mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			252 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			252 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Quick and dirty HF llama --> gguf conversion, GQA/70b wont work
 | |
| 
 | |
| import gguf
 | |
| import gguf_tensor_map as tmap
 | |
| import os
 | |
| import sys
 | |
| import struct
 | |
| import json
 | |
| import numpy as np
 | |
| from typing import Any, List
 | |
| from pathlib import Path
 | |
| from transformers import AutoModelForCausalLM
 | |
| from sentencepiece import SentencePieceProcessor
 | |
| 
 | |
| 
 | |
| #NDArray = np.ndarray[Any, Any]
 | |
| # compatible with python < 3.9
 | |
| NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | |
| 
 | |
| def permute(weights: NDArray, n_head: int) -> NDArray:
 | |
|     return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | |
|                    .swapaxes(1, 2)
 | |
|                    .reshape(weights.shape))
 | |
| 
 | |
| 
 | |
| if len(sys.argv) < 3:
 | |
|     print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | |
|     print("  ftype == 0 -> float32")
 | |
|     print("  ftype == 1 -> float16")
 | |
|     sys.exit(1)
 | |
| 
 | |
| 
 | |
| # output in the same directory as the model
 | |
| dir_model = sys.argv[1]
 | |
| last_dir = os.path.basename(os.path.normpath(dir_model))
 | |
| 
 | |
| 
 | |
| # possible tensor data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| #
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| ftype = 1
 | |
| if len(sys.argv) > 2:
 | |
|     ftype = int(sys.argv[2])
 | |
|     if ftype < 0 or ftype > 1:
 | |
|         print("Invalid ftype: " + str(ftype))
 | |
|         sys.exit(1)
 | |
| 
 | |
| fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | |
| 
 | |
| print("gguf: loading model "+last_dir)
 | |
|     
 | |
| with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| if hparams["architectures"][0] != "LlamaForCausalLM":
 | |
|     print("Model architecture not supported: " + hparams["architectures"][0] )
 | |
|     sys.exit()
 | |
| 
 | |
| model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
 | |
| list_vars = model.state_dict()
 | |
| 
 | |
| gguf_writer = gguf.GGUFWriter.open(fname_out)
 | |
| 
 | |
| 
 | |
| print("gguf: get model metadata")
 | |
| 
 | |
| llm_arch    = "llama"
 | |
| head_count  = hparams["num_attention_heads"]
 | |
| block_count = hparams["num_hidden_layers"]
 | |
| 
 | |
| gguf_writer.add_name(last_dir)
 | |
| gguf_writer.add_architecture(llm_arch)
 | |
| gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
 | |
| gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
 | |
| gguf_writer.add_layer_count(llm_arch, block_count)
 | |
| gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | |
| gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
 | |
| gguf_writer.add_head_count(llm_arch, head_count)
 | |
| gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
 | |
| 
 | |
| 
 | |
| # TOKENIZATION
 | |
| 
 | |
| print("gguf: get tokenizer metadata")
 | |
| 
 | |
| tokens: List[str] = []
 | |
| scores: List[float] = []
 | |
| 
 | |
| if Path(dir_model + "/tokenizer.model").is_file():
 | |
|     # vocab type sentencepiece
 | |
|     print("gguf: get sentencepiece tokenizer vocab and scores")
 | |
| 
 | |
|     tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
 | |
| 
 | |
|     for i in range(tokenizer.vocab_size()):
 | |
|         text: bytes
 | |
|         if tokenizer.is_unknown(i):
 | |
|             text = " \u2047 ".encode("utf-8")
 | |
|         elif tokenizer.is_control(i):
 | |
|             text = b""
 | |
|         if tokenizer.is_byte(i):
 | |
|             piece = tokenizer.id_to_piece(i)
 | |
|             if len(piece) != 6:
 | |
|                 raise Exception(f"Invalid token: {piece}")
 | |
|             byte_value = int(piece[3:-1], 16)
 | |
|             text = struct.pack("B", byte_value)
 | |
|         else:
 | |
|             text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
 | |
|         score: float = tokenizer.get_score(i)
 | |
| 
 | |
|         tokens.append(text)
 | |
|         scores.append(score)
 | |
| 
 | |
|     gguf_writer.add_tokenizer_model("llama")
 | |
|     gguf_writer.add_token_list(tokens)
 | |
|     gguf_writer.add_token_scores(scores)
 | |
| 
 | |
| if Path(dir_model + "/tokenizer.json").is_file():
 | |
|     with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
 | |
|         tokenizer = json.load(f)
 | |
| 
 | |
|     if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
 | |
|         print("gguf: get special token ids")
 | |
| 
 | |
|         with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
 | |
|             tokenizer_config = json.load(f)
 | |
| 
 | |
|         # find special token ids
 | |
| 
 | |
|         if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["bos_token"]["content"]:
 | |
|                     gguf_writer.add_bos_token_id(key["id"])
 | |
| 
 | |
|         if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["eos_token"]["content"]:
 | |
|                     gguf_writer.add_eos_token_id(key["id"])
 | |
| 
 | |
|         if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["unk_token"]["content"]:
 | |
|                     gguf_writer.add_unk_token_id(key["id"])
 | |
| 
 | |
|         if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["sep_token"]["content"]:
 | |
|                     gguf_writer.add_sep_token_id(key["id"])
 | |
| 
 | |
|         if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["pad_token"]["content"]:
 | |
|                     gguf_writer.add_pad_token_id(key["id"])
 | |
| 
 | |
| 
 | |
| # TENSORS
 | |
| 
 | |
| tensor_map = tmap.get_tensor_map(block_count)
 | |
| 
 | |
| # tensor info
 | |
| print("gguf: get tensor metadata")
 | |
| 
 | |
| for name in list_vars.keys():
 | |
|     data = list_vars[name].squeeze().numpy()
 | |
| 
 | |
|     # we don't need these
 | |
|     if name.endswith(".rotary_emb.inv_freq"):
 | |
|         continue
 | |
| 
 | |
|     # permute these
 | |
|     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
 | |
|         data = permute(data,head_count)
 | |
| 
 | |
|     # map tensor names
 | |
|     if name.endswith(".weight") and name[:-7] in tensor_map:
 | |
|         name = tensor_map[name[:-7]] + ".weight"
 | |
|     elif name.endswith(".bias") and name[:-5] in tensor_map:
 | |
|         name = tensor_map[name[:-5]] + ".bias"
 | |
|     else:
 | |
|         print( "Can not map tensor '" + name + "'" )
 | |
|         sys.exit()
 | |
| 
 | |
|     n_dims = len(data.shape)
 | |
|     data_dtype = data.dtype 
 | |
| 
 | |
| #    print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
 | |
| 
 | |
|     if data.dtype != np.float16 and data.dtype != np.float32:
 | |
|         # convert any unsupported data types to float32
 | |
|         data_dtype = np.float32
 | |
|     elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|         # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|         data_dtype = np.float16
 | |
| 
 | |
|     nelements = 1
 | |
| 
 | |
|     for i in range(n_dims):
 | |
|         nelements *= data.shape[n_dims - 1 - i]
 | |
| 
 | |
|     data_nbytes = 0
 | |
|     if data_dtype == np.float16:
 | |
|         data_nbytes = nelements * 2
 | |
|     elif data_dtype == np.float32:
 | |
|         data_nbytes = nelements * 4
 | |
| 
 | |
| 
 | |
|     gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
 | |
| 
 | |
| 
 | |
| print("gguf: write header")
 | |
| gguf_writer.write_header_to_file()
 | |
| print("gguf: write metadata")
 | |
| gguf_writer.write_kv_data_to_file()
 | |
| print("gguf: write tensor metadata")
 | |
| gguf_writer.write_ti_data_to_file()
 | |
| 
 | |
| # tensor data
 | |
| print("gguf: convert and write tensor data")
 | |
| 
 | |
| for name in list_vars.keys():
 | |
|     data = list_vars[name].squeeze().numpy()
 | |
| 
 | |
|     # we don't need these
 | |
|     if name.endswith(".rotary_emb.inv_freq"):
 | |
|         continue
 | |
| 
 | |
|     # permute these
 | |
|     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
 | |
|         data = permute(data, head_count)
 | |
| 
 | |
|     n_dims = len(data.shape)
 | |
|     data_dtype = data.dtype 
 | |
| 
 | |
|     if data_dtype != np.float16 and data_dtype != np.float32:
 | |
|         # convert any unsupported data types to float32
 | |
|         data = data.astype(np.float32)
 | |
|     elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|         # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|         data = data.astype(np.float16)
 | |
| 
 | |
|     gguf_writer.write_tensor_to_file(data)
 | |
| 
 | |
| gguf_writer.close()
 | |
| 
 | |
| 
 | |
| print("gguf: model successfully exported to '" + fname_out + "'" )
 | |
| print("")
 | 
