mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			428 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			428 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "clip.h"
 | |
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "llava.h"
 | |
| #include "base64.hpp"
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <vector>
 | |
| #include <numeric>
 | |
| 
 | |
| // RGB uint8 image
 | |
| struct clip_image_u8 {
 | |
|     int nx;
 | |
|     int ny;
 | |
| 
 | |
|     std::vector<uint8_t> buf;
 | |
| };
 | |
| 
 | |
| // RGB float32 image (NHWC)
 | |
| // Memory layout: RGBRGBRGB...
 | |
| struct clip_image_f32 {
 | |
|     int nx;
 | |
|     int ny;
 | |
| 
 | |
|     std::vector<float> buf;
 | |
| };
 | |
| 
 | |
| struct clip_image_grid_shape {
 | |
|     int first;
 | |
|     int second;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Selects the best resolution from a list of possible resolutions based on the original size.
 | |
|  *
 | |
|  * @param original_size The original size of the image in the format (width, height).
 | |
|  * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
 | |
|  * @return The best fit resolution in the format (width, height).
 | |
|  */
 | |
| static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
 | |
|     int original_width  = original_size.first;
 | |
|     int original_height = original_size.second;
 | |
| 
 | |
|     std::pair<int, int> best_fit;
 | |
|     int max_effective_resolution = 0;
 | |
|     int min_wasted_resolution = std::numeric_limits<int>::max();
 | |
| 
 | |
|     for (const auto& resolution : possible_resolutions) {
 | |
|         int width = resolution.first;
 | |
|         int height = resolution.second;
 | |
|         float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
 | |
|         int downscaled_width  = static_cast<int>(original_width * scale);
 | |
|         int downscaled_height = static_cast<int>(original_height * scale);
 | |
|         int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
 | |
|         int wasted_resolution = (width * height) - effective_resolution;
 | |
|         // fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
 | |
|         if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
 | |
|             max_effective_resolution = effective_resolution;
 | |
|             min_wasted_resolution = wasted_resolution;
 | |
|             best_fit = resolution;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return best_fit;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Get the anyres image grid shape object
 | |
|  *
 | |
|  * @param image_size
 | |
|  * @param grid_pinpoints
 | |
|  * @param image_patch_size
 | |
|  * @return <int, int>
 | |
|  */
 | |
| static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
 | |
|     /**
 | |
|         Conversion from gguf flat array to vector:
 | |
|         std::vector<std::pair<int, int>> possible_resolutions;
 | |
|         for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
 | |
|             possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
 | |
|         }
 | |
|      */
 | |
|     auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
 | |
|     return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
 | |
| }
 | |
| 
 | |
| // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
 | |
| static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
 | |
|     struct {
 | |
|         struct ggml_tensor * newline;
 | |
|         struct ggml_context * ctx;
 | |
|     } model;
 | |
| 
 | |
|     const int32_t image_size = clip_image_size(ctx_clip);
 | |
|     const int32_t patch_size = clip_patch_size(ctx_clip);
 | |
| 
 | |
|     int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
 | |
| 
 | |
|     int num_patches_width  = grid_shape.first;  // grid 1-4
 | |
|     int num_patches_height = grid_shape.second; // grid 1-4
 | |
| 
 | |
|     const size_t num_images = num_patches_width * num_patches_height + 1;
 | |
| 
 | |
|     // TODO: size calculation is not calculated - it's only tens of MB
 | |
|     size_t ctx_size = 0;
 | |
| 
 | |
|     {
 | |
|         ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
 | |
|         ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
 | |
|     }
 | |
| 
 | |
|     struct ggml_init_params params {
 | |
|         /*.mem_size   =*/ ctx_size,
 | |
|         /*.mem_buffer =*/ NULL,
 | |
|         /*.no_alloc   =*/ false, // NOTE: this should be false when using the legacy API
 | |
|     };
 | |
| 
 | |
|     // Python reference code for full unpad:
 | |
|     /*
 | |
|         base_image_feature = image_feature[0]
 | |
|         image_feature = image_feature[1:]
 | |
|         image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
 | |
|         image_feature = image_feature.flatten(1, 2).flatten(2, 3)
 | |
|         image_feature = unpad_image(image_feature, image_sizes[image_idx])
 | |
|         image_feature = torch.cat((
 | |
|             image_feature,
 | |
|             self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
 | |
|         ), dim=-1)
 | |
|         image_feature = image_feature.flatten(1, 2).transpose(0, 1)
 | |
|         image_feature = torch.cat((base_image_feature, image_feature), dim=0)
 | |
|     */
 | |
|     // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
 | |
|     // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
 | |
|     // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
 | |
|     // Once all images are processed to prepended the base_image_features without any changes.
 | |
| 
 | |
|     // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
 | |
|     /*
 | |
|         image_feature = image_feature.view(2, 2, 24, 24, 4096)
 | |
|         image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
 | |
|         image_feature = image_feature.view(2, 24, 2, 24, 4096)
 | |
|         image_feature = image_feature.flatten(0, 3)
 | |
| 
 | |
|         // Reshape to 4D tensor by merging the last two dimensions
 | |
|         image_feature = image_feature.view(2, 2, 24, 24*4096)
 | |
|         image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
 | |
|         image_feature = image_feature.view(-1, 4096)
 | |
|     */
 | |
| 
 | |
|     model.ctx = ggml_init(params);
 | |
| 
 | |
|     ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
 | |
|     model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
 | |
|     if (newline_tmp->backend != GGML_BACKEND_CPU) {
 | |
|         if (newline_tmp->buffer == NULL) {
 | |
|             printf("newline_tmp tensor buffer is NULL\n");
 | |
|         }
 | |
|         ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp));
 | |
|     } else {
 | |
|         model.newline->data = newline_tmp->data;
 | |
|         if (model.newline->data == NULL) {
 | |
|             printf("newline_tmp tensor data is NULL\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
 | |
|     // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
 | |
|     // fill it with the image embeddings, ignoring the base
 | |
|     for (size_t i = 1; i < num_images; i++) {
 | |
|         size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
 | |
|         memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph  * gf = ggml_new_graph(model.ctx);
 | |
|     size_t size_ele = ggml_type_size(GGML_TYPE_F32);
 | |
| 
 | |
|     struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
 | |
|                                                                 num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
 | |
|                                                                 num_patches_per_side,
 | |
|                                                                 num_patches_width,
 | |
|                                                                 num_patches_height,
 | |
|                                                                 size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
 | |
|                                                                 size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
 | |
|                                                                 size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
 | |
|     // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
 | |
|     struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
 | |
|     /**
 | |
|      At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
 | |
|          image_feature = torch.cat((
 | |
|         image_feature,
 | |
|         self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
 | |
|     ), dim=-1)
 | |
|      *
 | |
|      */
 | |
| 
 | |
|     // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
 | |
|     struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side,  size_ele * clip_n_mmproj_embd(ctx_clip), 0);
 | |
|     // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
 | |
|     ggml_build_forward_expand(gf, flatten);
 | |
|     ggml_graph_compute_with_ctx(model.ctx, gf, 1);
 | |
|     struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1];
 | |
| 
 | |
|     memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
 | |
|     // append without newline tokens (default behavior in llava_arch when not using unpad ):
 | |
|     memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
 | |
|     *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
 | |
| 
 | |
|     // Debug: Test single segments
 | |
|     // Current findings: sending base image, sending a segment embedding all works similar to python
 | |
|     // However, permuted embeddings do not work yet (stride issue?)
 | |
|     // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
 | |
|     // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
 | |
|     // *n_img_pos_out=576;
 | |
| 
 | |
|     ggml_free(model.ctx);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
 | |
|     // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
 | |
|     clip_image_f32_batch img_res_v;
 | |
|     img_res_v.size = 0;
 | |
|     img_res_v.data = nullptr;
 | |
|     if (!clip_image_preprocess(ctx_clip, img, img_res_v)) {
 | |
|         fprintf(stderr, "%s: unable to preprocess image\n", __func__);
 | |
|         delete[] img_res_v.data;
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     const int64_t t_img_enc_start_us = ggml_time_us();
 | |
| 
 | |
|     const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
 | |
| 
 | |
|     if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
 | |
|         // flat / default llava-1.5 type embedding
 | |
|         *n_img_pos = clip_n_patches(ctx_clip);
 | |
|         bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
 | |
|         delete[] img_res_v.data;
 | |
|         if (!encoded) {
 | |
|             fprintf(stderr, "Unable to encode image\n");
 | |
| 
 | |
|             return false;
 | |
|         }
 | |
|     } else {
 | |
|         // spatial_unpad llava-1.6 type embedding
 | |
|         // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
 | |
|         std::vector<float *> image_embd_v;
 | |
|         image_embd_v.resize(img_res_v.size);
 | |
|         for (size_t i = 0; i < img_res_v.size; i++) {
 | |
|             image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
 | |
|             const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
 | |
|             if (!encoded) {
 | |
|                 fprintf(stderr, "Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|         const int64_t t_img_enc_batch_us = ggml_time_us();
 | |
|         printf("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
 | |
| 
 | |
|         const int32_t * image_grid = clip_image_grid(ctx_clip);
 | |
| 
 | |
|         std::vector<std::pair<int, int>> grid_pinpoints;
 | |
|         for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
 | |
|             grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
 | |
|         }
 | |
| 
 | |
|         // free all img_res_v - not needed anymore
 | |
|         delete[] img_res_v.data;
 | |
|         img_res_v.size = 0;
 | |
|         img_res_v.data = nullptr;
 | |
| 
 | |
|         const int32_t image_size = clip_image_size(ctx_clip);
 | |
| 
 | |
|         struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
 | |
| 
 | |
|         int n_img_pos_out;
 | |
|         clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
 | |
|         *n_img_pos = n_img_pos_out;
 | |
| 
 | |
|         for (size_t i = 0; i < image_embd_v.size(); i++) {
 | |
|             free(image_embd_v[i]);
 | |
|         }
 | |
|         image_embd_v.clear();
 | |
| 
 | |
|         // debug image/segment/normalization content:
 | |
|         // clip_image_u8 * tmp = clip_image_u8_init();
 | |
|         // clip_image_convert_f32_to_u8(*image_feature, *tmp);
 | |
|         // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
 | |
|     }
 | |
| 
 | |
|     printf("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
 | |
| 
 | |
|     const int64_t t_img_enc_end_us = ggml_time_us();
 | |
|     float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
 | |
| 
 | |
|     printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
 | |
|         // make sure that the correct mmproj was used, i.e., compare apples to apples
 | |
|     int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
 | |
|     auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
 | |
|     if (n_image_embd != n_llama_embd) {
 | |
|         printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
 | |
|     float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
 | |
|     if (!image_embd) {
 | |
|         fprintf(stderr, "Unable to allocate memory for image embeddings\n");
 | |
|         free(image_embd);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     int n_img_pos;
 | |
|     if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
 | |
|         fprintf(stderr, "%s: cannot encode image, aborting\n", __func__);
 | |
|         free(image_embd);
 | |
|         return false;
 | |
|     }
 | |
|     *image_embd_out = image_embd;
 | |
|     *n_img_pos_out = n_img_pos;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
 | |
|     int n_embd  = llama_n_embd(llama_get_model(ctx_llama));
 | |
| 
 | |
|     for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
 | |
|         int n_eval = image_embed->n_image_pos - i;
 | |
|         if (n_eval > n_batch) {
 | |
|             n_eval = n_batch;
 | |
|         }
 | |
|         llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
 | |
|         if (llama_decode(ctx_llama, batch)) {
 | |
|             fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|         *n_past += n_eval;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
 | |
|     clip_image_u8 * img = clip_image_u8_init();
 | |
|     if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
 | |
|         clip_image_u8_free(img);
 | |
|         fprintf(stderr, "%s: can't load image from bytes, is it a valid image?", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     float* image_embed = NULL;
 | |
|     int n_image_pos = 0;
 | |
|     bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
 | |
|     if (!image_embed_result) {
 | |
|         clip_image_u8_free(img);
 | |
|         fprintf(stderr, "%s: coulnd't embed the image\n", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     clip_image_u8_free(img);
 | |
|     auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
 | |
|     result->embed = image_embed;
 | |
|     result->n_image_pos = n_image_pos;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
 | |
|     auto file = fopen(path, "rb");
 | |
|     if (file == NULL) {
 | |
|         fprintf(stderr, "%s: can't read file %s\n", __func__, path);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     fseek(file, 0, SEEK_END);
 | |
|     auto fileSize = ftell(file);
 | |
|     fseek(file, 0, SEEK_SET);
 | |
| 
 | |
|     auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
 | |
|     if (buffer == NULL) {
 | |
|         fprintf(stderr, "%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
 | |
|         perror("Memory allocation error");
 | |
|         fclose(file);
 | |
|         return false;
 | |
|     }
 | |
|     errno = 0;
 | |
|     size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
 | |
|     if (ferror(file)) {
 | |
|         die_fmt("read error: %s", strerror(errno));
 | |
|     }
 | |
|     if (ret != (size_t) fileSize) {
 | |
|         die("unexpectedly reached end of file");
 | |
|     }
 | |
|     fclose(file); // Close the file
 | |
| 
 | |
|     *bytesOut = buffer;
 | |
|     *sizeOut = fileSize;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
 | |
|     unsigned char* image_bytes;
 | |
|     long image_bytes_length;
 | |
|     auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
 | |
|     if (!loaded) {
 | |
|         fprintf(stderr, "%s: failed to load %s\n", __func__, image_path);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
 | |
|     free(image_bytes);
 | |
| 
 | |
|     return embed;
 | |
| }
 | |
| 
 | |
| void llava_image_embed_free(struct llava_image_embed * embed) {
 | |
|     free(embed->embed);
 | |
|     free(embed);
 | |
| }
 | 
