mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* Create pydantic-models-to-grammar.py * Added some comments for usage * Refactored Grammar Generator Added example and usage instruction. * Update pydantic_models_to_grammar.py * Update pydantic-models-to-grammar-examples.py * Renamed module and imported it. * Update pydantic-models-to-grammar.py * Renamed file and fixed grammar generator issue.
		
			
				
	
	
		
			1152 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1152 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import inspect
 | 
						|
import json
 | 
						|
from copy import copy
 | 
						|
from inspect import isclass, getdoc
 | 
						|
from types import NoneType
 | 
						|
 | 
						|
from pydantic import BaseModel, create_model, Field
 | 
						|
from typing import Any, Type, List, get_args, get_origin, Tuple, Union, Optional, _GenericAlias
 | 
						|
from enum import Enum
 | 
						|
from typing import get_type_hints, Callable
 | 
						|
import re
 | 
						|
 | 
						|
 | 
						|
class PydanticDataType(Enum):
 | 
						|
    """
 | 
						|
    Defines the data types supported by the grammar_generator.
 | 
						|
 | 
						|
    Attributes:
 | 
						|
        STRING (str): Represents a string data type.
 | 
						|
        BOOLEAN (str): Represents a boolean data type.
 | 
						|
        INTEGER (str): Represents an integer data type.
 | 
						|
        FLOAT (str): Represents a float data type.
 | 
						|
        OBJECT (str): Represents an object data type.
 | 
						|
        ARRAY (str): Represents an array data type.
 | 
						|
        ENUM (str): Represents an enum data type.
 | 
						|
        CUSTOM_CLASS (str): Represents a custom class data type.
 | 
						|
    """
 | 
						|
    STRING = "string"
 | 
						|
    TRIPLE_QUOTED_STRING = "triple_quoted_string"
 | 
						|
    MARKDOWN_STRING = "markdown_string"
 | 
						|
    BOOLEAN = "boolean"
 | 
						|
    INTEGER = "integer"
 | 
						|
    FLOAT = "float"
 | 
						|
    OBJECT = "object"
 | 
						|
    ARRAY = "array"
 | 
						|
    ENUM = "enum"
 | 
						|
    ANY = "any"
 | 
						|
    NULL = "null"
 | 
						|
    CUSTOM_CLASS = "custom-class"
 | 
						|
    CUSTOM_DICT = "custom-dict"
 | 
						|
    SET = "set"
 | 
						|
 | 
						|
 | 
						|
def map_pydantic_type_to_gbnf(pydantic_type: Type[Any]) -> str:
 | 
						|
    if isclass(pydantic_type) and issubclass(pydantic_type, str):
 | 
						|
        return PydanticDataType.STRING.value
 | 
						|
    elif isclass(pydantic_type) and issubclass(pydantic_type, bool):
 | 
						|
        return PydanticDataType.BOOLEAN.value
 | 
						|
    elif isclass(pydantic_type) and issubclass(pydantic_type, int):
 | 
						|
        return PydanticDataType.INTEGER.value
 | 
						|
    elif isclass(pydantic_type) and issubclass(pydantic_type, float):
 | 
						|
        return PydanticDataType.FLOAT.value
 | 
						|
    elif isclass(pydantic_type) and issubclass(pydantic_type, Enum):
 | 
						|
        return PydanticDataType.ENUM.value
 | 
						|
 | 
						|
    elif isclass(pydantic_type) and issubclass(pydantic_type, BaseModel):
 | 
						|
        return format_model_and_field_name(pydantic_type.__name__)
 | 
						|
    elif get_origin(pydantic_type) == list:
 | 
						|
        element_type = get_args(pydantic_type)[0]
 | 
						|
        return f"{map_pydantic_type_to_gbnf(element_type)}-list"
 | 
						|
    elif get_origin(pydantic_type) == set:
 | 
						|
        element_type = get_args(pydantic_type)[0]
 | 
						|
        return f"{map_pydantic_type_to_gbnf(element_type)}-set"
 | 
						|
    elif get_origin(pydantic_type) == Union:
 | 
						|
        union_types = get_args(pydantic_type)
 | 
						|
        union_rules = [map_pydantic_type_to_gbnf(ut) for ut in union_types]
 | 
						|
        return f"union-{'-or-'.join(union_rules)}"
 | 
						|
    elif get_origin(pydantic_type) == Optional:
 | 
						|
        element_type = get_args(pydantic_type)[0]
 | 
						|
        return f"optional-{map_pydantic_type_to_gbnf(element_type)}"
 | 
						|
    elif isclass(pydantic_type):
 | 
						|
        return f"{PydanticDataType.CUSTOM_CLASS.value}-{format_model_and_field_name(pydantic_type.__name__)}"
 | 
						|
    elif get_origin(pydantic_type) == dict:
 | 
						|
        key_type, value_type = get_args(pydantic_type)
 | 
						|
        return f"custom-dict-key-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(key_type))}-value-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(value_type))}"
 | 
						|
    else:
 | 
						|
        return "unknown"
 | 
						|
 | 
						|
 | 
						|
def format_model_and_field_name(model_name: str) -> str:
 | 
						|
    parts = re.findall('[A-Z][^A-Z]*', model_name)
 | 
						|
    if not parts:  # Check if the list is empty
 | 
						|
        return model_name.lower().replace("_", "-")
 | 
						|
    return '-'.join(part.lower().replace("_", "-") for part in parts)
 | 
						|
 | 
						|
 | 
						|
def generate_list_rule(element_type):
 | 
						|
    """
 | 
						|
    Generate a GBNF rule for a list of a given element type.
 | 
						|
 | 
						|
    :param element_type: The type of the elements in the list (e.g., 'string').
 | 
						|
    :return: A string representing the GBNF rule for a list of the given type.
 | 
						|
    """
 | 
						|
    rule_name = f"{map_pydantic_type_to_gbnf(element_type)}-list"
 | 
						|
    element_rule = map_pydantic_type_to_gbnf(element_type)
 | 
						|
    list_rule = fr'{rule_name} ::= "["  {element_rule} (","  {element_rule})* "]"'
 | 
						|
    return list_rule
 | 
						|
 | 
						|
 | 
						|
def get_members_structure(cls, rule_name):
 | 
						|
    if issubclass(cls, Enum):
 | 
						|
        # Handle Enum types
 | 
						|
        members = [f'\"\\\"{member.value}\\\"\"' for name, member in cls.__members__.items()]
 | 
						|
        return f"{cls.__name__.lower()} ::= " + " | ".join(members)
 | 
						|
    if cls.__annotations__ and cls.__annotations__ != {}:
 | 
						|
        result = f'{rule_name} ::= "{{"'
 | 
						|
        type_list_rules = []
 | 
						|
        # Modify this comprehension
 | 
						|
        members = [f'  \"\\\"{name}\\\"\" ":"  {map_pydantic_type_to_gbnf(param_type)}'
 | 
						|
                   for name, param_type in cls.__annotations__.items()
 | 
						|
                   if name != 'self']
 | 
						|
 | 
						|
        result += '"," '.join(members)
 | 
						|
        result += '  "}"'
 | 
						|
        return result, type_list_rules
 | 
						|
    elif rule_name == "custom-class-any":
 | 
						|
        result = f'{rule_name} ::= '
 | 
						|
        result += 'value'
 | 
						|
        type_list_rules = []
 | 
						|
        return result, type_list_rules
 | 
						|
    else:
 | 
						|
        init_signature = inspect.signature(cls.__init__)
 | 
						|
        parameters = init_signature.parameters
 | 
						|
        result = f'{rule_name} ::=  "{{"'
 | 
						|
        type_list_rules = []
 | 
						|
        # Modify this comprehension too
 | 
						|
        members = [f'  \"\\\"{name}\\\"\" ":"  {map_pydantic_type_to_gbnf(param.annotation)}'
 | 
						|
                   for name, param in parameters.items()
 | 
						|
                   if name != 'self' and param.annotation != inspect.Parameter.empty]
 | 
						|
 | 
						|
        result += '", "'.join(members)
 | 
						|
        result += '  "}"'
 | 
						|
        return result, type_list_rules
 | 
						|
 | 
						|
 | 
						|
def regex_to_gbnf(regex_pattern: str) -> str:
 | 
						|
    """
 | 
						|
    Translate a basic regex pattern to a GBNF rule.
 | 
						|
    Note: This function handles only a subset of simple regex patterns.
 | 
						|
    """
 | 
						|
    gbnf_rule = regex_pattern
 | 
						|
 | 
						|
    # Translate common regex components to GBNF
 | 
						|
    gbnf_rule = gbnf_rule.replace('\\d', '[0-9]')
 | 
						|
    gbnf_rule = gbnf_rule.replace('\\s', '[ \t\n]')
 | 
						|
 | 
						|
    # Handle quantifiers and other regex syntax that is similar in GBNF
 | 
						|
    # (e.g., '*', '+', '?', character classes)
 | 
						|
 | 
						|
    return gbnf_rule
 | 
						|
 | 
						|
 | 
						|
def generate_gbnf_integer_rules(max_digit=None, min_digit=None):
 | 
						|
    """
 | 
						|
 | 
						|
    Generate GBNF Integer Rules
 | 
						|
 | 
						|
    Generates GBNF (Generalized Backus-Naur Form) rules for integers based on the given maximum and minimum digits.
 | 
						|
 | 
						|
    Parameters:
 | 
						|
    max_digit (int): The maximum number of digits for the integer. Default is None.
 | 
						|
    min_digit (int): The minimum number of digits for the integer. Default is None.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    integer_rule (str): The identifier for the integer rule generated.
 | 
						|
    additional_rules (list): A list of additional rules generated based on the given maximum and minimum digits.
 | 
						|
 | 
						|
    """
 | 
						|
    additional_rules = []
 | 
						|
 | 
						|
    # Define the rule identifier based on max_digit and min_digit
 | 
						|
    integer_rule = "integer-part"
 | 
						|
    if max_digit is not None:
 | 
						|
        integer_rule += f"-max{max_digit}"
 | 
						|
    if min_digit is not None:
 | 
						|
        integer_rule += f"-min{min_digit}"
 | 
						|
 | 
						|
    # Handling Integer Rules
 | 
						|
    if max_digit is not None or min_digit is not None:
 | 
						|
        # Start with an empty rule part
 | 
						|
        integer_rule_part = ''
 | 
						|
 | 
						|
        # Add mandatory digits as per min_digit
 | 
						|
        if min_digit is not None:
 | 
						|
            integer_rule_part += '[0-9] ' * min_digit
 | 
						|
 | 
						|
        # Add optional digits up to max_digit
 | 
						|
        if max_digit is not None:
 | 
						|
            optional_digits = max_digit - (min_digit if min_digit is not None else 0)
 | 
						|
            integer_rule_part += ''.join(['[0-9]? ' for _ in range(optional_digits)])
 | 
						|
 | 
						|
        # Trim the rule part and append it to additional rules
 | 
						|
        integer_rule_part = integer_rule_part.strip()
 | 
						|
        if integer_rule_part:
 | 
						|
            additional_rules.append(f'{integer_rule} ::= {integer_rule_part}')
 | 
						|
 | 
						|
    return integer_rule, additional_rules
 | 
						|
 | 
						|
 | 
						|
def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None, min_precision=None):
 | 
						|
    """
 | 
						|
    Generate GBNF float rules based on the given constraints.
 | 
						|
 | 
						|
    :param max_digit: Maximum number of digits in the integer part (default: None)
 | 
						|
    :param min_digit: Minimum number of digits in the integer part (default: None)
 | 
						|
    :param max_precision: Maximum number of digits in the fractional part (default: None)
 | 
						|
    :param min_precision: Minimum number of digits in the fractional part (default: None)
 | 
						|
    :return: A tuple containing the float rule and additional rules as a list
 | 
						|
 | 
						|
    Example Usage:
 | 
						|
    max_digit = 3
 | 
						|
    min_digit = 1
 | 
						|
    max_precision = 2
 | 
						|
    min_precision = 1
 | 
						|
    generate_gbnf_float_rules(max_digit, min_digit, max_precision, min_precision)
 | 
						|
 | 
						|
    Output:
 | 
						|
    ('float-3-1-2-1', ['integer-part-max3-min1 ::= [0-9] [0-9] [0-9]?', 'fractional-part-max2-min1 ::= [0-9] [0-9]?', 'float-3-1-2-1 ::= integer-part-max3-min1 "." fractional-part-max2-min
 | 
						|
    *1'])
 | 
						|
 | 
						|
    Note:
 | 
						|
    GBNF stands for Generalized Backus-Naur Form, which is a notation technique to specify the syntax of programming languages or other formal grammars.
 | 
						|
    """
 | 
						|
    additional_rules = []
 | 
						|
 | 
						|
    # Define the integer part rule
 | 
						|
    integer_part_rule = "integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + (
 | 
						|
        f"-min{min_digit}" if min_digit is not None else "")
 | 
						|
 | 
						|
    # Define the fractional part rule based on precision constraints
 | 
						|
    fractional_part_rule = "fractional-part"
 | 
						|
    fractional_rule_part = ''
 | 
						|
    if max_precision is not None or min_precision is not None:
 | 
						|
        fractional_part_rule += (f"-max{max_precision}" if max_precision is not None else "") + (
 | 
						|
            f"-min{min_precision}" if min_precision is not None else "")
 | 
						|
        # Minimum number of digits
 | 
						|
        fractional_rule_part = '[0-9]' * (min_precision if min_precision is not None else 1)
 | 
						|
        # Optional additional digits
 | 
						|
        fractional_rule_part += ''.join([' [0-9]?'] * (
 | 
						|
            (max_precision - (min_precision if min_precision is not None else 1)) if max_precision is not None else 0))
 | 
						|
        additional_rules.append(f'{fractional_part_rule} ::= {fractional_rule_part}')
 | 
						|
 | 
						|
    # Define the float rule
 | 
						|
    float_rule = f"float-{max_digit if max_digit is not None else 'X'}-{min_digit if min_digit is not None else 'X'}-{max_precision if max_precision is not None else 'X'}-{min_precision if min_precision is not None else 'X'}"
 | 
						|
    additional_rules.append(f'{float_rule} ::= {integer_part_rule} "." {fractional_part_rule}')
 | 
						|
 | 
						|
    # Generating the integer part rule definition, if necessary
 | 
						|
    if max_digit is not None or min_digit is not None:
 | 
						|
        integer_rule_part = '[0-9]'
 | 
						|
        if min_digit is not None and min_digit > 1:
 | 
						|
            integer_rule_part += ' [0-9]' * (min_digit - 1)
 | 
						|
        if max_digit is not None:
 | 
						|
            integer_rule_part += ''.join([' [0-9]?'] * (max_digit - (min_digit if min_digit is not None else 1)))
 | 
						|
        additional_rules.append(f'{integer_part_rule} ::= {integer_rule_part.strip()}')
 | 
						|
 | 
						|
    return float_rule, additional_rules
 | 
						|
 | 
						|
 | 
						|
def generate_gbnf_rule_for_type(model_name, field_name,
 | 
						|
                                field_type, is_optional, processed_models, created_rules,
 | 
						|
                                field_info=None) -> \
 | 
						|
    Tuple[str, list]:
 | 
						|
    """
 | 
						|
    Generate GBNF rule for a given field type.
 | 
						|
 | 
						|
    :param model_name: Name of the model.
 | 
						|
 | 
						|
    :param field_name: Name of the field.
 | 
						|
    :param field_type: Type of the field.
 | 
						|
    :param is_optional: Whether the field is optional.
 | 
						|
    :param processed_models: List of processed models.
 | 
						|
    :param created_rules: List of created rules.
 | 
						|
    :param field_info: Additional information about the field (optional).
 | 
						|
 | 
						|
    :return: Tuple containing the GBNF type and a list of additional rules.
 | 
						|
    :rtype: Tuple[str, list]
 | 
						|
    """
 | 
						|
    rules = []
 | 
						|
 | 
						|
    field_name = format_model_and_field_name(field_name)
 | 
						|
    gbnf_type = map_pydantic_type_to_gbnf(field_type)
 | 
						|
 | 
						|
    if isclass(field_type) and issubclass(field_type, BaseModel):
 | 
						|
        nested_model_name = format_model_and_field_name(field_type.__name__)
 | 
						|
        nested_model_rules = generate_gbnf_grammar(field_type, processed_models, created_rules)
 | 
						|
        rules.extend(nested_model_rules)
 | 
						|
        gbnf_type, rules = nested_model_name, rules
 | 
						|
    elif isclass(field_type) and issubclass(field_type, Enum):
 | 
						|
        enum_values = [f'\"\\\"{e.value}\\\"\"' for e in field_type]  # Adding escaped quotes
 | 
						|
        enum_rule = f"{model_name}-{field_name} ::= {' | '.join(enum_values)}"
 | 
						|
        rules.append(enum_rule)
 | 
						|
        gbnf_type, rules = model_name + "-" + field_name, rules
 | 
						|
    elif get_origin(field_type) == list or field_type == list:  # Array
 | 
						|
        element_type = get_args(field_type)[0]
 | 
						|
        element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name,
 | 
						|
                                                                          f"{field_name}-element",
 | 
						|
                                                                          element_type, is_optional, processed_models,
 | 
						|
                                                                          created_rules)
 | 
						|
        rules.extend(additional_rules)
 | 
						|
        array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})*  "]" """
 | 
						|
        rules.append(array_rule)
 | 
						|
        gbnf_type, rules = model_name + "-" + field_name, rules
 | 
						|
 | 
						|
    elif get_origin(field_type) == set or field_type == set:  # Array
 | 
						|
        element_type = get_args(field_type)[0]
 | 
						|
        element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name,
 | 
						|
                                                                          f"{field_name}-element",
 | 
						|
                                                                          element_type, is_optional, processed_models,
 | 
						|
                                                                          created_rules)
 | 
						|
        rules.extend(additional_rules)
 | 
						|
        array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})*  "]" """
 | 
						|
        rules.append(array_rule)
 | 
						|
        gbnf_type, rules = model_name + "-" + field_name, rules
 | 
						|
 | 
						|
    elif gbnf_type.startswith("custom-class-"):
 | 
						|
        nested_model_rules, field_types = get_members_structure(field_type, gbnf_type)
 | 
						|
        rules.append(nested_model_rules)
 | 
						|
    elif gbnf_type.startswith("custom-dict-"):
 | 
						|
        key_type, value_type = get_args(field_type)
 | 
						|
 | 
						|
        additional_key_type, additional_key_rules = generate_gbnf_rule_for_type(model_name,
 | 
						|
                                                                                f"{field_name}-key-type",
 | 
						|
                                                                                key_type, is_optional, processed_models,
 | 
						|
                                                                                created_rules)
 | 
						|
        additional_value_type, additional_value_rules = generate_gbnf_rule_for_type(model_name,
 | 
						|
                                                                                    f"{field_name}-value-type",
 | 
						|
                                                                                    value_type, is_optional,
 | 
						|
                                                                                    processed_models, created_rules)
 | 
						|
        gbnf_type = fr'{gbnf_type} ::= "{{"  ( {additional_key_type} ":"  {additional_value_type} (","  {additional_key_type} ":"  {additional_value_type})*  )? "}}" '
 | 
						|
 | 
						|
        rules.extend(additional_key_rules)
 | 
						|
        rules.extend(additional_value_rules)
 | 
						|
    elif gbnf_type.startswith("union-"):
 | 
						|
        union_types = get_args(field_type)
 | 
						|
        union_rules = []
 | 
						|
 | 
						|
        for union_type in union_types:
 | 
						|
            if isinstance(union_type, _GenericAlias):
 | 
						|
                union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name,
 | 
						|
                                                                                field_name, union_type,
 | 
						|
                                                                                False,
 | 
						|
                                                                                processed_models, created_rules)
 | 
						|
                union_rules.append(union_gbnf_type)
 | 
						|
                rules.extend(union_rules_list)
 | 
						|
 | 
						|
 | 
						|
            elif not issubclass(union_type, NoneType):
 | 
						|
                union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name,
 | 
						|
                                                                                field_name, union_type,
 | 
						|
                                                                                False,
 | 
						|
                                                                                processed_models, created_rules)
 | 
						|
                union_rules.append(union_gbnf_type)
 | 
						|
                rules.extend(union_rules_list)
 | 
						|
 | 
						|
        # Defining the union grammar rule separately
 | 
						|
        if len(union_rules) == 1:
 | 
						|
            union_grammar_rule = f"{model_name}-{field_name}-optional ::= {' | '.join(union_rules)} | null"
 | 
						|
        else:
 | 
						|
            union_grammar_rule = f"{model_name}-{field_name}-union ::= {' | '.join(union_rules)}"
 | 
						|
        rules.append(union_grammar_rule)
 | 
						|
        if len(union_rules) == 1:
 | 
						|
            gbnf_type = f"{model_name}-{field_name}-optional"
 | 
						|
        else:
 | 
						|
            gbnf_type = f"{model_name}-{field_name}-union"
 | 
						|
    elif isclass(field_type) and issubclass(field_type, str):
 | 
						|
        if field_info and hasattr(field_info, 'json_schema_extra') and field_info.json_schema_extra is not None:
 | 
						|
 | 
						|
            triple_quoted_string = field_info.json_schema_extra.get('triple_quoted_string', False)
 | 
						|
            markdown_string = field_info.json_schema_extra.get('markdown_string', False)
 | 
						|
 | 
						|
            gbnf_type = PydanticDataType.TRIPLE_QUOTED_STRING.value if triple_quoted_string else PydanticDataType.STRING.value
 | 
						|
            gbnf_type = PydanticDataType.MARKDOWN_STRING.value if markdown_string else gbnf_type
 | 
						|
 | 
						|
        elif field_info and hasattr(field_info, 'pattern'):
 | 
						|
            # Convert regex pattern to grammar rule
 | 
						|
            regex_pattern = field_info.regex.pattern
 | 
						|
            gbnf_type = f"pattern-{field_name} ::= {regex_to_gbnf(regex_pattern)}"
 | 
						|
        else:
 | 
						|
            gbnf_type = PydanticDataType.STRING.value
 | 
						|
 | 
						|
    elif isclass(field_type) and issubclass(field_type, float) and field_info and hasattr(field_info,
 | 
						|
                                                                                          'json_schema_extra') and field_info.json_schema_extra is not None:
 | 
						|
        # Retrieve precision attributes for floats
 | 
						|
        max_precision = field_info.json_schema_extra.get('max_precision') if field_info and hasattr(field_info,
 | 
						|
                                                                                                    'json_schema_extra') else None
 | 
						|
        min_precision = field_info.json_schema_extra.get('min_precision') if field_info and hasattr(field_info,
 | 
						|
                                                                                                    'json_schema_extra') else None
 | 
						|
        max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info,
 | 
						|
                                                                                             'json_schema_extra') else None
 | 
						|
        min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info,
 | 
						|
                                                                                             'json_schema_extra') else None
 | 
						|
 | 
						|
        # Generate GBNF rule for float with given attributes
 | 
						|
        gbnf_type, rules = generate_gbnf_float_rules(max_digit=max_digits, min_digit=min_digits,
 | 
						|
                                                     max_precision=max_precision,
 | 
						|
                                                     min_precision=min_precision)
 | 
						|
 | 
						|
    elif isclass(field_type) and issubclass(field_type, int) and field_info and hasattr(field_info,
 | 
						|
                                                                                        'json_schema_extra') and field_info.json_schema_extra is not None:
 | 
						|
        # Retrieve digit attributes for integers
 | 
						|
        max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info,
 | 
						|
                                                                                             'json_schema_extra') else None
 | 
						|
        min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info,
 | 
						|
                                                                                             'json_schema_extra') else None
 | 
						|
 | 
						|
        # Generate GBNF rule for integer with given attributes
 | 
						|
        gbnf_type, rules = generate_gbnf_integer_rules(max_digit=max_digits, min_digit=min_digits)
 | 
						|
    else:
 | 
						|
        gbnf_type, rules = gbnf_type, []
 | 
						|
 | 
						|
    if gbnf_type not in created_rules:
 | 
						|
        return gbnf_type, rules
 | 
						|
    else:
 | 
						|
        if gbnf_type in created_rules:
 | 
						|
            return gbnf_type, rules
 | 
						|
 | 
						|
 | 
						|
def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created_rules: dict) -> (list, bool, bool):
 | 
						|
    """
 | 
						|
 | 
						|
    Generate GBnF Grammar
 | 
						|
 | 
						|
    Generates a GBnF grammar for a given model.
 | 
						|
 | 
						|
    :param model: A Pydantic model class to generate the grammar for. Must be a subclass of BaseModel.
 | 
						|
    :param processed_models: A set of already processed models to prevent infinite recursion.
 | 
						|
    :param created_rules: A dict containing already created rules to prevent duplicates.
 | 
						|
    :return: A list of GBnF grammar rules in string format. And two booleans indicating if an extra markdown or triple quoted string is in the grammar.
 | 
						|
    Example Usage:
 | 
						|
    ```
 | 
						|
    model = MyModel
 | 
						|
    processed_models = set()
 | 
						|
    created_rules = dict()
 | 
						|
 | 
						|
    gbnf_grammar = generate_gbnf_grammar(model, processed_models, created_rules)
 | 
						|
    ```
 | 
						|
    """
 | 
						|
    if model in processed_models:
 | 
						|
        return []
 | 
						|
 | 
						|
    processed_models.add(model)
 | 
						|
    model_name = format_model_and_field_name(model.__name__)
 | 
						|
 | 
						|
    if not issubclass(model, BaseModel):
 | 
						|
        # For non-Pydantic classes, generate model_fields from __annotations__ or __init__
 | 
						|
        if hasattr(model, '__annotations__') and model.__annotations__:
 | 
						|
            model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()}
 | 
						|
        else:
 | 
						|
            init_signature = inspect.signature(model.__init__)
 | 
						|
            parameters = init_signature.parameters
 | 
						|
            model_fields = {name: (param.annotation, param.default) for name, param in parameters.items()
 | 
						|
                            if name != 'self'}
 | 
						|
    else:
 | 
						|
        # For Pydantic models, use model_fields and check for ellipsis (required fields)
 | 
						|
        model_fields = model.__annotations__
 | 
						|
 | 
						|
    model_rule_parts = []
 | 
						|
    nested_rules = []
 | 
						|
    has_markdown_code_block = False
 | 
						|
    has_triple_quoted_string = False
 | 
						|
    look_for_markdown_code_block = False
 | 
						|
    look_for_triple_quoted_string = False
 | 
						|
    for field_name, field_info in model_fields.items():
 | 
						|
        if not issubclass(model, BaseModel):
 | 
						|
            field_type, default_value = field_info
 | 
						|
            # Check if the field is optional (not required)
 | 
						|
            is_optional = (default_value is not inspect.Parameter.empty) and (default_value is not Ellipsis)
 | 
						|
        else:
 | 
						|
            field_type = field_info
 | 
						|
            field_info = model.model_fields[field_name]
 | 
						|
            is_optional = field_info.is_required is False and get_origin(field_type) is Optional
 | 
						|
        rule_name, additional_rules = generate_gbnf_rule_for_type(model_name,
 | 
						|
                                                                  format_model_and_field_name(field_name),
 | 
						|
                                                                  field_type, is_optional,
 | 
						|
                                                                  processed_models, created_rules, field_info)
 | 
						|
        look_for_markdown_code_block = True if rule_name == "markdown_string" else False
 | 
						|
        look_for_triple_quoted_string = True if rule_name == "triple_quoted_string" else False
 | 
						|
        if not look_for_markdown_code_block and not look_for_triple_quoted_string:
 | 
						|
            if rule_name not in created_rules:
 | 
						|
                created_rules[rule_name] = additional_rules
 | 
						|
            model_rule_parts.append(f' ws \"\\\"{field_name}\\\"\" ": "  {rule_name}')  # Adding escaped quotes
 | 
						|
            nested_rules.extend(additional_rules)
 | 
						|
        else:
 | 
						|
            has_triple_quoted_string = look_for_markdown_code_block
 | 
						|
            has_markdown_code_block = look_for_triple_quoted_string
 | 
						|
 | 
						|
    fields_joined = r' "," "\n" '.join(model_rule_parts)
 | 
						|
    model_rule = fr'{model_name} ::= "{{" "\n" {fields_joined} "\n" ws "}}"'
 | 
						|
 | 
						|
    if look_for_markdown_code_block or look_for_triple_quoted_string:
 | 
						|
        model_rule += ' ws "}"'
 | 
						|
 | 
						|
    if has_triple_quoted_string:
 | 
						|
        model_rule += '"\\n" triple-quoted-string'
 | 
						|
    if has_markdown_code_block:
 | 
						|
        model_rule += '"\\n" markdown-code-block'
 | 
						|
    all_rules = [model_rule] + nested_rules
 | 
						|
 | 
						|
    return all_rules, has_markdown_code_block, has_triple_quoted_string
 | 
						|
 | 
						|
 | 
						|
def generate_gbnf_grammar_from_pydantic_models(models: List[Type[BaseModel]], outer_object_name: str = None,
 | 
						|
                                               outer_object_content: str = None, list_of_outputs: bool = False) -> str:
 | 
						|
    """
 | 
						|
    Generate GBNF Grammar from Pydantic Models.
 | 
						|
 | 
						|
    This method takes a list of Pydantic models and uses them to generate a GBNF grammar string. The generated grammar string can be used for parsing and validating data using the generated
 | 
						|
    * grammar.
 | 
						|
 | 
						|
    Parameters:
 | 
						|
    models (List[Type[BaseModel]]): A list of Pydantic models to generate the grammar from.
 | 
						|
    outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
 | 
						|
    outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
 | 
						|
    list_of_outputs (str, optional): Allows a list of output objects
 | 
						|
    Returns:
 | 
						|
    str: The generated GBNF grammar string.
 | 
						|
 | 
						|
    Examples:
 | 
						|
        models = [UserModel, PostModel]
 | 
						|
        grammar = generate_gbnf_grammar_from_pydantic(models)
 | 
						|
        print(grammar)
 | 
						|
        # Output:
 | 
						|
        # root ::= UserModel | PostModel
 | 
						|
        # ...
 | 
						|
    """
 | 
						|
    processed_models = set()
 | 
						|
    all_rules = []
 | 
						|
    created_rules = {}
 | 
						|
    if outer_object_name is None:
 | 
						|
 | 
						|
        for model in models:
 | 
						|
            model_rules, _, _ = generate_gbnf_grammar(model,
 | 
						|
                                                      processed_models, created_rules)
 | 
						|
            all_rules.extend(model_rules)
 | 
						|
 | 
						|
        if list_of_outputs:
 | 
						|
            root_rule = r'root ::= ws "["  grammar-models (","  grammar-models)*  "]"' + "\n"
 | 
						|
        else:
 | 
						|
            root_rule = r'root ::= ws grammar-models' + "\n"
 | 
						|
        root_rule += "grammar-models ::= " + " | ".join(
 | 
						|
            [format_model_and_field_name(model.__name__) for model in models])
 | 
						|
        all_rules.insert(0, root_rule)
 | 
						|
        return "\n".join(all_rules)
 | 
						|
    elif outer_object_name is not None:
 | 
						|
        if list_of_outputs:
 | 
						|
            root_rule = fr'root ::= ws "["  {format_model_and_field_name(outer_object_name)} (","  {format_model_and_field_name(outer_object_name)})*  "]"' + "\n"
 | 
						|
        else:
 | 
						|
            root_rule = f"root ::= {format_model_and_field_name(outer_object_name)}\n"
 | 
						|
 | 
						|
        model_rule = fr'{format_model_and_field_name(outer_object_name)} ::= ws "{{" ws "\"{outer_object_name}\""  ": "  grammar-models'
 | 
						|
 | 
						|
        fields_joined = " | ".join(
 | 
						|
            [fr'{format_model_and_field_name(model.__name__)}-grammar-model' for model in models])
 | 
						|
 | 
						|
        grammar_model_rules = f'\ngrammar-models ::= {fields_joined}'
 | 
						|
        mod_rules = []
 | 
						|
        for model in models:
 | 
						|
            mod_rule = fr'{format_model_and_field_name(model.__name__)}-grammar-model ::= ws'
 | 
						|
            mod_rule += fr'"\"{format_model_and_field_name(model.__name__)}\"" "," ws "\"{outer_object_content}\"" ws ":" ws {format_model_and_field_name(model.__name__)}' + '\n'
 | 
						|
            mod_rules.append(mod_rule)
 | 
						|
        grammar_model_rules += "\n" + "\n".join(mod_rules)
 | 
						|
        look_for_markdown_code_block = False
 | 
						|
        look_for_triple_quoted_string = False
 | 
						|
        for model in models:
 | 
						|
            model_rules, markdown_block, triple_quoted_string = generate_gbnf_grammar(model,
 | 
						|
                                                                                      processed_models, created_rules)
 | 
						|
            all_rules.extend(model_rules)
 | 
						|
            if markdown_block:
 | 
						|
                look_for_markdown_code_block = True
 | 
						|
 | 
						|
            if triple_quoted_string:
 | 
						|
                look_for_triple_quoted_string = True
 | 
						|
 | 
						|
        if not look_for_markdown_code_block and not look_for_triple_quoted_string:
 | 
						|
            model_rule += ' ws "}"'
 | 
						|
        all_rules.insert(0, root_rule + model_rule + grammar_model_rules)
 | 
						|
        return "\n".join(all_rules)
 | 
						|
 | 
						|
 | 
						|
def get_primitive_grammar(grammar):
 | 
						|
    """
 | 
						|
    Returns the needed GBNF primitive grammar for a given GBNF grammar string.
 | 
						|
 | 
						|
    Args:
 | 
						|
    grammar (str): The string containing the GBNF grammar.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    str: GBNF primitive grammar string.
 | 
						|
    """
 | 
						|
    type_list = []
 | 
						|
    if "string-list" in grammar:
 | 
						|
        type_list.append(str)
 | 
						|
    if "boolean-list" in grammar:
 | 
						|
        type_list.append(bool)
 | 
						|
    if "integer-list" in grammar:
 | 
						|
        type_list.append(int)
 | 
						|
    if "float-list" in grammar:
 | 
						|
        type_list.append(float)
 | 
						|
    additional_grammar = [generate_list_rule(t) for t in type_list]
 | 
						|
    primitive_grammar = r"""
 | 
						|
boolean ::= "true" | "false"
 | 
						|
null ::= "null"
 | 
						|
string ::= "\"" (
 | 
						|
        [^"\\] |
 | 
						|
        "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
 | 
						|
      )* "\"" ws
 | 
						|
ws ::= ([ \t\n] ws)?
 | 
						|
float ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
 | 
						|
 | 
						|
integer ::= [0-9]+"""
 | 
						|
 | 
						|
    any_block = ""
 | 
						|
    if "custom-class-any" in grammar:
 | 
						|
        any_block = '''
 | 
						|
value ::= object | array | string | number | boolean | null
 | 
						|
 | 
						|
object ::=
 | 
						|
  "{" ws (
 | 
						|
            string ":" ws value
 | 
						|
    ("," ws string ":" ws value)*
 | 
						|
  )? "}" ws
 | 
						|
 | 
						|
array  ::=
 | 
						|
  "[" ws (
 | 
						|
            value
 | 
						|
    ("," ws value)*
 | 
						|
  )? "]" ws
 | 
						|
 | 
						|
number ::= integer | float'''
 | 
						|
 | 
						|
    markdown_code_block_grammar = ""
 | 
						|
    if "markdown-code-block" in grammar:
 | 
						|
        markdown_code_block_grammar = r'''
 | 
						|
markdown-code-block ::= opening-triple-ticks markdown-code-block-content closing-triple-ticks
 | 
						|
markdown-code-block-content ::= ( [^`] | "`" [^`] |  "`"  "`" [^`]  )*
 | 
						|
opening-triple-ticks ::= "```" "python" "\n" | "```" "c" "\n" | "```" "cpp" "\n" | "```" "txt" "\n" | "```" "text" "\n" | "```" "json" "\n" | "```" "javascript" "\n" | "```" "css" "\n" | "```" "html" "\n" | "```" "markdown" "\n"
 | 
						|
closing-triple-ticks ::= "```" "\n"'''
 | 
						|
 | 
						|
    if "triple-quoted-string" in grammar:
 | 
						|
        markdown_code_block_grammar = r"""
 | 
						|
triple-quoted-string ::= triple-quotes triple-quoted-string-content triple-quotes
 | 
						|
triple-quoted-string-content ::= ( [^'] | "'" [^'] |  "'"  "'" [^']  )*
 | 
						|
triple-quotes ::= "'''" """
 | 
						|
    return "\n" + '\n'.join(additional_grammar) + any_block + primitive_grammar + markdown_code_block_grammar
 | 
						|
 | 
						|
 | 
						|
def generate_field_markdown(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1) -> str:
 | 
						|
    indent = '  ' * depth
 | 
						|
    field_markdown = f"{indent}- **{field_name}** (`{field_type.__name__}`): "
 | 
						|
 | 
						|
    # Extracting field description from Pydantic Field using __model_fields__
 | 
						|
    field_info = model.model_fields.get(field_name)
 | 
						|
    field_description = field_info.description if field_info and field_info.description else "No description available."
 | 
						|
 | 
						|
    field_markdown += field_description + '\n'
 | 
						|
 | 
						|
    # Handling nested BaseModel fields
 | 
						|
    if isclass(field_type) and issubclass(field_type, BaseModel):
 | 
						|
        field_markdown += f"{indent}  - Details:\n"
 | 
						|
        for name, type_ in field_type.__annotations__.items():
 | 
						|
            field_markdown += generate_field_markdown(name, type_, field_type, depth + 2)
 | 
						|
 | 
						|
    return field_markdown
 | 
						|
 | 
						|
 | 
						|
def generate_markdown_report(pydantic_models: List[Type[BaseModel]]) -> str:
 | 
						|
    markdown = ""
 | 
						|
    for model in pydantic_models:
 | 
						|
        markdown += f"### {format_model_and_field_name(model.__name__)}\n"
 | 
						|
 | 
						|
        # Check if the model's docstring is different from BaseModel's docstring
 | 
						|
        class_doc = getdoc(model)
 | 
						|
        base_class_doc = getdoc(BaseModel)
 | 
						|
        class_description = class_doc if class_doc and class_doc != base_class_doc else "No specific description available."
 | 
						|
 | 
						|
        markdown += f"{class_description}\n\n"
 | 
						|
        markdown += "#### Fields\n"
 | 
						|
 | 
						|
        if isclass(model) and issubclass(model, BaseModel):
 | 
						|
            for name, field_type in model.__annotations__.items():
 | 
						|
                markdown += generate_field_markdown(format_model_and_field_name(name), field_type, model)
 | 
						|
        markdown += "\n"
 | 
						|
 | 
						|
    return markdown
 | 
						|
 | 
						|
 | 
						|
def format_json_example(example: dict, depth: int) -> str:
 | 
						|
    """
 | 
						|
    Format a JSON example into a readable string with indentation.
 | 
						|
 | 
						|
    Args:
 | 
						|
    example (dict): JSON example to be formatted.
 | 
						|
    depth (int): Indentation depth.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    str: Formatted JSON example string.
 | 
						|
    """
 | 
						|
    indent = '    ' * depth
 | 
						|
    formatted_example = '{\n'
 | 
						|
    for key, value in example.items():
 | 
						|
        value_text = f"'{value}'" if isinstance(value, str) else value
 | 
						|
        formatted_example += f"{indent}{key}: {value_text},\n"
 | 
						|
    formatted_example = formatted_example.rstrip(',\n') + '\n' + indent + '}'
 | 
						|
    return formatted_example
 | 
						|
 | 
						|
 | 
						|
def generate_text_documentation(pydantic_models: List[Type[BaseModel]], model_prefix="Model",
 | 
						|
                                fields_prefix="Fields", documentation_with_field_description=True) -> str:
 | 
						|
    """
 | 
						|
    Generate text documentation for a list of Pydantic models.
 | 
						|
 | 
						|
    Args:
 | 
						|
    pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes.
 | 
						|
    model_prefix (str): Prefix for the model section.
 | 
						|
    fields_prefix (str): Prefix for the fields section.
 | 
						|
    documentation_with_field_description (bool): Include field descriptions in the documentation.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    str: Generated text documentation.
 | 
						|
    """
 | 
						|
    documentation = ""
 | 
						|
    pyd_models = [(model, True) for model in pydantic_models]
 | 
						|
    for model, add_prefix in pyd_models:
 | 
						|
        if add_prefix:
 | 
						|
            documentation += f"{model_prefix}: {format_model_and_field_name(model.__name__)}\n"
 | 
						|
        else:
 | 
						|
            documentation += f"Model: {format_model_and_field_name(model.__name__)}\n"
 | 
						|
 | 
						|
        # Handling multi-line model description with proper indentation
 | 
						|
 | 
						|
        class_doc = getdoc(model)
 | 
						|
        base_class_doc = getdoc(BaseModel)
 | 
						|
        class_description = class_doc if class_doc and class_doc != base_class_doc else ""
 | 
						|
        if class_description != "":
 | 
						|
            documentation += "  Description: "
 | 
						|
            documentation += "\n" + format_multiline_description(class_description, 2) + "\n"
 | 
						|
 | 
						|
        if add_prefix:
 | 
						|
            # Indenting the fields section
 | 
						|
            documentation += f"  {fields_prefix}:\n"
 | 
						|
        else:
 | 
						|
            documentation += f"  Fields:\n"
 | 
						|
        if isclass(model) and issubclass(model, BaseModel):
 | 
						|
            for name, field_type in model.__annotations__.items():
 | 
						|
                # if name == "markdown_code_block":
 | 
						|
                #    continue
 | 
						|
                if get_origin(field_type) == list:
 | 
						|
                    element_type = get_args(field_type)[0]
 | 
						|
                    if isclass(element_type) and issubclass(element_type, BaseModel):
 | 
						|
                        pyd_models.append((element_type, False))
 | 
						|
                if get_origin(field_type) == Union:
 | 
						|
                    element_types = get_args(field_type)
 | 
						|
                    for element_type in element_types:
 | 
						|
                        if isclass(element_type) and issubclass(element_type, BaseModel):
 | 
						|
                            pyd_models.append((element_type, False))
 | 
						|
                documentation += generate_field_text(name, field_type, model,
 | 
						|
                                                     documentation_with_field_description=documentation_with_field_description)
 | 
						|
            documentation += "\n"
 | 
						|
 | 
						|
        if hasattr(model, 'Config') and hasattr(model.Config,
 | 
						|
                                                'json_schema_extra') and 'example' in model.Config.json_schema_extra:
 | 
						|
            documentation += f"  Expected Example Output for {format_model_and_field_name(model.__name__)}:\n"
 | 
						|
            json_example = json.dumps(model.Config.json_schema_extra['example'])
 | 
						|
            documentation += format_multiline_description(json_example, 2) + "\n"
 | 
						|
 | 
						|
    return documentation
 | 
						|
 | 
						|
 | 
						|
def generate_field_text(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1,
 | 
						|
                        documentation_with_field_description=True) -> str:
 | 
						|
    """
 | 
						|
    Generate text documentation for a Pydantic model field.
 | 
						|
 | 
						|
    Args:
 | 
						|
    field_name (str): Name of the field.
 | 
						|
    field_type (Type[Any]): Type of the field.
 | 
						|
    model (Type[BaseModel]): Pydantic model class.
 | 
						|
    depth (int): Indentation depth in the documentation.
 | 
						|
    documentation_with_field_description (bool): Include field descriptions in the documentation.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    str: Generated text documentation for the field.
 | 
						|
    """
 | 
						|
    indent = '    ' * depth
 | 
						|
 | 
						|
    field_info = model.model_fields.get(field_name)
 | 
						|
    field_description = field_info.description if field_info and field_info.description else ""
 | 
						|
 | 
						|
    if get_origin(field_type) == list:
 | 
						|
        element_type = get_args(field_type)[0]
 | 
						|
        field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)} of {format_model_and_field_name(element_type.__name__)})"
 | 
						|
        if field_description != "":
 | 
						|
            field_text += ":\n"
 | 
						|
        else:
 | 
						|
            field_text += "\n"
 | 
						|
    elif get_origin(field_type) == Union:
 | 
						|
        element_types = get_args(field_type)
 | 
						|
        types = []
 | 
						|
        for element_type in element_types:
 | 
						|
            types.append(format_model_and_field_name(element_type.__name__))
 | 
						|
        field_text = f"{indent}{field_name} ({' or '.join(types)})"
 | 
						|
        if field_description != "":
 | 
						|
            field_text += ":\n"
 | 
						|
        else:
 | 
						|
            field_text += "\n"
 | 
						|
    else:
 | 
						|
        field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)})"
 | 
						|
        if field_description != "":
 | 
						|
            field_text += ":\n"
 | 
						|
        else:
 | 
						|
            field_text += "\n"
 | 
						|
 | 
						|
    if not documentation_with_field_description:
 | 
						|
        return field_text
 | 
						|
 | 
						|
    if field_description != "":
 | 
						|
        field_text += f"{indent}  Description: " + field_description + "\n"
 | 
						|
 | 
						|
    # Check for and include field-specific examples if available
 | 
						|
    if hasattr(model, 'Config') and hasattr(model.Config,
 | 
						|
                                            'json_schema_extra') and 'example' in model.Config.json_schema_extra:
 | 
						|
        field_example = model.Config.json_schema_extra['example'].get(field_name)
 | 
						|
        if field_example is not None:
 | 
						|
            example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example
 | 
						|
            field_text += f"{indent}  Example: {example_text}\n"
 | 
						|
 | 
						|
    if isclass(field_type) and issubclass(field_type, BaseModel):
 | 
						|
        field_text += f"{indent}  Details:\n"
 | 
						|
        for name, type_ in field_type.__annotations__.items():
 | 
						|
            field_text += generate_field_text(name, type_, field_type, depth + 2)
 | 
						|
 | 
						|
    return field_text
 | 
						|
 | 
						|
 | 
						|
def format_multiline_description(description: str, indent_level: int) -> str:
 | 
						|
    """
 | 
						|
    Format a multiline description with proper indentation.
 | 
						|
 | 
						|
    Args:
 | 
						|
    description (str): Multiline description.
 | 
						|
    indent_level (int): Indentation level.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    str: Formatted multiline description.
 | 
						|
    """
 | 
						|
    indent = '    ' * indent_level
 | 
						|
    return indent + description.replace('\n', '\n' + indent)
 | 
						|
 | 
						|
 | 
						|
def save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path="./grammar.gbnf",
 | 
						|
                                        documentation_file_path="./grammar_documentation.md"):
 | 
						|
    """
 | 
						|
    Save GBNF grammar and documentation to specified files.
 | 
						|
 | 
						|
    Args:
 | 
						|
    grammar (str): GBNF grammar string.
 | 
						|
    documentation (str): Documentation string.
 | 
						|
    grammar_file_path (str): File path to save the GBNF grammar.
 | 
						|
    documentation_file_path (str): File path to save the documentation.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    None
 | 
						|
    """
 | 
						|
    try:
 | 
						|
        with open(grammar_file_path, 'w') as file:
 | 
						|
            file.write(grammar + get_primitive_grammar(grammar))
 | 
						|
        print(f"Grammar successfully saved to {grammar_file_path}")
 | 
						|
    except IOError as e:
 | 
						|
        print(f"An error occurred while saving the grammar file: {e}")
 | 
						|
 | 
						|
    try:
 | 
						|
        with open(documentation_file_path, 'w') as file:
 | 
						|
            file.write(documentation)
 | 
						|
        print(f"Documentation successfully saved to {documentation_file_path}")
 | 
						|
    except IOError as e:
 | 
						|
        print(f"An error occurred while saving the documentation file: {e}")
 | 
						|
 | 
						|
 | 
						|
def remove_empty_lines(string):
 | 
						|
    """
 | 
						|
    Remove empty lines from a string.
 | 
						|
 | 
						|
    Args:
 | 
						|
    string (str): Input string.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    str: String with empty lines removed.
 | 
						|
    """
 | 
						|
    lines = string.splitlines()
 | 
						|
    non_empty_lines = [line for line in lines if line.strip() != ""]
 | 
						|
    string_no_empty_lines = "\n".join(non_empty_lines)
 | 
						|
    return string_no_empty_lines
 | 
						|
 | 
						|
 | 
						|
def generate_and_save_gbnf_grammar_and_documentation(pydantic_model_list,
 | 
						|
                                                     grammar_file_path="./generated_grammar.gbnf",
 | 
						|
                                                     documentation_file_path="./generated_grammar_documentation.md",
 | 
						|
                                                     outer_object_name: str = None,
 | 
						|
                                                     outer_object_content: str = None,
 | 
						|
                                                     model_prefix: str = "Output Model",
 | 
						|
                                                     fields_prefix: str = "Output Fields",
 | 
						|
                                                     list_of_outputs: bool = False,
 | 
						|
                                                     documentation_with_field_description=True):
 | 
						|
    """
 | 
						|
    Generate GBNF grammar and documentation, and save them to specified files.
 | 
						|
 | 
						|
    Args:
 | 
						|
    pydantic_model_list: List of Pydantic model classes.
 | 
						|
    grammar_file_path (str): File path to save the generated GBNF grammar.
 | 
						|
    documentation_file_path (str): File path to save the generated documentation.
 | 
						|
    outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
 | 
						|
    outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
 | 
						|
    model_prefix (str): Prefix for the model section in the documentation.
 | 
						|
    fields_prefix (str): Prefix for the fields section in the documentation.
 | 
						|
    list_of_outputs (bool): Whether the output is a list of items.
 | 
						|
    documentation_with_field_description (bool): Include field descriptions in the documentation.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    None
 | 
						|
    """
 | 
						|
    documentation = generate_text_documentation(pydantic_model_list, model_prefix, fields_prefix,
 | 
						|
                                                documentation_with_field_description=documentation_with_field_description)
 | 
						|
    grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name,
 | 
						|
                                                         outer_object_content, list_of_outputs)
 | 
						|
    grammar = remove_empty_lines(grammar)
 | 
						|
    save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path, documentation_file_path)
 | 
						|
 | 
						|
 | 
						|
def generate_gbnf_grammar_and_documentation(pydantic_model_list, outer_object_name: str = None,
 | 
						|
                                            outer_object_content: str = None,
 | 
						|
                                            model_prefix: str = "Output Model",
 | 
						|
                                            fields_prefix: str = "Output Fields", list_of_outputs: bool = False,
 | 
						|
                                            documentation_with_field_description=True):
 | 
						|
    """
 | 
						|
    Generate GBNF grammar and documentation for a list of Pydantic models.
 | 
						|
 | 
						|
    Args:
 | 
						|
    pydantic_model_list: List of Pydantic model classes.
 | 
						|
    outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
 | 
						|
    outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
 | 
						|
    model_prefix (str): Prefix for the model section in the documentation.
 | 
						|
    fields_prefix (str): Prefix for the fields section in the documentation.
 | 
						|
    list_of_outputs (bool): Whether the output is a list of items.
 | 
						|
    documentation_with_field_description (bool): Include field descriptions in the documentation.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    tuple: GBNF grammar string, documentation string.
 | 
						|
    """
 | 
						|
    documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix,
 | 
						|
                                                documentation_with_field_description=documentation_with_field_description)
 | 
						|
    grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name,
 | 
						|
                                                         outer_object_content, list_of_outputs)
 | 
						|
    grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar))
 | 
						|
    return grammar, documentation
 | 
						|
 | 
						|
 | 
						|
def generate_gbnf_grammar_and_documentation_from_dictionaries(dictionaries: List[dict],
 | 
						|
                                                              outer_object_name: str = None,
 | 
						|
                                                              outer_object_content: str = None,
 | 
						|
                                                              model_prefix: str = "Output Model",
 | 
						|
                                                              fields_prefix: str = "Output Fields",
 | 
						|
                                                              list_of_outputs: bool = False,
 | 
						|
                                                              documentation_with_field_description=True):
 | 
						|
    """
 | 
						|
    Generate GBNF grammar and documentation from a list of dictionaries.
 | 
						|
 | 
						|
    Args:
 | 
						|
    dictionaries (List[dict]): List of dictionaries representing Pydantic models.
 | 
						|
    outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
 | 
						|
    outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
 | 
						|
    model_prefix (str): Prefix for the model section in the documentation.
 | 
						|
    fields_prefix (str): Prefix for the fields section in the documentation.
 | 
						|
    list_of_outputs (bool): Whether the output is a list of items.
 | 
						|
    documentation_with_field_description (bool): Include field descriptions in the documentation.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    tuple: GBNF grammar string, documentation string.
 | 
						|
    """
 | 
						|
    pydantic_model_list = create_dynamic_models_from_dictionaries(dictionaries)
 | 
						|
    documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix,
 | 
						|
                                                documentation_with_field_description=documentation_with_field_description)
 | 
						|
    grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name,
 | 
						|
                                                         outer_object_content, list_of_outputs)
 | 
						|
    grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar))
 | 
						|
    return grammar, documentation
 | 
						|
 | 
						|
 | 
						|
def create_dynamic_model_from_function(func: Callable):
 | 
						|
    """
 | 
						|
    Creates a dynamic Pydantic model from a given function's type hints and adds the function as a 'run' method.
 | 
						|
 | 
						|
    Args:
 | 
						|
    func (Callable): A function with type hints from which to create the model.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    A dynamic Pydantic model class with the provided function as a 'run' method.
 | 
						|
    """
 | 
						|
    # Extracting type hints from the provided function
 | 
						|
    type_hints = get_type_hints(func)
 | 
						|
    type_hints.pop('return', None)
 | 
						|
 | 
						|
    # Handling default values and annotations
 | 
						|
    dynamic_fields = {}
 | 
						|
    defaults = getattr(func, '__defaults__', ()) or ()
 | 
						|
    defaults_index = len(type_hints) - len(defaults)
 | 
						|
 | 
						|
    for index, (name, typ) in enumerate(type_hints.items()):
 | 
						|
        if index >= defaults_index:
 | 
						|
            default_value = defaults[index - defaults_index]
 | 
						|
            dynamic_fields[name] = (typ, default_value)
 | 
						|
        else:
 | 
						|
            dynamic_fields[name] = (typ, ...)
 | 
						|
 | 
						|
    # Creating the dynamic model
 | 
						|
    dynamicModel = create_model(f'{func.__name__}', **dynamic_fields)
 | 
						|
 | 
						|
    dynamicModel.__doc__ = getdoc(func)
 | 
						|
 | 
						|
    # Wrapping the original function to handle instance 'self'
 | 
						|
    def run_method_wrapper(self):
 | 
						|
        func_args = {name: getattr(self, name) for name in type_hints}
 | 
						|
        return func(**func_args)
 | 
						|
 | 
						|
    # Adding the wrapped function as a 'run' method
 | 
						|
    setattr(dynamicModel, 'run', run_method_wrapper)
 | 
						|
 | 
						|
    return dynamicModel
 | 
						|
 | 
						|
 | 
						|
def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable):
 | 
						|
    """
 | 
						|
    Add a 'run' method to a dynamic Pydantic model, using the provided function.
 | 
						|
 | 
						|
    Args:
 | 
						|
    - model (Type[BaseModel]): Dynamic Pydantic model class.
 | 
						|
    - func (Callable): Function to be added as a 'run' method to the model.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    - Type[BaseModel]: Pydantic model class with the added 'run' method.
 | 
						|
    """
 | 
						|
 | 
						|
    def run_method_wrapper(self):
 | 
						|
        func_args = {name: getattr(self, name) for name in model.model_fields}
 | 
						|
        return func(**func_args)
 | 
						|
 | 
						|
    # Adding the wrapped function as a 'run' method
 | 
						|
    setattr(model, 'run', run_method_wrapper)
 | 
						|
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def create_dynamic_models_from_dictionaries(dictionaries: List[dict]):
 | 
						|
    """
 | 
						|
    Create a list of dynamic Pydantic model classes from a list of dictionaries.
 | 
						|
 | 
						|
    Args:
 | 
						|
    - dictionaries (List[dict]): List of dictionaries representing model structures.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    - List[Type[BaseModel]]: List of generated dynamic Pydantic model classes.
 | 
						|
    """
 | 
						|
    dynamic_models = []
 | 
						|
    for func in dictionaries:
 | 
						|
        model_name = format_model_and_field_name(func.get("name", ""))
 | 
						|
        dyn_model = convert_dictionary_to_to_pydantic_model(func, model_name)
 | 
						|
        dynamic_models.append(dyn_model)
 | 
						|
    return dynamic_models
 | 
						|
 | 
						|
 | 
						|
def map_grammar_names_to_pydantic_model_class(pydantic_model_list):
 | 
						|
    output = {}
 | 
						|
    for model in pydantic_model_list:
 | 
						|
        output[format_model_and_field_name(model.__name__)] = model
 | 
						|
 | 
						|
    return output
 | 
						|
 | 
						|
 | 
						|
from enum import Enum
 | 
						|
 | 
						|
 | 
						|
def json_schema_to_python_types(schema):
 | 
						|
    type_map = {
 | 
						|
        'any': Any,
 | 
						|
        'string': str,
 | 
						|
        'number': float,
 | 
						|
        'integer': int,
 | 
						|
        'boolean': bool,
 | 
						|
        'array': list,
 | 
						|
    }
 | 
						|
    return type_map[schema]
 | 
						|
 | 
						|
 | 
						|
def list_to_enum(enum_name, values):
 | 
						|
    return Enum(enum_name, {value: value for value in values})
 | 
						|
 | 
						|
 | 
						|
def convert_dictionary_to_to_pydantic_model(dictionary: dict, model_name: str = 'CustomModel') -> Type[BaseModel]:
 | 
						|
    """
 | 
						|
    Convert a dictionary to a Pydantic model class.
 | 
						|
 | 
						|
    Args:
 | 
						|
    - dictionary (dict): Dictionary representing the model structure.
 | 
						|
    - model_name (str): Name of the generated Pydantic model.
 | 
						|
 | 
						|
    Returns:
 | 
						|
    - Type[BaseModel]: Generated Pydantic model class.
 | 
						|
    """
 | 
						|
    fields = {}
 | 
						|
 | 
						|
    if "properties" in dictionary:
 | 
						|
        for field_name, field_data in dictionary.get("properties", {}).items():
 | 
						|
            if field_data == 'object':
 | 
						|
                submodel = convert_dictionary_to_to_pydantic_model(dictionary, f'{model_name}_{field_name}')
 | 
						|
                fields[field_name] = (submodel, ...)
 | 
						|
            else:
 | 
						|
                field_type = field_data.get('type', 'str')
 | 
						|
 | 
						|
                if field_data.get("enum", []):
 | 
						|
                    fields[field_name] = (list_to_enum(field_name, field_data.get("enum", [])), ...)
 | 
						|
                if field_type == "array":
 | 
						|
                    items = field_data.get("items", {})
 | 
						|
                    if items != {}:
 | 
						|
                        array = {"properties": items}
 | 
						|
                        array_type = convert_dictionary_to_to_pydantic_model(array, f'{model_name}_{field_name}_items')
 | 
						|
                        fields[field_name] = (List[array_type], ...)
 | 
						|
                    else:
 | 
						|
                        fields[field_name] = (list, ...)
 | 
						|
                elif field_type == 'object':
 | 
						|
                    submodel = convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}_{field_name}')
 | 
						|
                    fields[field_name] = (submodel, ...)
 | 
						|
                else:
 | 
						|
                    field_type = json_schema_to_python_types(field_type)
 | 
						|
                    fields[field_name] = (field_type, ...)
 | 
						|
    if "function" in dictionary:
 | 
						|
 | 
						|
        for field_name, field_data in dictionary.get("function", {}).items():
 | 
						|
            if field_name == "name":
 | 
						|
                model_name = field_data
 | 
						|
            elif field_name == "description":
 | 
						|
                fields["__doc__"] = field_data
 | 
						|
            elif field_name == "parameters":
 | 
						|
                return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}')
 | 
						|
    if "parameters" in dictionary:
 | 
						|
        field_data = {"function": dictionary}
 | 
						|
        return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}')
 | 
						|
 | 
						|
    custom_model = create_model(model_name, **fields)
 | 
						|
    return custom_model
 | 
						|
 | 
						|
 | 
						|
 |