mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 0c5692345d
			
		
	
	0c5692345d
	
	
	
		
			
			* add save_load_state example * use <cstdio> instead of <iostream> and fprintf / printf instead of cout * renamed save-load-state example files replacing underscores by dashes
		
			
				
	
	
		
			129 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			129 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <vector>
 | |
| #include <cstdio>
 | |
| #include <chrono>
 | |
| 
 | |
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "llama.cpp"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
|     params.model = "models/llama-7B/ggml-model.bin";
 | |
|     params.seed = 42;
 | |
|     params.n_threads = 4;
 | |
|     params.repeat_last_n = 64;
 | |
|     params.prompt = "The quick brown fox";
 | |
| 
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     auto lparams = llama_context_default_params();
 | |
| 
 | |
|     lparams.n_ctx      = params.n_ctx;
 | |
|     lparams.n_parts    = params.n_parts;
 | |
|     lparams.seed       = params.seed;
 | |
|     lparams.f16_kv     = params.memory_f16;
 | |
|     lparams.use_mmap   = params.use_mmap;
 | |
|     lparams.use_mlock  = params.use_mlock;
 | |
| 
 | |
|     auto n_past = 0;
 | |
|     auto last_n_tokens_data = vector<llama_token>(params.repeat_last_n, 0);
 | |
| 
 | |
|     // init
 | |
|     auto ctx = llama_init_from_file(params.model.c_str(), lparams);
 | |
|     auto tokens = vector<llama_token>(params.n_ctx);
 | |
|     auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), tokens.size(), true);
 | |
| 
 | |
|     if (n_prompt_tokens < 1) {
 | |
|         fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // evaluate prompt
 | |
| 
 | |
|     llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads);
 | |
| 
 | |
|     last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
 | |
|     n_past += n_prompt_tokens;
 | |
| 
 | |
|     // Save state (rng, logits, embedding and kv_cache) to file
 | |
|     FILE *fp_write = fopen("dump_state.bin", "wb");
 | |
|     auto state_size = llama_get_state_size(ctx);
 | |
|     auto state_mem = new uint8_t[state_size];
 | |
|     llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
 | |
|     fwrite(state_mem, 1, state_size, fp_write);
 | |
|     fclose(fp_write);
 | |
| 
 | |
|     // save state (last tokens)
 | |
|     auto last_n_tokens_data_saved = vector<llama_token>(last_n_tokens_data);
 | |
|     auto n_past_saved = n_past;
 | |
| 
 | |
|     // first run
 | |
|     printf("\n%s", params.prompt.c_str());
 | |
|     for (auto i = 0; i < params.n_predict; i++) {
 | |
|         auto next_token = llama_sample_top_p_top_k(
 | |
|             ctx,
 | |
|             &last_n_tokens_data.back() - params.repeat_last_n,
 | |
|             params.repeat_last_n,
 | |
|             40,
 | |
|             1.0,
 | |
|             1.0,
 | |
|             1.1);
 | |
|         auto next_token_str = llama_token_to_str(ctx, next_token);
 | |
|         last_n_tokens_data.push_back(next_token);
 | |
|         printf("%s", next_token_str);
 | |
|         if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
 | |
|             fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         n_past += 1;
 | |
|     }
 | |
|     printf("\n\n");
 | |
| 
 | |
|     // free old model
 | |
|     llama_free(ctx);
 | |
| 
 | |
|     // load new model
 | |
| 
 | |
|     auto ctx2 = llama_init_from_file(params.model.c_str(), lparams);
 | |
| 
 | |
|     // Load state (rng, logits, embedding and kv_cache) from file
 | |
|     FILE *fp_read = fopen("dump_state.bin", "rb");
 | |
|     auto state_size2 = llama_get_state_size(ctx2);
 | |
|     if (state_size != state_size2) {
 | |
|         fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
 | |
|     }
 | |
|     fread(state_mem, 1, state_size, fp_read);
 | |
|     llama_set_state_data(ctx2, state_mem);  // could also read directly from memory mapped file
 | |
|     fclose(fp_read);
 | |
| 
 | |
|     // restore state (last tokens)
 | |
|     last_n_tokens_data = last_n_tokens_data_saved;
 | |
|     n_past = n_past_saved;
 | |
| 
 | |
|     // second run
 | |
|     for (auto i = 0; i < params.n_predict; i++) {
 | |
|         auto next_token = llama_sample_top_p_top_k(
 | |
|             ctx2,
 | |
|             &last_n_tokens_data.back() - params.repeat_last_n,
 | |
|             params.repeat_last_n,
 | |
|             40,
 | |
|             1.0,
 | |
|             1.0,
 | |
|             1.1);
 | |
|         auto next_token_str = llama_token_to_str(ctx2, next_token);
 | |
|         last_n_tokens_data.push_back(next_token);
 | |
|         printf("%s", next_token_str);
 | |
|         if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
 | |
|             fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         n_past += 1;
 | |
|     }
 | |
|     printf("\n\n");
 | |
|     return 0;
 | |
| }
 |