data.dtype != torch.float32:
 | |
|             data = data.to(torch.float32)
 | |
| 
 | |
|         data = data.squeeze().numpy()
 | |
| 
 | |
|         # map tensor names
 | |
|         new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
 | |
|         if new_name is None:
 | |
|             print("Can not map tensor '" + name + "'")
 | |
|             sys.exit()
 | |
| 
 | |
|         n_dims = len(data.shape)
 | |
|         data_dtype = data.dtype
 | |
| 
 | |
|         # if f32 desired, convert any float16 to float32
 | |
|         if ftype == 0 and data_dtype == np.float16:
 | |
|             data = data.astype(np.float32)
 | |
| 
 | |
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|             data = data.astype(np.float32)
 | |
| 
 | |
|         # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|         if (
 | |
|             ftype == 1
 | |
|             and data_dtype == np.float32
 | |
|             and name.endswith(".weight")
 | |
|             and n_dims == 2
 | |
|         ):
 | |
|             data = data.astype(np.float16)
 | |
| 
 | |
|         print(
 | |
|             new_name
 | |
|             + ", n_dims = "
 | |
|             + str(n_dims)
 | |
|             + ", "
 | |
|             + str(old_dtype)
 | |
|             + " --> "
 | |
|             + str(data.dtype)
 | |
|         )
 | |
| 
 | |
|         gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
| 
 | |
| print("gguf: write header")
 | |
| gguf_writer.write_header_to_file()
 | |
| print("gguf: write metadata")
 | |
| gguf_writer.write_kv_data_to_file()
 | |
| if not args.vocab_only:
 | |
|     print("gguf: write tensors")
 | |
|     gguf_writer.write_tensors_to_file()
 | |
| 
 | |
| gguf_writer.close()
 | |
| 
 | |
| print(f"gguf: model successfully exported to '{fname_out}'")
 | |
| print("")
 |