mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* merged the changes from deepseeker models to main branch
* Moved regex patterns to unicode.cpp and updated unicode.h
* Moved header files
* Resolved issues
* added and refactored unicode_regex_split and related functions
* Updated/merged the deepseek coder pr
* Refactored code
* Adding unicode regex mappings
* Adding unicode regex function
* Added needed functionality, testing remains
* Fixed issues
* Fixed issue with gpt2 regex custom preprocessor
* unicode : fix? unicode_wstring_to_utf8
* lint : fix whitespaces
* tests : add tokenizer tests for numbers
* unicode : remove redundant headers
* tests : remove and rename tokenizer test scripts
* tests : add sample usage
* gguf-py : reader prints warnings on duplicate keys
* llama : towards llama3 tokenization support (wip)
* unicode : shot in the dark to fix tests on Windows
* unicode : first try custom implementations
* convert : add "tokenizer.ggml.pre" GGUF KV (wip)
* llama : use new pre-tokenizer type
* convert : fix pre-tokenizer type writing
* lint : fix
* make : add test-tokenizer-0-llama-v3
* wip
* models : add llama v3 vocab file
* llama : adapt punctuation regex + add llama 3 regex
* minor
* unicode : set bomb
* unicode : set bomb
* unicode : always use std::wregex
* unicode : support \p{N}, \p{L} and \p{P} natively
* unicode : try fix windows
* unicode : category support via std::regex
* unicode : clean-up
* unicode : simplify
* llama3 custom regex split
* convert : add convert-hf-to-gguf-update.py
ggml-ci
* lint : update
* convert : add falcon
ggml-ci
* unicode : normalize signatures
* lint : fix
* lint : fix
* convert : remove unused functions
* convert : add comments
* convert : exercise contractions
ggml-ci
* Using char32_t for codepoints
* lint : fix
* already exists unicode_tolower()
* Typing
* Restore BOM
* cmake : refactor test targets
* tests : refactor vocab tests
ggml-ci
* tests : add more vocabs and tests
ggml-ci
* unicode : cleanup
* scripts : ignore new update script in check-requirements.sh
* Fix merge
* models : add phi-3, mpt, gpt-2, starcoder
* tests : disable obsolete
ggml-ci
* tests : use faster bpe test
ggml-ci
* llama : more prominent warning for old BPE models
* tests : disable test-tokenizer-1-bpe due to slowness
ggml-ci
* Move unused variable value
* GPT2 custom regex split
* Add alternative regex for custom aplit llama3
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Style
* Add bruteforce random tests for token encoding
* wip: fixing unicode codepoint ranges
* Fix merge
* Unicode tables: separator, lowercase, uppercase and whitespace
* llama3 custom regex split: fix \s
* Restore BOM
* Style
* wip: generate NDF table
* Ignore special tokens for testing
* Clean gen-unicode-data.py
* Refactor random tokenizer test
* lint : fix
* tests : add fail test for llama-bpe
---------
Co-authored-by: Jaggzh <jaggz.h@gmail.com>
Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: jaime-m-p <>
		
	
		
			
				
	
	
		
			296 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			296 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Test libllama tokenizer == AutoTokenizer.
 | 
						||
# Brute force random tokens/text generation.
 | 
						||
#
 | 
						||
# Sample usage:
 | 
						||
#
 | 
						||
#   python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
 | 
						||
#
 | 
						||
 | 
						||
import time
 | 
						||
import logging
 | 
						||
import argparse
 | 
						||
import subprocess
 | 
						||
import random
 | 
						||
 | 
						||
from typing import Iterator
 | 
						||
 | 
						||
import cffi
 | 
						||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
 | 
						||
 | 
						||
logger = logging.getLogger("test-tokenizer-random-bpe")
 | 
						||
 | 
						||
 | 
						||
class LibLlama:
 | 
						||
 | 
						||
    DEFAULT_PATH_LLAMA_H = "./llama.h"
 | 
						||
    DEFAULT_PATH_LIBLLAMA = "./build/libllama.so"  # CMakeLists.txt: BUILD_SHARED_LIBS ON
 | 
						||
 | 
						||
    def __init__(self, path_llama_h: str = None, path_libllama: str = None):
 | 
						||
        path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
 | 
						||
        path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
 | 
						||
        (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
 | 
						||
        self.lib.llama_backend_init()
 | 
						||
 | 
						||
    def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
 | 
						||
        cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
 | 
						||
        res = subprocess.run(cmd, stdout=subprocess.PIPE)
 | 
						||
        assert (res.returncode == 0)
 | 
						||
        source = res.stdout.decode()
 | 
						||
        ffi = cffi.FFI()
 | 
						||
        if True:  # workarounds for pycparser
 | 
						||
            source = "typedef struct { } __builtin_va_list;" + "\n" + source
 | 
						||
            source = source.replace("sizeof (int)",    str(ffi.sizeof("int")))
 | 
						||
            source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
 | 
						||
            source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
 | 
						||
            source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
 | 
						||
        ffi.cdef(source, override=True)
 | 
						||
        lib = ffi.dlopen(path_libllama)
 | 
						||
        return (ffi, lib)
 | 
						||
 | 
						||
    def model_default_params(self, **kwargs):
 | 
						||
        mparams = self.lib.llama_model_default_params()
 | 
						||
        for k, v in kwargs.items():
 | 
						||
            setattr(mparams, k, v)
 | 
						||
        return mparams
 | 
						||
 | 
						||
    def context_default_params(self, **kwargs):
 | 
						||
        cparams = self.lib.llama_context_default_params()
 | 
						||
        for k, v in kwargs.items():
 | 
						||
            setattr(cparams, k, v)
 | 
						||
        return cparams
 | 
						||
 | 
						||
 | 
						||
class LibLlamaModel:
 | 
						||
 | 
						||
    def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
 | 
						||
        self.lib = libllama.lib
 | 
						||
        self.ffi = libllama.ffi
 | 
						||
        if isinstance(mparams, dict):
 | 
						||
            mparams = libllama.model_default_params(**mparams)
 | 
						||
        self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
 | 
						||
        if not self.model:
 | 
						||
            raise RuntimeError("error: failed to load model '%s'" % path_model)
 | 
						||
        if isinstance(cparams, dict):
 | 
						||
            cparams = libllama.context_default_params(**cparams)
 | 
						||
        self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
 | 
						||
        if not self.ctx:
 | 
						||
            raise RuntimeError("error: failed to create context for model '%s'" % path_model)
 | 
						||
        n_tokens_max = self.lib.llama_n_ctx(self.ctx)
 | 
						||
        self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
 | 
						||
 | 
						||
    def free(self):
 | 
						||
        if self.ctx:
 | 
						||
            self.lib.llama_free(self.ctx)
 | 
						||
        if self.model:
 | 
						||
            self.lib.llama_free_model(self.model)
 | 
						||
        self.ctx = None
 | 
						||
        self.model = None
 | 
						||
        self.lib = None
 | 
						||
 | 
						||
    def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
 | 
						||
        n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
 | 
						||
        text = text.encode("utf-8")
 | 
						||
        num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
 | 
						||
        if num < 0:
 | 
						||
            return []
 | 
						||
        return list(self.token_ids[0:num])
 | 
						||
 | 
						||
 | 
						||
def generator_custom_text() -> Iterator[str]:
 | 
						||
    """General tests"""
 | 
						||
    yield from [
 | 
						||
        "",
 | 
						||
        " ",
 | 
						||
        "  ",
 | 
						||
        "   ",
 | 
						||
        "\t",
 | 
						||
        "\n",
 | 
						||
        "\n\n",
 | 
						||
        "\n\n\n",
 | 
						||
        "\t\n",
 | 
						||
        "Hello world",
 | 
						||
        " Hello world",
 | 
						||
        "Hello World",
 | 
						||
        " Hello World",
 | 
						||
        " Hello World!",
 | 
						||
        "Hello, world!",
 | 
						||
        " Hello, world!",
 | 
						||
        " this is 🦙.cpp",
 | 
						||
        "w048 7tuijk dsdfhu",
 | 
						||
        "нещо на Български",
 | 
						||
        "កាន់តែពិសេសអាចខលចេញ",
 | 
						||
        "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
 | 
						||
        "Hello",
 | 
						||
        " Hello",
 | 
						||
        "  Hello",
 | 
						||
        "   Hello",
 | 
						||
        "    Hello",
 | 
						||
        "    Hello\n    Hello",
 | 
						||
        " (",
 | 
						||
        "\n =",
 | 
						||
        "' era",
 | 
						||
        "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
 | 
						||
        "3",
 | 
						||
        "33",
 | 
						||
        "333",
 | 
						||
        "3333",
 | 
						||
        "33333",
 | 
						||
        "333333",
 | 
						||
        "3333333",
 | 
						||
        "33333333",
 | 
						||
        "333333333",
 | 
						||
    ]
 | 
						||
 | 
						||
 | 
						||
def generator_custom_text_edge_cases() -> Iterator[str]:
 | 
						||
    """Edge cases found while debugging"""
 | 
						||
    yield from [
 | 
						||
        '\x1f-a',   # unicode_ranges_control, {0x00001C, 0x00001F}
 | 
						||
        '¼-a',      # unicode_ranges_digit, 0x00BC
 | 
						||
        '½-a',      # unicode_ranges_digit, 0x00BD
 | 
						||
        '¾-a',      # unicode_ranges_digit, 0x00BE
 | 
						||
        'a 〇b',    # unicode_ranges_digit, 0x3007
 | 
						||
        'Ⅵ-a',     # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
 | 
						||
        '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
 | 
						||
        '<s>a'      # TODO: Phi-3 fail
 | 
						||
    ]
 | 
						||
 | 
						||
 | 
						||
def generator_random_chars(iterations = 100) -> Iterator[str]:
 | 
						||
    """Brute force random text with simple characters"""
 | 
						||
 | 
						||
    WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
 | 
						||
    CHARS = list(set("""
 | 
						||
        ABCDEFGHIJKLMNOPQRSTUVWXYZ
 | 
						||
        abcdefghijklmnopqrstuvwxyz
 | 
						||
        ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
 | 
						||
        áéíóúàèìòùâêîôûäëïöü
 | 
						||
        .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
 | 
						||
    """))
 | 
						||
 | 
						||
    rand = random.Random()
 | 
						||
    for m in range(iterations):
 | 
						||
        rand.seed(m)
 | 
						||
        text = []
 | 
						||
        num_words = rand.randint(300, 400)
 | 
						||
        for i in range(num_words):
 | 
						||
            k = rand.randint(1, 7)
 | 
						||
            word = rand.choices(CHARS, k=k)
 | 
						||
            space = rand.choice(WHITESPACES)
 | 
						||
            text.append("".join(word) + space)
 | 
						||
        yield "".join(text)
 | 
						||
 | 
						||
 | 
						||
def generator_random_vocab_chars(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
 | 
						||
    """Brute force random text with vocab characters"""
 | 
						||
 | 
						||
    vocab_ids = list(tokenizer.vocab.values())
 | 
						||
    vocab_text = tokenizer.decode(vocab_ids, skip_special_tokens=True)
 | 
						||
    vocab_chars = list(set(vocab_text))
 | 
						||
    del vocab_ids, vocab_text
 | 
						||
 | 
						||
    rand = random.Random()
 | 
						||
    for m in range(iterations):
 | 
						||
        rand.seed(m)
 | 
						||
        text = rand.choices(vocab_chars, k=1024)
 | 
						||
        yield "".join(text)
 | 
						||
 | 
						||
 | 
						||
def generator_random_vocab_tokens(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
 | 
						||
    """Brute force random text from vocab tokens"""
 | 
						||
 | 
						||
    space_id = tokenizer.encode(" ", add_special_tokens=False)[0]
 | 
						||
    vocab_ids = list(tokenizer.vocab.values())
 | 
						||
    vocab_ids = list(sorted(vocab_ids + vocab_ids))
 | 
						||
    for i in range(1, len(vocab_ids), 2):
 | 
						||
        vocab_ids[i] = space_id
 | 
						||
    vocab_tokens = tokenizer.decode(vocab_ids, skip_special_tokens=True)
 | 
						||
    vocab_tokens = vocab_tokens.split(" ")
 | 
						||
    del vocab_ids
 | 
						||
 | 
						||
    yield from vocab_tokens
 | 
						||
 | 
						||
    rand = random.Random()
 | 
						||
    for m in range(iterations):
 | 
						||
        rand.seed(m)
 | 
						||
        text = []
 | 
						||
        num_words = rand.randint(300, 400)
 | 
						||
        for i in range(num_words):
 | 
						||
            k = rand.randint(1, 3)
 | 
						||
            tokens = rand.choices(vocab_tokens, k=k)
 | 
						||
            tokens = [t.strip(" \n\r\t") for t in tokens]
 | 
						||
            sep = rand.choice("     \n\r\t")
 | 
						||
            text.append("".join(tokens) + sep)
 | 
						||
        yield "".join(text)
 | 
						||
 | 
						||
 | 
						||
def generator_random_bytes(iterations = 100) -> Iterator[str]:
 | 
						||
    """Brute force random bytes"""
 | 
						||
 | 
						||
    WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
 | 
						||
 | 
						||
    rand = random.Random()
 | 
						||
    for m in range(iterations):
 | 
						||
        rand.seed(m)
 | 
						||
        text = []
 | 
						||
        num_words = rand.randint(300, 400)
 | 
						||
        for i in range(num_words):
 | 
						||
            k = rand.randint(1, 8)
 | 
						||
            word = [chr(r) for r in rand.randbytes(k) if r]
 | 
						||
            word.append(rand.choice(WHITESPACES))
 | 
						||
            text.append("".join(word))
 | 
						||
        yield "".join(text)
 | 
						||
 | 
						||
 | 
						||
def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerBase, generator: Iterator[str]):
 | 
						||
 | 
						||
    def find_first_mismatch(ids1: list[int], ids2: list[int]):
 | 
						||
        for i, (a,b) in enumerate(zip(ids1, ids2)):
 | 
						||
            if a != b:
 | 
						||
                return i
 | 
						||
        if len(ids1) == len(ids2):
 | 
						||
            return -1
 | 
						||
        return min(len(ids1), len(ids2))
 | 
						||
 | 
						||
    t0 = time.perf_counter()
 | 
						||
    logger.info("%s: %s" % (generator.__name__, "ini"))
 | 
						||
    for text in generator:
 | 
						||
        ids1 = model.tokenize(text, add_special=False, parse_special=False)
 | 
						||
        ids2 = tokenizer.encode(text, add_special_tokens=False)
 | 
						||
        if ids1 != ids2:
 | 
						||
            i = find_first_mismatch(ids1, ids2)
 | 
						||
            ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1]
 | 
						||
            ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1]
 | 
						||
            text2 = tokenizer.decode(ids2, skip_special_tokens=True)
 | 
						||
            assert (text2 in text)
 | 
						||
            logger.info(" Text:     " + repr(text2))
 | 
						||
            logger.info(" TokenIDs: " + str(ids1))
 | 
						||
            logger.info(" Expected: " + str(ids2))
 | 
						||
            raise Exception()
 | 
						||
    t1 = time.perf_counter()
 | 
						||
    logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
 | 
						||
 | 
						||
 | 
						||
if __name__ == "__main__":
 | 
						||
 | 
						||
    parser = argparse.ArgumentParser()
 | 
						||
    parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
 | 
						||
    parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
 | 
						||
    parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
 | 
						||
    args = parser.parse_args()
 | 
						||
 | 
						||
    logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
 | 
						||
 | 
						||
    model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=2048))
 | 
						||
 | 
						||
    tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
 | 
						||
 | 
						||
    test_compare_tokenizer(model, tokenizer, generator_custom_text())
 | 
						||
    test_compare_tokenizer(model, tokenizer, generator_custom_text_edge_cases())
 | 
						||
    test_compare_tokenizer(model, tokenizer, generator_random_chars(10_000))
 | 
						||
    test_compare_tokenizer(model, tokenizer, generator_random_vocab_chars(tokenizer, 10_000))
 | 
						||
    test_compare_tokenizer(model, tokenizer, generator_random_vocab_tokens(tokenizer, 10_000))
 | 
						||
    # test_compare_tokenizer(model, tokenizer, generator_random_bytes(10_000)) # FAIL
 | 
						||
 | 
						||
    model.free()
 |