mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* sampling: add Top-nσ sampler to `llama-server` and sampler ordering * revert: sampler ordering * revert: VS' crappy auto-formatting * revert: VS' crappy auto-formatting pt.2 * revert: my crappy eye sight... * sampling: add XTC to Top-nσ sampler chain * sampling: add Dyna. Temp. to Top-nσ sampler chain * sampling: actually remove Top-nσ from sampler(oops) * Integrate top_n_sigma into main sampler chain * Define COMMON_SAMPLER_TYPE_TOP_N_SIGMA * Formatting * Lint * Exit early in the sampler if nsigma < 0 --------- Co-authored-by: CasualAutopsy <casual_autopsy@outlook.com>
		
			
				
	
	
		
			4643 lines
		
	
	
		
			182 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4643 lines
		
	
	
		
			182 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "utils.hpp"
 | 
						|
 | 
						|
#include "arg.h"
 | 
						|
#include "common.h"
 | 
						|
#include "json-schema-to-grammar.h"
 | 
						|
#include "llama.h"
 | 
						|
#include "log.h"
 | 
						|
#include "sampling.h"
 | 
						|
#include "speculative.h"
 | 
						|
 | 
						|
// Change JSON_ASSERT from assert() to GGML_ASSERT:
 | 
						|
#define JSON_ASSERT GGML_ASSERT
 | 
						|
#include "json.hpp"
 | 
						|
// mime type for sending response
 | 
						|
#define MIMETYPE_JSON "application/json; charset=utf-8"
 | 
						|
 | 
						|
// auto generated files (see README.md for details)
 | 
						|
#include "index.html.gz.hpp"
 | 
						|
#include "loading.html.hpp"
 | 
						|
 | 
						|
#include <atomic>
 | 
						|
#include <chrono>
 | 
						|
#include <condition_variable>
 | 
						|
#include <cstddef>
 | 
						|
#include <cinttypes>
 | 
						|
#include <deque>
 | 
						|
#include <memory>
 | 
						|
#include <mutex>
 | 
						|
#include <signal.h>
 | 
						|
#include <thread>
 | 
						|
#include <unordered_map>
 | 
						|
#include <unordered_set>
 | 
						|
 | 
						|
using json = nlohmann::ordered_json;
 | 
						|
 | 
						|
constexpr int HTTP_POLLING_SECONDS = 1;
 | 
						|
 | 
						|
enum stop_type {
 | 
						|
    STOP_TYPE_NONE,
 | 
						|
    STOP_TYPE_EOS,
 | 
						|
    STOP_TYPE_WORD,
 | 
						|
    STOP_TYPE_LIMIT,
 | 
						|
};
 | 
						|
 | 
						|
// state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
 | 
						|
enum slot_state {
 | 
						|
    SLOT_STATE_IDLE,
 | 
						|
    SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
 | 
						|
    SLOT_STATE_PROCESSING_PROMPT,
 | 
						|
    SLOT_STATE_DONE_PROMPT,
 | 
						|
    SLOT_STATE_GENERATING,
 | 
						|
};
 | 
						|
 | 
						|
enum server_state {
 | 
						|
    SERVER_STATE_LOADING_MODEL,  // Server is starting up, model not fully loaded yet
 | 
						|
    SERVER_STATE_READY,          // Server is ready and model is loaded
 | 
						|
};
 | 
						|
 | 
						|
enum server_task_type {
 | 
						|
    SERVER_TASK_TYPE_COMPLETION,
 | 
						|
    SERVER_TASK_TYPE_EMBEDDING,
 | 
						|
    SERVER_TASK_TYPE_RERANK,
 | 
						|
    SERVER_TASK_TYPE_INFILL,
 | 
						|
    SERVER_TASK_TYPE_CANCEL,
 | 
						|
    SERVER_TASK_TYPE_NEXT_RESPONSE,
 | 
						|
    SERVER_TASK_TYPE_METRICS,
 | 
						|
    SERVER_TASK_TYPE_SLOT_SAVE,
 | 
						|
    SERVER_TASK_TYPE_SLOT_RESTORE,
 | 
						|
    SERVER_TASK_TYPE_SLOT_ERASE,
 | 
						|
    SERVER_TASK_TYPE_SET_LORA,
 | 
						|
};
 | 
						|
 | 
						|
enum oaicompat_type {
 | 
						|
    OAICOMPAT_TYPE_NONE,
 | 
						|
    OAICOMPAT_TYPE_CHAT,
 | 
						|
    OAICOMPAT_TYPE_COMPLETION,
 | 
						|
    OAICOMPAT_TYPE_EMBEDDING,
 | 
						|
};
 | 
						|
 | 
						|
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
 | 
						|
enum error_type {
 | 
						|
    ERROR_TYPE_INVALID_REQUEST,
 | 
						|
    ERROR_TYPE_AUTHENTICATION,
 | 
						|
    ERROR_TYPE_SERVER,
 | 
						|
    ERROR_TYPE_NOT_FOUND,
 | 
						|
    ERROR_TYPE_PERMISSION,
 | 
						|
    ERROR_TYPE_UNAVAILABLE, // custom error
 | 
						|
    ERROR_TYPE_NOT_SUPPORTED, // custom error
 | 
						|
};
 | 
						|
 | 
						|
struct slot_params {
 | 
						|
    bool stream        = true;
 | 
						|
    bool cache_prompt  = true; // remember the prompt to avoid reprocessing all prompt
 | 
						|
    bool return_tokens = false;
 | 
						|
 | 
						|
    int32_t n_keep    =  0; // number of tokens to keep from initial prompt
 | 
						|
    int32_t n_discard =  0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
 | 
						|
    int32_t n_predict = -1; // new tokens to predict
 | 
						|
    int32_t n_indent  =  0; // mininum line indentation for the generated text in number of whitespace characters
 | 
						|
 | 
						|
    int64_t t_max_prompt_ms  = -1; // TODO: implement
 | 
						|
    int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
 | 
						|
 | 
						|
    std::vector<common_adapter_lora_info> lora;
 | 
						|
 | 
						|
    std::vector<std::string> antiprompt;
 | 
						|
    std::vector<std::string> response_fields;
 | 
						|
    bool timings_per_token = false;
 | 
						|
    bool post_sampling_probs = false;
 | 
						|
    bool ignore_eos = false;
 | 
						|
 | 
						|
    struct common_params_sampling sampling;
 | 
						|
    struct common_params_speculative speculative;
 | 
						|
 | 
						|
    // OAI-compat fields
 | 
						|
    bool                  verbose                   = false;
 | 
						|
    oaicompat_type        oaicompat                 = OAICOMPAT_TYPE_NONE;
 | 
						|
    std::string           oaicompat_model;
 | 
						|
    std::string           oaicompat_cmpl_id;
 | 
						|
    common_chat_format    oaicompat_chat_format     = COMMON_CHAT_FORMAT_CONTENT_ONLY;
 | 
						|
 | 
						|
    json to_json() const {
 | 
						|
        std::vector<std::string> samplers;
 | 
						|
        samplers.reserve(sampling.samplers.size());
 | 
						|
        for (const auto & sampler : sampling.samplers) {
 | 
						|
            samplers.emplace_back(common_sampler_type_to_str(sampler));
 | 
						|
        }
 | 
						|
 | 
						|
        json lora = json::array();
 | 
						|
        for (size_t i = 0; i < this->lora.size(); ++i) {
 | 
						|
            lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
 | 
						|
        }
 | 
						|
 | 
						|
        auto grammar_triggers = json::array();
 | 
						|
        for (const auto & trigger : sampling.grammar_triggers) {
 | 
						|
            server_grammar_trigger ct(std::move(trigger));
 | 
						|
            grammar_triggers.push_back(ct.to_json());
 | 
						|
        }
 | 
						|
 | 
						|
        return json {
 | 
						|
            {"n_predict",                 n_predict},     // Server configured n_predict
 | 
						|
            {"seed",                      sampling.seed},
 | 
						|
            {"temperature",               sampling.temp},
 | 
						|
            {"dynatemp_range",            sampling.dynatemp_range},
 | 
						|
            {"dynatemp_exponent",         sampling.dynatemp_exponent},
 | 
						|
            {"top_k",                     sampling.top_k},
 | 
						|
            {"top_p",                     sampling.top_p},
 | 
						|
            {"min_p",                     sampling.min_p},
 | 
						|
            {"top_n_sigma",               sampling.top_n_sigma},
 | 
						|
            {"xtc_probability",           sampling.xtc_probability},
 | 
						|
            {"xtc_threshold",             sampling.xtc_threshold},
 | 
						|
            {"typical_p",                 sampling.typ_p},
 | 
						|
            {"repeat_last_n",             sampling.penalty_last_n},
 | 
						|
            {"repeat_penalty",            sampling.penalty_repeat},
 | 
						|
            {"presence_penalty",          sampling.penalty_present},
 | 
						|
            {"frequency_penalty",         sampling.penalty_freq},
 | 
						|
            {"dry_multiplier",            sampling.dry_multiplier},
 | 
						|
            {"dry_base",                  sampling.dry_base},
 | 
						|
            {"dry_allowed_length",        sampling.dry_allowed_length},
 | 
						|
            {"dry_penalty_last_n",        sampling.dry_penalty_last_n},
 | 
						|
            {"dry_sequence_breakers",     sampling.dry_sequence_breakers},
 | 
						|
            {"mirostat",                  sampling.mirostat},
 | 
						|
            {"mirostat_tau",              sampling.mirostat_tau},
 | 
						|
            {"mirostat_eta",              sampling.mirostat_eta},
 | 
						|
            {"stop",                      antiprompt},
 | 
						|
            {"max_tokens",                n_predict}, // User configured n_predict
 | 
						|
            {"n_keep",                    n_keep},
 | 
						|
            {"n_discard",                 n_discard},
 | 
						|
            {"ignore_eos",                sampling.ignore_eos},
 | 
						|
            {"stream",                    stream},
 | 
						|
            {"logit_bias",                format_logit_bias(sampling.logit_bias)},
 | 
						|
            {"n_probs",                   sampling.n_probs},
 | 
						|
            {"min_keep",                  sampling.min_keep},
 | 
						|
            {"grammar",                   sampling.grammar},
 | 
						|
            {"grammar_lazy",              sampling.grammar_lazy},
 | 
						|
            {"grammar_triggers",          grammar_triggers},
 | 
						|
            {"preserved_tokens",          sampling.preserved_tokens},
 | 
						|
            {"chat_format",               common_chat_format_name(oaicompat_chat_format)},
 | 
						|
            {"samplers",                  samplers},
 | 
						|
            {"speculative.n_max",         speculative.n_max},
 | 
						|
            {"speculative.n_min",         speculative.n_min},
 | 
						|
            {"speculative.p_min",         speculative.p_min},
 | 
						|
            {"timings_per_token",         timings_per_token},
 | 
						|
            {"post_sampling_probs",       post_sampling_probs},
 | 
						|
            {"lora",                      lora},
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task {
 | 
						|
    int id    = -1; // to be filled by server_queue
 | 
						|
    int index = -1; // used when there are multiple prompts (batch request)
 | 
						|
 | 
						|
    server_task_type type;
 | 
						|
 | 
						|
    // used by SERVER_TASK_TYPE_CANCEL
 | 
						|
    int id_target = -1;
 | 
						|
 | 
						|
    // used by SERVER_TASK_TYPE_INFERENCE
 | 
						|
    slot_params  params;
 | 
						|
    llama_tokens prompt_tokens;
 | 
						|
    int id_selected_slot = -1;
 | 
						|
 | 
						|
    // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
 | 
						|
    struct slot_action {
 | 
						|
        int slot_id;
 | 
						|
        std::string filename;
 | 
						|
        std::string filepath;
 | 
						|
    };
 | 
						|
    slot_action slot_action;
 | 
						|
 | 
						|
    // used by SERVER_TASK_TYPE_METRICS
 | 
						|
    bool metrics_reset_bucket = false;
 | 
						|
 | 
						|
    // used by SERVER_TASK_TYPE_SET_LORA
 | 
						|
    std::vector<common_adapter_lora_info> set_lora;
 | 
						|
 | 
						|
    server_task(server_task_type type) : type(type) {}
 | 
						|
 | 
						|
    static slot_params params_from_json_cmpl(
 | 
						|
            const llama_context * ctx,
 | 
						|
            const common_params & params_base,
 | 
						|
            const json & data) {
 | 
						|
        const llama_model * model = llama_get_model(ctx);
 | 
						|
        const llama_vocab * vocab = llama_model_get_vocab(model);
 | 
						|
 | 
						|
        slot_params params;
 | 
						|
 | 
						|
        // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
 | 
						|
        slot_params defaults;
 | 
						|
        defaults.sampling    = params_base.sampling;
 | 
						|
        defaults.speculative = params_base.speculative;
 | 
						|
 | 
						|
        // enabling this will output extra debug information in the HTTP responses from the server
 | 
						|
        params.verbose           = params_base.verbosity > 9;
 | 
						|
        params.timings_per_token = json_value(data, "timings_per_token", false);
 | 
						|
 | 
						|
        params.stream           = json_value(data, "stream",             false);
 | 
						|
        params.cache_prompt     = json_value(data, "cache_prompt",       true);
 | 
						|
        params.return_tokens    = json_value(data, "return_tokens",      false);
 | 
						|
        params.n_predict        = json_value(data, "n_predict",          json_value(data, "max_tokens", defaults.n_predict));
 | 
						|
        params.n_indent         = json_value(data, "n_indent",           defaults.n_indent);
 | 
						|
        params.n_keep           = json_value(data, "n_keep",             defaults.n_keep);
 | 
						|
        params.n_discard        = json_value(data, "n_discard",          defaults.n_discard);
 | 
						|
      //params.t_max_prompt_ms  = json_value(data, "t_max_prompt_ms",    defaults.t_max_prompt_ms); // TODO: implement
 | 
						|
        params.t_max_predict_ms = json_value(data, "t_max_predict_ms",   defaults.t_max_predict_ms);
 | 
						|
        params.response_fields  = json_value(data, "response_fields",   std::vector<std::string>());
 | 
						|
 | 
						|
        params.sampling.top_k              = json_value(data, "top_k",              defaults.sampling.top_k);
 | 
						|
        params.sampling.top_p              = json_value(data, "top_p",              defaults.sampling.top_p);
 | 
						|
        params.sampling.min_p              = json_value(data, "min_p",              defaults.sampling.min_p);
 | 
						|
        params.sampling.top_n_sigma        = json_value(data, "top_n_sigma",        defaults.sampling.top_n_sigma);
 | 
						|
        params.sampling.xtc_probability    = json_value(data, "xtc_probability",    defaults.sampling.xtc_probability);
 | 
						|
        params.sampling.xtc_threshold      = json_value(data, "xtc_threshold",      defaults.sampling.xtc_threshold);
 | 
						|
        params.sampling.typ_p              = json_value(data, "typical_p",          defaults.sampling.typ_p);
 | 
						|
        params.sampling.temp               = json_value(data, "temperature",        defaults.sampling.temp);
 | 
						|
        params.sampling.dynatemp_range     = json_value(data, "dynatemp_range",     defaults.sampling.dynatemp_range);
 | 
						|
        params.sampling.dynatemp_exponent  = json_value(data, "dynatemp_exponent",  defaults.sampling.dynatemp_exponent);
 | 
						|
        params.sampling.penalty_last_n     = json_value(data, "repeat_last_n",      defaults.sampling.penalty_last_n);
 | 
						|
        params.sampling.penalty_repeat     = json_value(data, "repeat_penalty",     defaults.sampling.penalty_repeat);
 | 
						|
        params.sampling.penalty_freq       = json_value(data, "frequency_penalty",  defaults.sampling.penalty_freq);
 | 
						|
        params.sampling.penalty_present    = json_value(data, "presence_penalty",   defaults.sampling.penalty_present);
 | 
						|
        params.sampling.dry_multiplier     = json_value(data, "dry_multiplier",     defaults.sampling.dry_multiplier);
 | 
						|
        params.sampling.dry_base           = json_value(data, "dry_base",           defaults.sampling.dry_base);
 | 
						|
        params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
 | 
						|
        params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
 | 
						|
        params.sampling.mirostat           = json_value(data, "mirostat",           defaults.sampling.mirostat);
 | 
						|
        params.sampling.mirostat_tau       = json_value(data, "mirostat_tau",       defaults.sampling.mirostat_tau);
 | 
						|
        params.sampling.mirostat_eta       = json_value(data, "mirostat_eta",       defaults.sampling.mirostat_eta);
 | 
						|
        params.sampling.seed               = json_value(data, "seed",               defaults.sampling.seed);
 | 
						|
        params.sampling.n_probs            = json_value(data, "n_probs",            defaults.sampling.n_probs);
 | 
						|
        params.sampling.min_keep           = json_value(data, "min_keep",           defaults.sampling.min_keep);
 | 
						|
        params.post_sampling_probs         = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
 | 
						|
 | 
						|
        params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
 | 
						|
        params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
 | 
						|
        params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
 | 
						|
 | 
						|
        params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
 | 
						|
        params.speculative.n_min = std::max(params.speculative.n_min, 0);
 | 
						|
        params.speculative.n_max = std::max(params.speculative.n_max, 0);
 | 
						|
 | 
						|
        // Use OpenAI API logprobs only if n_probs wasn't provided
 | 
						|
        if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
 | 
						|
            params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
 | 
						|
        }
 | 
						|
 | 
						|
        if (data.contains("lora")) {
 | 
						|
            if (data.at("lora").is_array()) {
 | 
						|
                params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
 | 
						|
            } else {
 | 
						|
                throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            params.lora = params_base.lora_adapters;
 | 
						|
        }
 | 
						|
 | 
						|
        // TODO: add more sanity checks for the input parameters
 | 
						|
 | 
						|
        if (params.sampling.penalty_last_n < -1) {
 | 
						|
            throw std::runtime_error("Error: repeat_last_n must be >= -1");
 | 
						|
        }
 | 
						|
 | 
						|
        if (params.sampling.dry_penalty_last_n < -1) {
 | 
						|
            throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
 | 
						|
        }
 | 
						|
 | 
						|
        if (params.sampling.penalty_last_n == -1) {
 | 
						|
            // note: should be the slot's context and not the full context, but it's ok
 | 
						|
            params.sampling.penalty_last_n = llama_n_ctx(ctx);
 | 
						|
        }
 | 
						|
 | 
						|
        if (params.sampling.dry_penalty_last_n == -1) {
 | 
						|
            params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
 | 
						|
        }
 | 
						|
 | 
						|
        if (params.sampling.dry_base < 1.0f) {
 | 
						|
            params.sampling.dry_base = defaults.sampling.dry_base;
 | 
						|
        }
 | 
						|
 | 
						|
        // sequence breakers for DRY
 | 
						|
        {
 | 
						|
            // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
 | 
						|
            // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
 | 
						|
 | 
						|
            if (data.contains("dry_sequence_breakers")) {
 | 
						|
                params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
 | 
						|
                if (params.sampling.dry_sequence_breakers.empty()) {
 | 
						|
                    throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // process "json_schema" and "grammar"
 | 
						|
        if (data.contains("json_schema") && !data.contains("grammar")) {
 | 
						|
            try {
 | 
						|
                auto schema                  = json_value(data, "json_schema", json::object());
 | 
						|
                SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
 | 
						|
                params.sampling.grammar      = json_schema_to_grammar(schema);
 | 
						|
                SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
 | 
						|
            } catch (const std::exception & e) {
 | 
						|
                throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            params.sampling.grammar      = json_value(data, "grammar", defaults.sampling.grammar);
 | 
						|
            SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
 | 
						|
            params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
 | 
						|
            SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            auto it = data.find("chat_format");
 | 
						|
            if (it != data.end()) {
 | 
						|
                params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
 | 
						|
                SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
 | 
						|
            } else {
 | 
						|
                params.oaicompat_chat_format = defaults.oaicompat_chat_format;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            const auto preserved_tokens = data.find("preserved_tokens");
 | 
						|
            if (preserved_tokens != data.end()) {
 | 
						|
                for (const auto & t : *preserved_tokens) {
 | 
						|
                    auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
 | 
						|
                    if (ids.size() == 1) {
 | 
						|
                        SRV_DBG("Preserved token: %d\n", ids[0]);
 | 
						|
                        params.sampling.preserved_tokens.insert(ids[0]);
 | 
						|
                    } else {
 | 
						|
                        // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
 | 
						|
                        SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            const auto grammar_triggers = data.find("grammar_triggers");
 | 
						|
            if (grammar_triggers != data.end()) {
 | 
						|
                for (const auto & t : *grammar_triggers) {
 | 
						|
                    server_grammar_trigger ct(t);
 | 
						|
                    if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
 | 
						|
                        const auto & word = ct.value.value;
 | 
						|
                        auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
 | 
						|
                        if (ids.size() == 1) {
 | 
						|
                            auto token = ids[0];
 | 
						|
                            if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
 | 
						|
                                throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
 | 
						|
                            }
 | 
						|
                            SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
 | 
						|
                            common_grammar_trigger trigger;
 | 
						|
                            trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
 | 
						|
                            trigger.value = word;
 | 
						|
                            trigger.token = token;
 | 
						|
                            params.sampling.grammar_triggers.push_back(std::move(trigger));
 | 
						|
                        } else {
 | 
						|
                            SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
 | 
						|
                            params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        params.sampling.grammar_triggers.push_back(std::move(ct.value));
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
 | 
						|
                throw std::runtime_error("Error: no triggers set for lazy grammar!");
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            params.sampling.logit_bias.clear();
 | 
						|
            params.ignore_eos = json_value(data, "ignore_eos", false);
 | 
						|
 | 
						|
            const auto & logit_bias = data.find("logit_bias");
 | 
						|
            if (logit_bias != data.end() && logit_bias->is_array()) {
 | 
						|
                const int n_vocab = llama_vocab_n_tokens(vocab);
 | 
						|
                for (const auto & el : *logit_bias) {
 | 
						|
                    // TODO: we may want to throw errors here, in case "el" is incorrect
 | 
						|
                    if (el.is_array() && el.size() == 2) {
 | 
						|
                        float bias;
 | 
						|
                        if (el[1].is_number()) {
 | 
						|
                            bias = el[1].get<float>();
 | 
						|
                        } else if (el[1].is_boolean() && !el[1].get<bool>()) {
 | 
						|
                            bias = -INFINITY;
 | 
						|
                        } else {
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
 | 
						|
                        if (el[0].is_number_integer()) {
 | 
						|
                            llama_token tok = el[0].get<llama_token>();
 | 
						|
                            if (tok >= 0 && tok < n_vocab) {
 | 
						|
                                params.sampling.logit_bias.push_back({tok, bias});
 | 
						|
                            }
 | 
						|
                        } else if (el[0].is_string()) {
 | 
						|
                            auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
 | 
						|
                            for (auto tok : toks) {
 | 
						|
                                params.sampling.logit_bias.push_back({tok, bias});
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            params.antiprompt.clear();
 | 
						|
 | 
						|
            const auto & stop = data.find("stop");
 | 
						|
            if (stop != data.end() && stop->is_array()) {
 | 
						|
                for (const auto & word : *stop) {
 | 
						|
                    if (!word.empty()) {
 | 
						|
                        params.antiprompt.push_back(word);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            const auto samplers = data.find("samplers");
 | 
						|
            if (samplers != data.end()) {
 | 
						|
                if (samplers->is_array()) {
 | 
						|
                    params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
 | 
						|
                } else if (samplers->is_string()){
 | 
						|
                    params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                params.sampling.samplers = defaults.sampling.samplers;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
 | 
						|
        params.oaicompat_model = json_value(data, "model", model_name);
 | 
						|
 | 
						|
        return params;
 | 
						|
    }
 | 
						|
 | 
						|
    // utility function
 | 
						|
    static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
 | 
						|
        std::unordered_set<int> ids(tasks.size());
 | 
						|
        for (size_t i = 0; i < tasks.size(); i++) {
 | 
						|
            ids.insert(tasks[i].id);
 | 
						|
        }
 | 
						|
        return ids;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct result_timings {
 | 
						|
    int32_t prompt_n = -1;
 | 
						|
    double prompt_ms;
 | 
						|
    double prompt_per_token_ms;
 | 
						|
    double prompt_per_second;
 | 
						|
 | 
						|
    int32_t predicted_n = -1;
 | 
						|
    double predicted_ms;
 | 
						|
    double predicted_per_token_ms;
 | 
						|
    double predicted_per_second;
 | 
						|
 | 
						|
    // Optional speculative metrics - only included when > 0
 | 
						|
    int32_t draft_n = 0;
 | 
						|
    int32_t draft_n_accepted = 0;
 | 
						|
 | 
						|
    json to_json() const {
 | 
						|
        json base = {
 | 
						|
            {"prompt_n",               prompt_n},
 | 
						|
            {"prompt_ms",              prompt_ms},
 | 
						|
            {"prompt_per_token_ms",    prompt_per_token_ms},
 | 
						|
            {"prompt_per_second",      prompt_per_second},
 | 
						|
 | 
						|
            {"predicted_n",            predicted_n},
 | 
						|
            {"predicted_ms",           predicted_ms},
 | 
						|
            {"predicted_per_token_ms", predicted_per_token_ms},
 | 
						|
            {"predicted_per_second",   predicted_per_second},
 | 
						|
        };
 | 
						|
 | 
						|
        if (draft_n > 0) {
 | 
						|
            base["draft_n"] = draft_n;
 | 
						|
            base["draft_n_accepted"] = draft_n_accepted;
 | 
						|
        }
 | 
						|
 | 
						|
        return base;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task_result {
 | 
						|
    int id           = -1;
 | 
						|
    int id_slot      = -1;
 | 
						|
    virtual bool is_error() {
 | 
						|
        // only used by server_task_result_error
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    virtual bool is_stop() {
 | 
						|
        // only used by server_task_result_cmpl_*
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    virtual int get_index() {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    virtual json to_json() = 0;
 | 
						|
    virtual ~server_task_result() = default;
 | 
						|
};
 | 
						|
 | 
						|
// using shared_ptr for polymorphism of server_task_result
 | 
						|
using server_task_result_ptr = std::unique_ptr<server_task_result>;
 | 
						|
 | 
						|
inline std::string stop_type_to_str(stop_type type) {
 | 
						|
    switch (type) {
 | 
						|
        case STOP_TYPE_EOS:   return "eos";
 | 
						|
        case STOP_TYPE_WORD:  return "word";
 | 
						|
        case STOP_TYPE_LIMIT: return "limit";
 | 
						|
        default:              return "none";
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
struct completion_token_output {
 | 
						|
    llama_token tok;
 | 
						|
    float prob;
 | 
						|
    std::string text_to_send;
 | 
						|
    struct prob_info {
 | 
						|
        llama_token tok;
 | 
						|
        std::string txt;
 | 
						|
        float prob;
 | 
						|
    };
 | 
						|
    std::vector<prob_info> probs;
 | 
						|
 | 
						|
    json to_json(bool post_sampling_probs) const {
 | 
						|
        json probs_for_token = json::array();
 | 
						|
        for (const auto & p : probs) {
 | 
						|
            std::string txt(p.txt);
 | 
						|
            txt.resize(validate_utf8(txt));
 | 
						|
            probs_for_token.push_back(json {
 | 
						|
                {"id",      p.tok},
 | 
						|
                {"token",   txt},
 | 
						|
                {"bytes",   str_to_bytes(p.txt)},
 | 
						|
                {
 | 
						|
                    post_sampling_probs ? "prob" : "logprob",
 | 
						|
                    post_sampling_probs ? p.prob : logarithm(p.prob)
 | 
						|
                },
 | 
						|
            });
 | 
						|
        }
 | 
						|
        return probs_for_token;
 | 
						|
    }
 | 
						|
 | 
						|
    static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
 | 
						|
        json out = json::array();
 | 
						|
        for (const auto & p : probs) {
 | 
						|
            std::string txt(p.text_to_send);
 | 
						|
            txt.resize(validate_utf8(txt));
 | 
						|
            out.push_back(json {
 | 
						|
                {"id",           p.tok},
 | 
						|
                {"token",        txt},
 | 
						|
                {"bytes",        str_to_bytes(p.text_to_send)},
 | 
						|
                {
 | 
						|
                    post_sampling_probs ? "prob" : "logprob",
 | 
						|
                    post_sampling_probs ? p.prob : logarithm(p.prob)
 | 
						|
                },
 | 
						|
                {
 | 
						|
                    post_sampling_probs ? "top_probs" : "top_logprobs",
 | 
						|
                    p.to_json(post_sampling_probs)
 | 
						|
                },
 | 
						|
            });
 | 
						|
        }
 | 
						|
        return out;
 | 
						|
    }
 | 
						|
 | 
						|
    static float logarithm(float x) {
 | 
						|
        // nlohmann::json converts -inf to null, so we need to prevent that
 | 
						|
        return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
 | 
						|
    }
 | 
						|
 | 
						|
    static std::vector<unsigned char> str_to_bytes(const std::string & str) {
 | 
						|
        std::vector<unsigned char> bytes;
 | 
						|
        for (unsigned char c : str) {
 | 
						|
            bytes.push_back(c);
 | 
						|
        }
 | 
						|
        return bytes;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task_result_cmpl_final : server_task_result {
 | 
						|
    int index = 0;
 | 
						|
 | 
						|
    std::string content;
 | 
						|
    llama_tokens tokens;
 | 
						|
 | 
						|
    bool stream;
 | 
						|
    result_timings timings;
 | 
						|
    std::string prompt;
 | 
						|
 | 
						|
    bool truncated;
 | 
						|
    int32_t n_decoded;
 | 
						|
    int32_t n_prompt_tokens;
 | 
						|
    int32_t n_tokens_cached;
 | 
						|
    bool has_new_line;
 | 
						|
    std::string stopping_word;
 | 
						|
    stop_type stop = STOP_TYPE_NONE;
 | 
						|
 | 
						|
    bool post_sampling_probs;
 | 
						|
    std::vector<completion_token_output> probs_output;
 | 
						|
    std::vector<std::string>  response_fields;
 | 
						|
 | 
						|
    slot_params generation_params;
 | 
						|
 | 
						|
    // OAI-compat fields
 | 
						|
    bool                  verbose                  = false;
 | 
						|
    oaicompat_type        oaicompat                = OAICOMPAT_TYPE_NONE;
 | 
						|
    std::string           oaicompat_model;
 | 
						|
    std::string           oaicompat_cmpl_id;
 | 
						|
    common_chat_format    oaicompat_chat_format    = COMMON_CHAT_FORMAT_CONTENT_ONLY;
 | 
						|
 | 
						|
    virtual int get_index() override {
 | 
						|
        return index;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool is_stop() override {
 | 
						|
        return true; // in stream mode, final responses are considered stop
 | 
						|
    }
 | 
						|
 | 
						|
    virtual json to_json() override {
 | 
						|
        switch (oaicompat) {
 | 
						|
            case OAICOMPAT_TYPE_NONE:
 | 
						|
                return to_json_non_oaicompat();
 | 
						|
            case OAICOMPAT_TYPE_COMPLETION:
 | 
						|
                return to_json_oaicompat();
 | 
						|
            case OAICOMPAT_TYPE_CHAT:
 | 
						|
                return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
 | 
						|
            default:
 | 
						|
                GGML_ASSERT(false && "Invalid oaicompat_type");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json_non_oaicompat() {
 | 
						|
        json res = json {
 | 
						|
            {"index",               index},
 | 
						|
            {"content",             stream ? "" : content}, // in stream mode, content is already in last partial chunk
 | 
						|
            {"tokens",              stream ? llama_tokens {} : tokens},
 | 
						|
            {"id_slot",             id_slot},
 | 
						|
            {"stop",                true},
 | 
						|
            {"model",               oaicompat_model},
 | 
						|
            {"tokens_predicted",    n_decoded},
 | 
						|
            {"tokens_evaluated",    n_prompt_tokens},
 | 
						|
            {"generation_settings", generation_params.to_json()},
 | 
						|
            {"prompt",              prompt},
 | 
						|
            {"has_new_line",        has_new_line},
 | 
						|
            {"truncated",           truncated},
 | 
						|
            {"stop_type",           stop_type_to_str(stop)},
 | 
						|
            {"stopping_word",       stopping_word},
 | 
						|
            {"tokens_cached",       n_tokens_cached},
 | 
						|
            {"timings",             timings.to_json()},
 | 
						|
        };
 | 
						|
        if (!stream && !probs_output.empty()) {
 | 
						|
            res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
 | 
						|
        }
 | 
						|
        return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json_oaicompat() {
 | 
						|
        std::time_t t = std::time(0);
 | 
						|
        json logprobs = json(nullptr); // OAI default to null
 | 
						|
        if (!stream && probs_output.size() > 0) {
 | 
						|
            logprobs = json{
 | 
						|
                {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
 | 
						|
            };
 | 
						|
        }
 | 
						|
        json finish_reason = "length";
 | 
						|
        if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
 | 
						|
            finish_reason = "stop";
 | 
						|
        }
 | 
						|
        json res = json {
 | 
						|
            {"choices",            json::array({
 | 
						|
                json{
 | 
						|
                    {"text",          stream ? "" : content}, // in stream mode, content is already in last partial chunk
 | 
						|
                    {"index",         index},
 | 
						|
                    {"logprobs",      logprobs},
 | 
						|
                    {"finish_reason", finish_reason},
 | 
						|
                }
 | 
						|
            })},
 | 
						|
            {"created",            t},
 | 
						|
            {"model",              oaicompat_model},
 | 
						|
            {"system_fingerprint", build_info},
 | 
						|
            {"object",             "text_completion"},
 | 
						|
            {"usage", json {
 | 
						|
                {"completion_tokens", n_decoded},
 | 
						|
                {"prompt_tokens",     n_prompt_tokens},
 | 
						|
                {"total_tokens",      n_decoded + n_prompt_tokens}
 | 
						|
            }},
 | 
						|
            {"id", oaicompat_cmpl_id}
 | 
						|
        };
 | 
						|
 | 
						|
        // extra fields for debugging purposes
 | 
						|
        if (verbose) {
 | 
						|
            res["__verbose"] = to_json_non_oaicompat();
 | 
						|
        }
 | 
						|
        if (timings.prompt_n >= 0) {
 | 
						|
            res.push_back({"timings", timings.to_json()});
 | 
						|
        }
 | 
						|
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json_oaicompat_chat() {
 | 
						|
        std::string finish_reason = "length";
 | 
						|
        common_chat_msg msg;
 | 
						|
        if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
 | 
						|
            SRV_DBG("Parsing chat message: %s\n", content.c_str());
 | 
						|
            msg = common_chat_parse(content, oaicompat_chat_format);
 | 
						|
            finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
 | 
						|
        } else {
 | 
						|
            msg.content = content;
 | 
						|
        }
 | 
						|
 | 
						|
        json message {
 | 
						|
            {"role", "assistant"},
 | 
						|
        };
 | 
						|
        if (!msg.reasoning_content.empty()) {
 | 
						|
            message["reasoning_content"] = msg.reasoning_content;
 | 
						|
        }
 | 
						|
        if (msg.content.empty() && !msg.tool_calls.empty()) {
 | 
						|
            message["content"] = json();
 | 
						|
        } else {
 | 
						|
            message["content"] = msg.content;
 | 
						|
        }
 | 
						|
        if (!msg.tool_calls.empty()) {
 | 
						|
            auto tool_calls = json::array();
 | 
						|
            for (const auto & tc : msg.tool_calls) {
 | 
						|
                tool_calls.push_back({
 | 
						|
                    {"type", "function"},
 | 
						|
                    {"function", {
 | 
						|
                        {"name", tc.name},
 | 
						|
                        {"arguments", tc.arguments},
 | 
						|
                    }},
 | 
						|
                    // Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
 | 
						|
                    // We only generate a random id for the ones that don't generate one by themselves
 | 
						|
                    // (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
 | 
						|
                    {"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
 | 
						|
                });
 | 
						|
            }
 | 
						|
            message["tool_calls"] = tool_calls;
 | 
						|
        }
 | 
						|
 | 
						|
        json choice {
 | 
						|
            {"finish_reason", finish_reason},
 | 
						|
            {"index", 0},
 | 
						|
            {"message", message},
 | 
						|
        };
 | 
						|
 | 
						|
        if (!stream && probs_output.size() > 0) {
 | 
						|
            choice["logprobs"] = json{
 | 
						|
                {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
 | 
						|
            };
 | 
						|
        }
 | 
						|
 | 
						|
        std::time_t t = std::time(0);
 | 
						|
 | 
						|
        json res = json {
 | 
						|
            {"choices",            json::array({choice})},
 | 
						|
            {"created",            t},
 | 
						|
            {"model",              oaicompat_model},
 | 
						|
            {"system_fingerprint", build_info},
 | 
						|
            {"object",             "chat.completion"},
 | 
						|
            {"usage", json {
 | 
						|
                {"completion_tokens", n_decoded},
 | 
						|
                {"prompt_tokens",     n_prompt_tokens},
 | 
						|
                {"total_tokens",      n_decoded + n_prompt_tokens}
 | 
						|
            }},
 | 
						|
            {"id", oaicompat_cmpl_id}
 | 
						|
        };
 | 
						|
 | 
						|
        // extra fields for debugging purposes
 | 
						|
        if (verbose) {
 | 
						|
            res["__verbose"] = to_json_non_oaicompat();
 | 
						|
        }
 | 
						|
        if (timings.prompt_n >= 0) {
 | 
						|
            res.push_back({"timings", timings.to_json()});
 | 
						|
        }
 | 
						|
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json_oaicompat_chat_stream() {
 | 
						|
        std::time_t t = std::time(0);
 | 
						|
        std::string finish_reason = "length";
 | 
						|
        if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
 | 
						|
            finish_reason = "stop";
 | 
						|
        }
 | 
						|
 | 
						|
        json choice = json {
 | 
						|
            {"finish_reason", finish_reason},
 | 
						|
            {"index", 0},
 | 
						|
            {"delta", json::object()}
 | 
						|
        };
 | 
						|
 | 
						|
        json ret = json {
 | 
						|
            {"choices",            json::array({choice})},
 | 
						|
            {"created",            t},
 | 
						|
            {"id",                 oaicompat_cmpl_id},
 | 
						|
            {"model",              oaicompat_model},
 | 
						|
            {"system_fingerprint", build_info},
 | 
						|
            {"object",             "chat.completion.chunk"},
 | 
						|
            {"usage", json {
 | 
						|
                {"completion_tokens", n_decoded},
 | 
						|
                {"prompt_tokens",     n_prompt_tokens},
 | 
						|
                {"total_tokens",      n_decoded + n_prompt_tokens},
 | 
						|
            }},
 | 
						|
        };
 | 
						|
 | 
						|
        if (timings.prompt_n >= 0) {
 | 
						|
            ret.push_back({"timings", timings.to_json()});
 | 
						|
        }
 | 
						|
 | 
						|
        // extra fields for debugging purposes
 | 
						|
        if (verbose) {
 | 
						|
            ret["__verbose"] = to_json_non_oaicompat();
 | 
						|
        }
 | 
						|
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task_result_cmpl_partial : server_task_result {
 | 
						|
    int index = 0;
 | 
						|
 | 
						|
    std::string  content;
 | 
						|
    llama_tokens tokens;
 | 
						|
 | 
						|
    int32_t n_decoded;
 | 
						|
    int32_t n_prompt_tokens;
 | 
						|
 | 
						|
    bool post_sampling_probs;
 | 
						|
    completion_token_output prob_output;
 | 
						|
    result_timings timings;
 | 
						|
 | 
						|
    // OAI-compat fields
 | 
						|
    bool           verbose   = false;
 | 
						|
    oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
 | 
						|
    std::string    oaicompat_model;
 | 
						|
    std::string    oaicompat_cmpl_id;
 | 
						|
 | 
						|
    virtual int get_index() override {
 | 
						|
        return index;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool is_stop() override {
 | 
						|
        return false; // in stream mode, partial responses are not considered stop
 | 
						|
    }
 | 
						|
 | 
						|
    virtual json to_json() override {
 | 
						|
        switch (oaicompat) {
 | 
						|
            case OAICOMPAT_TYPE_NONE:
 | 
						|
                return to_json_non_oaicompat();
 | 
						|
            case OAICOMPAT_TYPE_COMPLETION:
 | 
						|
                return to_json_oaicompat();
 | 
						|
            case OAICOMPAT_TYPE_CHAT:
 | 
						|
                return to_json_oaicompat_chat();
 | 
						|
            default:
 | 
						|
                GGML_ASSERT(false && "Invalid oaicompat_type");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json_non_oaicompat() {
 | 
						|
        // non-OAI-compat JSON
 | 
						|
        json res = json {
 | 
						|
            {"index",            index},
 | 
						|
            {"content",          content},
 | 
						|
            {"tokens",           tokens},
 | 
						|
            {"stop",             false},
 | 
						|
            {"id_slot",          id_slot},
 | 
						|
            {"tokens_predicted", n_decoded},
 | 
						|
            {"tokens_evaluated", n_prompt_tokens},
 | 
						|
        };
 | 
						|
        // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
 | 
						|
        if (timings.prompt_n > 0) {
 | 
						|
            res.push_back({"timings", timings.to_json()});
 | 
						|
        }
 | 
						|
        if (!prob_output.probs.empty()) {
 | 
						|
            res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
 | 
						|
        }
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json_oaicompat() {
 | 
						|
        std::time_t t = std::time(0);
 | 
						|
        json logprobs = json(nullptr); // OAI default to null
 | 
						|
        if (prob_output.probs.size() > 0) {
 | 
						|
            logprobs = json{
 | 
						|
                {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
 | 
						|
            };
 | 
						|
        }
 | 
						|
        json res = json {
 | 
						|
            {"choices",            json::array({
 | 
						|
                json{
 | 
						|
                    {"text",          content},
 | 
						|
                    {"index",         index},
 | 
						|
                    {"logprobs",      logprobs},
 | 
						|
                    {"finish_reason", nullptr},
 | 
						|
                }
 | 
						|
            })},
 | 
						|
            {"created",            t},
 | 
						|
            {"model",              oaicompat_model},
 | 
						|
            {"system_fingerprint", build_info},
 | 
						|
            {"object",             "text_completion"},
 | 
						|
            {"id",                 oaicompat_cmpl_id}
 | 
						|
        };
 | 
						|
 | 
						|
        // extra fields for debugging purposes
 | 
						|
        if (verbose) {
 | 
						|
            res["__verbose"] = to_json_non_oaicompat();
 | 
						|
        }
 | 
						|
        if (timings.prompt_n >= 0) {
 | 
						|
            res.push_back({"timings", timings.to_json()});
 | 
						|
        }
 | 
						|
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json_oaicompat_chat() {
 | 
						|
        bool first = n_decoded == 0;
 | 
						|
        std::time_t t = std::time(0);
 | 
						|
        json choices;
 | 
						|
 | 
						|
        if (first) {
 | 
						|
            if (content.empty()) {
 | 
						|
                choices = json::array({json{{"finish_reason", nullptr},
 | 
						|
                                            {"index", 0},
 | 
						|
                                            {"delta", json{{"role", "assistant"}}}}});
 | 
						|
            } else {
 | 
						|
                // We have to send this as two updates to conform to openai behavior
 | 
						|
                json initial_ret = json{{"choices", json::array({json{
 | 
						|
                                        {"finish_reason", nullptr},
 | 
						|
                                        {"index", 0},
 | 
						|
                                        {"delta", json{
 | 
						|
                                            {"role", "assistant"}
 | 
						|
                                        }}}})},
 | 
						|
                            {"created", t},
 | 
						|
                            {"id", oaicompat_cmpl_id},
 | 
						|
                            {"model", oaicompat_model},
 | 
						|
                            {"object", "chat.completion.chunk"}};
 | 
						|
 | 
						|
                json second_ret = json{
 | 
						|
                            {"choices", json::array({json{{"finish_reason", nullptr},
 | 
						|
                                                            {"index", 0},
 | 
						|
                                                            {"delta", json {
 | 
						|
                                                            {"content", content}}}
 | 
						|
                                                            }})},
 | 
						|
                            {"created", t},
 | 
						|
                            {"id", oaicompat_cmpl_id},
 | 
						|
                            {"model", oaicompat_model},
 | 
						|
                            {"object", "chat.completion.chunk"}};
 | 
						|
 | 
						|
                return std::vector<json>({initial_ret, second_ret});
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            choices = json::array({json{
 | 
						|
                {"finish_reason", nullptr},
 | 
						|
                {"index", 0},
 | 
						|
                {"delta",
 | 
						|
                json {
 | 
						|
                    {"content", content},
 | 
						|
                }},
 | 
						|
            }});
 | 
						|
        }
 | 
						|
 | 
						|
        GGML_ASSERT(choices.size() >= 1);
 | 
						|
 | 
						|
        if (prob_output.probs.size() > 0) {
 | 
						|
            choices[0]["logprobs"] = json{
 | 
						|
                {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
 | 
						|
            };
 | 
						|
        }
 | 
						|
 | 
						|
        json ret = json {
 | 
						|
            {"choices",            choices},
 | 
						|
            {"created",            t},
 | 
						|
            {"id",                 oaicompat_cmpl_id},
 | 
						|
            {"model",              oaicompat_model},
 | 
						|
            {"system_fingerprint", build_info},
 | 
						|
            {"object",             "chat.completion.chunk"}
 | 
						|
        };
 | 
						|
 | 
						|
        if (timings.prompt_n >= 0) {
 | 
						|
            ret.push_back({"timings", timings.to_json()});
 | 
						|
        }
 | 
						|
 | 
						|
        return std::vector<json>({ret});
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task_result_embd : server_task_result {
 | 
						|
    int index = 0;
 | 
						|
    std::vector<std::vector<float>> embedding;
 | 
						|
 | 
						|
    int32_t n_tokens;
 | 
						|
 | 
						|
    // OAI-compat fields
 | 
						|
    oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
 | 
						|
 | 
						|
    virtual int get_index() override {
 | 
						|
        return index;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual json to_json() override {
 | 
						|
        return oaicompat == OAICOMPAT_TYPE_EMBEDDING
 | 
						|
            ? to_json_oaicompat()
 | 
						|
            : to_json_non_oaicompat();
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json_non_oaicompat() {
 | 
						|
        return json {
 | 
						|
            {"index",     index},
 | 
						|
            {"embedding", embedding},
 | 
						|
        };
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json_oaicompat() {
 | 
						|
        return json {
 | 
						|
            {"index",            index},
 | 
						|
            {"embedding",        embedding[0]},
 | 
						|
            {"tokens_evaluated", n_tokens},
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task_result_rerank : server_task_result {
 | 
						|
    int index = 0;
 | 
						|
    float score = -1e6;
 | 
						|
 | 
						|
    int32_t n_tokens;
 | 
						|
 | 
						|
    virtual int get_index() override {
 | 
						|
        return index;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual json to_json() override {
 | 
						|
        return json {
 | 
						|
            {"index",            index},
 | 
						|
            {"score",            score},
 | 
						|
            {"tokens_evaluated", n_tokens},
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
// this function maybe used outside of server_task_result_error
 | 
						|
static json format_error_response(const std::string & message, const enum error_type type) {
 | 
						|
    std::string type_str;
 | 
						|
    int code = 500;
 | 
						|
    switch (type) {
 | 
						|
        case ERROR_TYPE_INVALID_REQUEST:
 | 
						|
            type_str = "invalid_request_error";
 | 
						|
            code = 400;
 | 
						|
            break;
 | 
						|
        case ERROR_TYPE_AUTHENTICATION:
 | 
						|
            type_str = "authentication_error";
 | 
						|
            code = 401;
 | 
						|
            break;
 | 
						|
        case ERROR_TYPE_NOT_FOUND:
 | 
						|
            type_str = "not_found_error";
 | 
						|
            code = 404;
 | 
						|
            break;
 | 
						|
        case ERROR_TYPE_SERVER:
 | 
						|
            type_str = "server_error";
 | 
						|
            code = 500;
 | 
						|
            break;
 | 
						|
        case ERROR_TYPE_PERMISSION:
 | 
						|
            type_str = "permission_error";
 | 
						|
            code = 403;
 | 
						|
            break;
 | 
						|
        case ERROR_TYPE_NOT_SUPPORTED:
 | 
						|
            type_str = "not_supported_error";
 | 
						|
            code = 501;
 | 
						|
            break;
 | 
						|
        case ERROR_TYPE_UNAVAILABLE:
 | 
						|
            type_str = "unavailable_error";
 | 
						|
            code = 503;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    return json {
 | 
						|
        {"code", code},
 | 
						|
        {"message", message},
 | 
						|
        {"type", type_str},
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
struct server_task_result_error : server_task_result {
 | 
						|
    int index = 0;
 | 
						|
    error_type err_type = ERROR_TYPE_SERVER;
 | 
						|
    std::string err_msg;
 | 
						|
 | 
						|
    virtual bool is_error() override {
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual json to_json() override {
 | 
						|
        return format_error_response(err_msg, err_type);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task_result_metrics : server_task_result {
 | 
						|
    int n_idle_slots;
 | 
						|
    int n_processing_slots;
 | 
						|
    int n_tasks_deferred;
 | 
						|
    int64_t t_start;
 | 
						|
 | 
						|
    int32_t kv_cache_tokens_count;
 | 
						|
    int32_t kv_cache_used_cells;
 | 
						|
 | 
						|
    // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
 | 
						|
    uint64_t n_prompt_tokens_processed_total = 0;
 | 
						|
    uint64_t t_prompt_processing_total       = 0;
 | 
						|
    uint64_t n_tokens_predicted_total        = 0;
 | 
						|
    uint64_t t_tokens_generation_total       = 0;
 | 
						|
 | 
						|
    uint64_t n_prompt_tokens_processed = 0;
 | 
						|
    uint64_t t_prompt_processing       = 0;
 | 
						|
 | 
						|
    uint64_t n_tokens_predicted  = 0;
 | 
						|
    uint64_t t_tokens_generation = 0;
 | 
						|
 | 
						|
    uint64_t n_decode_total     = 0;
 | 
						|
    uint64_t n_busy_slots_total = 0;
 | 
						|
 | 
						|
    // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
 | 
						|
    // therefore, we use json to temporarily store the slot.to_json() result
 | 
						|
    json slots_data = json::array();
 | 
						|
 | 
						|
    virtual json to_json() override {
 | 
						|
        return json {
 | 
						|
            { "idle",                            n_idle_slots },
 | 
						|
            { "processing",                      n_processing_slots },
 | 
						|
            { "deferred",                        n_tasks_deferred },
 | 
						|
            { "t_start",                         t_start },
 | 
						|
 | 
						|
            { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
 | 
						|
            { "t_tokens_generation_total",       t_tokens_generation_total },
 | 
						|
            { "n_tokens_predicted_total",        n_tokens_predicted_total },
 | 
						|
            { "t_prompt_processing_total",       t_prompt_processing_total },
 | 
						|
 | 
						|
            { "n_prompt_tokens_processed",       n_prompt_tokens_processed },
 | 
						|
            { "t_prompt_processing",             t_prompt_processing },
 | 
						|
            { "n_tokens_predicted",              n_tokens_predicted },
 | 
						|
            { "t_tokens_generation",             t_tokens_generation },
 | 
						|
 | 
						|
            { "n_decode_total",                  n_decode_total },
 | 
						|
            { "n_busy_slots_total",              n_busy_slots_total },
 | 
						|
 | 
						|
            { "kv_cache_tokens_count",           kv_cache_tokens_count },
 | 
						|
            { "kv_cache_used_cells",             kv_cache_used_cells },
 | 
						|
 | 
						|
            { "slots",                           slots_data },
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task_result_slot_save_load : server_task_result {
 | 
						|
    std::string filename;
 | 
						|
    bool is_save; // true = save, false = load
 | 
						|
 | 
						|
    size_t n_tokens;
 | 
						|
    size_t n_bytes;
 | 
						|
    double t_ms;
 | 
						|
 | 
						|
    virtual json to_json() override {
 | 
						|
        if (is_save) {
 | 
						|
            return json {
 | 
						|
                { "id_slot",   id_slot },
 | 
						|
                { "filename",  filename },
 | 
						|
                { "n_saved",   n_tokens },
 | 
						|
                { "n_written", n_bytes },
 | 
						|
                { "timings", {
 | 
						|
                    { "save_ms", t_ms }
 | 
						|
                }},
 | 
						|
            };
 | 
						|
        } else {
 | 
						|
            return json {
 | 
						|
                { "id_slot",    id_slot },
 | 
						|
                { "filename",   filename },
 | 
						|
                { "n_restored", n_tokens },
 | 
						|
                { "n_read",     n_bytes },
 | 
						|
                { "timings", {
 | 
						|
                    { "restore_ms", t_ms }
 | 
						|
                }},
 | 
						|
            };
 | 
						|
        }
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task_result_slot_erase : server_task_result {
 | 
						|
    size_t n_erased;
 | 
						|
 | 
						|
    virtual json to_json() override {
 | 
						|
        return json {
 | 
						|
            { "id_slot",  id_slot },
 | 
						|
            { "n_erased", n_erased },
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_task_result_apply_lora : server_task_result {
 | 
						|
    virtual json to_json() override {
 | 
						|
        return json {{ "success", true }};
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_slot {
 | 
						|
    int id;
 | 
						|
    int id_task = -1;
 | 
						|
 | 
						|
    // only used for completion/embedding/infill/rerank
 | 
						|
    server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
 | 
						|
 | 
						|
    llama_batch batch_spec = {};
 | 
						|
 | 
						|
    llama_context * ctx = nullptr;
 | 
						|
    llama_context * ctx_dft = nullptr;
 | 
						|
 | 
						|
    common_speculative * spec = nullptr;
 | 
						|
 | 
						|
    std::vector<common_adapter_lora_info> lora;
 | 
						|
 | 
						|
    // the index relative to completion multi-task request
 | 
						|
    size_t index = 0;
 | 
						|
 | 
						|
    struct slot_params params;
 | 
						|
 | 
						|
    slot_state state = SLOT_STATE_IDLE;
 | 
						|
 | 
						|
    // used to determine the slot that has been used the longest
 | 
						|
    int64_t t_last_used = -1;
 | 
						|
 | 
						|
    // generation props
 | 
						|
    int32_t n_ctx       = 0;  // context size per slot
 | 
						|
    int32_t n_past      = 0;
 | 
						|
    int32_t n_decoded   = 0;
 | 
						|
    int32_t n_remaining = -1;
 | 
						|
    int32_t i_batch     = -1;
 | 
						|
    int32_t n_predict   = -1; // TODO: disambiguate from params.n_predict
 | 
						|
 | 
						|
    // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
 | 
						|
    int32_t n_prompt_tokens           = 0;
 | 
						|
    int32_t n_prompt_tokens_processed = 0;
 | 
						|
 | 
						|
    // input prompt tokens
 | 
						|
    llama_tokens prompt_tokens;
 | 
						|
 | 
						|
    size_t last_nl_pos = 0;
 | 
						|
 | 
						|
    std::string  generated_text;
 | 
						|
    llama_tokens generated_tokens;
 | 
						|
 | 
						|
    llama_tokens cache_tokens;
 | 
						|
 | 
						|
    std::vector<completion_token_output> generated_token_probs;
 | 
						|
 | 
						|
    bool has_next_token = true;
 | 
						|
    bool has_new_line   = false;
 | 
						|
    bool truncated      = false;
 | 
						|
    stop_type stop;
 | 
						|
 | 
						|
    std::string stopping_word;
 | 
						|
 | 
						|
    // sampling
 | 
						|
    json json_schema;
 | 
						|
 | 
						|
    struct common_sampler * smpl = nullptr;
 | 
						|
 | 
						|
    llama_token sampled;
 | 
						|
 | 
						|
    common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
 | 
						|
 | 
						|
    // stats
 | 
						|
    size_t n_sent_text        = 0; // number of sent text character
 | 
						|
 | 
						|
    int64_t t_start_process_prompt;
 | 
						|
    int64_t t_start_generation;
 | 
						|
 | 
						|
    double t_prompt_processing; // ms
 | 
						|
    double t_token_generation;  // ms
 | 
						|
 | 
						|
    std::function<void(int)> callback_on_release;
 | 
						|
 | 
						|
    // Speculative decoding stats
 | 
						|
    int32_t n_draft_total = 0;      // Total draft tokens generated
 | 
						|
    int32_t n_draft_accepted = 0;   // Draft tokens actually accepted
 | 
						|
 | 
						|
    void reset() {
 | 
						|
        SLT_DBG(*this, "%s", "\n");
 | 
						|
 | 
						|
        n_prompt_tokens    = 0;
 | 
						|
        last_nl_pos        = 0;
 | 
						|
        generated_text     = "";
 | 
						|
        has_new_line       = false;
 | 
						|
        truncated          = false;
 | 
						|
        stop               = STOP_TYPE_NONE;
 | 
						|
        stopping_word      = "";
 | 
						|
        n_past             = 0;
 | 
						|
        n_sent_text        = 0;
 | 
						|
        task_type          = SERVER_TASK_TYPE_COMPLETION;
 | 
						|
 | 
						|
        generated_tokens.clear();
 | 
						|
        generated_token_probs.clear();
 | 
						|
 | 
						|
        // clear speculative decoding stats
 | 
						|
        n_draft_total = 0;
 | 
						|
        n_draft_accepted = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    bool is_non_causal() const {
 | 
						|
        return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
 | 
						|
    }
 | 
						|
 | 
						|
    bool can_batch_with(server_slot & other_slot) const {
 | 
						|
        return is_non_causal() == other_slot.is_non_causal()
 | 
						|
            && are_lora_equal(lora, other_slot.lora);
 | 
						|
    }
 | 
						|
 | 
						|
    bool has_budget(const common_params & global_params) {
 | 
						|
        if (params.n_predict == -1 && global_params.n_predict == -1) {
 | 
						|
            return true; // limitless
 | 
						|
        }
 | 
						|
 | 
						|
        n_remaining = -1;
 | 
						|
 | 
						|
        if (params.n_predict != -1) {
 | 
						|
            n_remaining = params.n_predict - n_decoded;
 | 
						|
        } else if (global_params.n_predict != -1) {
 | 
						|
            n_remaining = global_params.n_predict - n_decoded;
 | 
						|
        }
 | 
						|
 | 
						|
        return n_remaining > 0; // no budget
 | 
						|
    }
 | 
						|
 | 
						|
    bool is_processing() const {
 | 
						|
        return state != SLOT_STATE_IDLE;
 | 
						|
    }
 | 
						|
 | 
						|
    bool can_speculate() const {
 | 
						|
        return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
 | 
						|
    }
 | 
						|
 | 
						|
    void add_token(const completion_token_output & token) {
 | 
						|
        if (!is_processing()) {
 | 
						|
            SLT_WRN(*this, "%s", "slot is not processing\n");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        generated_token_probs.push_back(token);
 | 
						|
    }
 | 
						|
 | 
						|
    void release() {
 | 
						|
        if (is_processing()) {
 | 
						|
            SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
 | 
						|
 | 
						|
            t_last_used = ggml_time_us();
 | 
						|
            t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
 | 
						|
            state = SLOT_STATE_IDLE;
 | 
						|
            callback_on_release(id);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    result_timings get_timings() const {
 | 
						|
        result_timings timings;
 | 
						|
        timings.prompt_n = n_prompt_tokens_processed;
 | 
						|
        timings.prompt_ms = t_prompt_processing;
 | 
						|
        timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
 | 
						|
        timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
 | 
						|
 | 
						|
        timings.predicted_n = n_decoded;
 | 
						|
        timings.predicted_ms = t_token_generation;
 | 
						|
        timings.predicted_per_token_ms = t_token_generation / n_decoded;
 | 
						|
        timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
 | 
						|
 | 
						|
        // Add speculative metrics
 | 
						|
        if (n_draft_total > 0) {
 | 
						|
            timings.draft_n = n_draft_total;
 | 
						|
            timings.draft_n_accepted = n_draft_accepted;
 | 
						|
        }
 | 
						|
 | 
						|
        return timings;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
 | 
						|
        size_t stop_pos = std::string::npos;
 | 
						|
 | 
						|
        for (const std::string & word : params.antiprompt) {
 | 
						|
            size_t pos;
 | 
						|
 | 
						|
            if (is_full_stop) {
 | 
						|
                const size_t tmp      = word.size() + last_token_size;
 | 
						|
                const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
 | 
						|
 | 
						|
                pos = text.find(word, from_pos);
 | 
						|
            } else {
 | 
						|
                // otherwise, partial stop
 | 
						|
                pos = find_partial_stop_string(word, text);
 | 
						|
            }
 | 
						|
 | 
						|
            if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
 | 
						|
                if (is_full_stop) {
 | 
						|
                    stop           = STOP_TYPE_WORD;
 | 
						|
                    stopping_word  = word;
 | 
						|
                    has_next_token = false;
 | 
						|
                }
 | 
						|
                stop_pos = pos;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return stop_pos;
 | 
						|
    }
 | 
						|
 | 
						|
    void print_timings() const {
 | 
						|
        const double t_prompt        =       t_prompt_processing / n_prompt_tokens_processed;
 | 
						|
        const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
 | 
						|
 | 
						|
        const double t_gen        =       t_token_generation / n_decoded;
 | 
						|
        const double n_gen_second = 1e3 / t_token_generation * n_decoded;
 | 
						|
 | 
						|
        SLT_INF(*this,
 | 
						|
                "\n"
 | 
						|
                "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
 | 
						|
                "       eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
 | 
						|
                "      total time = %10.2f ms / %5d tokens\n",
 | 
						|
                t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
 | 
						|
                t_token_generation, n_decoded, t_gen, n_gen_second,
 | 
						|
                t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
 | 
						|
 | 
						|
        if (n_draft_total > 0) {
 | 
						|
            const float draft_ratio = (float) n_draft_accepted / n_draft_total;
 | 
						|
            SLT_INF(*this,
 | 
						|
                    "\n"
 | 
						|
                    "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
 | 
						|
                    draft_ratio, n_draft_accepted, n_draft_total
 | 
						|
            );
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    json to_json() const {
 | 
						|
        return json {
 | 
						|
            {"id",            id},
 | 
						|
            {"id_task",       id_task},
 | 
						|
            {"n_ctx",         n_ctx},
 | 
						|
            {"speculative",   can_speculate()},
 | 
						|
            {"is_processing", is_processing()},
 | 
						|
            {"non_causal",    is_non_causal()},
 | 
						|
            {"params",        params.to_json()},
 | 
						|
            {"prompt",        common_detokenize(ctx, prompt_tokens)},
 | 
						|
            {"next_token",
 | 
						|
                {
 | 
						|
                    {"has_next_token", has_next_token},
 | 
						|
                    {"has_new_line",   has_new_line},
 | 
						|
                    {"n_remain",       n_remaining},
 | 
						|
                    {"n_decoded",      n_decoded},
 | 
						|
                    {"stopping_word",  stopping_word},
 | 
						|
                }
 | 
						|
            },
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_metrics {
 | 
						|
    int64_t t_start = 0;
 | 
						|
 | 
						|
    uint64_t n_prompt_tokens_processed_total = 0;
 | 
						|
    uint64_t t_prompt_processing_total       = 0;
 | 
						|
    uint64_t n_tokens_predicted_total        = 0;
 | 
						|
    uint64_t t_tokens_generation_total       = 0;
 | 
						|
 | 
						|
    uint64_t n_prompt_tokens_processed = 0;
 | 
						|
    uint64_t t_prompt_processing       = 0;
 | 
						|
 | 
						|
    uint64_t n_tokens_predicted  = 0;
 | 
						|
    uint64_t t_tokens_generation = 0;
 | 
						|
 | 
						|
    uint64_t n_decode_total     = 0;
 | 
						|
    uint64_t n_busy_slots_total = 0;
 | 
						|
 | 
						|
    void init() {
 | 
						|
        t_start = ggml_time_us();
 | 
						|
    }
 | 
						|
 | 
						|
    void on_prompt_eval(const server_slot & slot) {
 | 
						|
        n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
 | 
						|
        n_prompt_tokens_processed       += slot.n_prompt_tokens_processed;
 | 
						|
        t_prompt_processing             += slot.t_prompt_processing;
 | 
						|
        t_prompt_processing_total       += slot.t_prompt_processing;
 | 
						|
    }
 | 
						|
 | 
						|
    void on_prediction(const server_slot & slot) {
 | 
						|
        n_tokens_predicted_total   += slot.n_decoded;
 | 
						|
        n_tokens_predicted         += slot.n_decoded;
 | 
						|
        t_tokens_generation        += slot.t_token_generation;
 | 
						|
        t_tokens_generation_total  += slot.t_token_generation;
 | 
						|
    }
 | 
						|
 | 
						|
    void on_decoded(const std::vector<server_slot> & slots) {
 | 
						|
        n_decode_total++;
 | 
						|
        for (const auto & slot : slots) {
 | 
						|
            if (slot.is_processing()) {
 | 
						|
                n_busy_slots_total++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    void reset_bucket() {
 | 
						|
        n_prompt_tokens_processed = 0;
 | 
						|
        t_prompt_processing       = 0;
 | 
						|
        n_tokens_predicted        = 0;
 | 
						|
        t_tokens_generation       = 0;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_queue {
 | 
						|
    int id = 0;
 | 
						|
    bool running;
 | 
						|
 | 
						|
    // queues
 | 
						|
    std::deque<server_task> queue_tasks;
 | 
						|
    std::deque<server_task> queue_tasks_deferred;
 | 
						|
 | 
						|
    std::mutex mutex_tasks;
 | 
						|
    std::condition_variable condition_tasks;
 | 
						|
 | 
						|
    // callback functions
 | 
						|
    std::function<void(server_task &&)> callback_new_task;
 | 
						|
    std::function<void(void)>           callback_update_slots;
 | 
						|
 | 
						|
    // Add a new task to the end of the queue
 | 
						|
    int post(server_task && task, bool front = false) {
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_tasks);
 | 
						|
        GGML_ASSERT(task.id != -1);
 | 
						|
        // if this is cancel task make sure to clean up pending tasks
 | 
						|
        if (task.type == SERVER_TASK_TYPE_CANCEL) {
 | 
						|
            cleanup_pending_task(task.id_target);
 | 
						|
        }
 | 
						|
        const int task_id = task.id;
 | 
						|
        QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
 | 
						|
        if (front) {
 | 
						|
            queue_tasks.push_front(std::move(task));
 | 
						|
        } else {
 | 
						|
            queue_tasks.push_back(std::move(task));
 | 
						|
        }
 | 
						|
        condition_tasks.notify_one();
 | 
						|
        return task_id;
 | 
						|
    }
 | 
						|
 | 
						|
    // multi-task version of post()
 | 
						|
    int post(std::vector<server_task> && tasks, bool front = false) {
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_tasks);
 | 
						|
        for (auto & task : tasks) {
 | 
						|
            if (task.id == -1) {
 | 
						|
                task.id = id++;
 | 
						|
            }
 | 
						|
            // if this is cancel task make sure to clean up pending tasks
 | 
						|
            if (task.type == SERVER_TASK_TYPE_CANCEL) {
 | 
						|
                cleanup_pending_task(task.id_target);
 | 
						|
            }
 | 
						|
            QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
 | 
						|
            if (front) {
 | 
						|
                queue_tasks.push_front(std::move(task));
 | 
						|
            } else {
 | 
						|
                queue_tasks.push_back(std::move(task));
 | 
						|
            }
 | 
						|
        }
 | 
						|
        condition_tasks.notify_one();
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a new task, but defer until one slot is available
 | 
						|
    void defer(server_task && task) {
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_tasks);
 | 
						|
        QUE_DBG("defer task, id = %d\n", task.id);
 | 
						|
        queue_tasks_deferred.push_back(std::move(task));
 | 
						|
        condition_tasks.notify_one();
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the next id for creating a new task
 | 
						|
    int get_new_id() {
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_tasks);
 | 
						|
        int new_id = id++;
 | 
						|
        return new_id;
 | 
						|
    }
 | 
						|
 | 
						|
    // Register function to process a new task
 | 
						|
    void on_new_task(std::function<void(server_task &&)> callback) {
 | 
						|
        callback_new_task = std::move(callback);
 | 
						|
    }
 | 
						|
 | 
						|
    // Register the function to be called when all slots data is ready to be processed
 | 
						|
    void on_update_slots(std::function<void(void)> callback) {
 | 
						|
        callback_update_slots = std::move(callback);
 | 
						|
    }
 | 
						|
 | 
						|
    // Call when the state of one slot is changed, it will move one task from deferred to main queue
 | 
						|
    void pop_deferred_task() {
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_tasks);
 | 
						|
        if (!queue_tasks_deferred.empty()) {
 | 
						|
            queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
 | 
						|
            queue_tasks_deferred.pop_front();
 | 
						|
        }
 | 
						|
        condition_tasks.notify_one();
 | 
						|
    }
 | 
						|
 | 
						|
    // end the start_loop routine
 | 
						|
    void terminate() {
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_tasks);
 | 
						|
        running = false;
 | 
						|
        condition_tasks.notify_all();
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Main loop consists of these steps:
 | 
						|
     * - Wait until a new task arrives
 | 
						|
     * - Process the task (i.e. maybe copy data into slot)
 | 
						|
     * - Check if multitask is finished
 | 
						|
     * - Update all slots
 | 
						|
     */
 | 
						|
    void start_loop() {
 | 
						|
        running = true;
 | 
						|
 | 
						|
        while (true) {
 | 
						|
            QUE_DBG("%s", "processing new tasks\n");
 | 
						|
 | 
						|
            while (true) {
 | 
						|
                std::unique_lock<std::mutex> lock(mutex_tasks);
 | 
						|
                if (!running) {
 | 
						|
                    QUE_DBG("%s", "terminate\n");
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
                if (queue_tasks.empty()) {
 | 
						|
                    lock.unlock();
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                server_task task = std::move(queue_tasks.front());
 | 
						|
                queue_tasks.pop_front();
 | 
						|
                lock.unlock();
 | 
						|
 | 
						|
                QUE_DBG("processing task, id = %d\n", task.id);
 | 
						|
                callback_new_task(std::move(task));
 | 
						|
            }
 | 
						|
 | 
						|
            // all tasks in the current loop is processed, slots data is now ready
 | 
						|
            QUE_DBG("%s", "update slots\n");
 | 
						|
 | 
						|
            callback_update_slots();
 | 
						|
 | 
						|
            QUE_DBG("%s", "waiting for new tasks\n");
 | 
						|
            {
 | 
						|
                std::unique_lock<std::mutex> lock(mutex_tasks);
 | 
						|
                if (!running) {
 | 
						|
                    QUE_DBG("%s", "terminate\n");
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
                if (queue_tasks.empty()) {
 | 
						|
                    condition_tasks.wait(lock, [&]{
 | 
						|
                        return (!queue_tasks.empty() || !running);
 | 
						|
                    });
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
    void cleanup_pending_task(int id_target) {
 | 
						|
        // no need lock because this is called exclusively by post()
 | 
						|
        auto rm_func = [id_target](const server_task & task) {
 | 
						|
            return task.id_target == id_target;
 | 
						|
        };
 | 
						|
        queue_tasks.erase(
 | 
						|
            std::remove_if(queue_tasks.begin(),          queue_tasks.end(),          rm_func),
 | 
						|
            queue_tasks.end());
 | 
						|
        queue_tasks_deferred.erase(
 | 
						|
            std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
 | 
						|
            queue_tasks_deferred.end());
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_response {
 | 
						|
    bool running = true;
 | 
						|
 | 
						|
    // for keeping track of all tasks waiting for the result
 | 
						|
    std::unordered_set<int> waiting_task_ids;
 | 
						|
 | 
						|
    // the main result queue (using ptr for polymorphism)
 | 
						|
    std::vector<server_task_result_ptr> queue_results;
 | 
						|
 | 
						|
    std::mutex mutex_results;
 | 
						|
    std::condition_variable condition_results;
 | 
						|
 | 
						|
    // add the id_task to the list of tasks waiting for response
 | 
						|
    void add_waiting_task_id(int id_task) {
 | 
						|
        SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
 | 
						|
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_results);
 | 
						|
        waiting_task_ids.insert(id_task);
 | 
						|
    }
 | 
						|
 | 
						|
    void add_waiting_tasks(const std::vector<server_task> & tasks) {
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_results);
 | 
						|
 | 
						|
        for (const auto & task : tasks) {
 | 
						|
            SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
 | 
						|
            waiting_task_ids.insert(task.id);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // when the request is finished, we can remove task associated with it
 | 
						|
    void remove_waiting_task_id(int id_task) {
 | 
						|
        SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
 | 
						|
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_results);
 | 
						|
        waiting_task_ids.erase(id_task);
 | 
						|
        // make sure to clean up all pending results
 | 
						|
        queue_results.erase(
 | 
						|
            std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
 | 
						|
                return res->id == id_task;
 | 
						|
            }),
 | 
						|
            queue_results.end());
 | 
						|
    }
 | 
						|
 | 
						|
    void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_results);
 | 
						|
 | 
						|
        for (const auto & id_task : id_tasks) {
 | 
						|
            SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
 | 
						|
            waiting_task_ids.erase(id_task);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // This function blocks the thread until there is a response for one of the id_tasks
 | 
						|
    server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
 | 
						|
        while (true) {
 | 
						|
            std::unique_lock<std::mutex> lock(mutex_results);
 | 
						|
            condition_results.wait(lock, [&]{
 | 
						|
                if (!running) {
 | 
						|
                    SRV_DBG("%s : queue result stop\n", __func__);
 | 
						|
                    std::terminate(); // we cannot return here since the caller is HTTP code
 | 
						|
                }
 | 
						|
                return !queue_results.empty();
 | 
						|
            });
 | 
						|
 | 
						|
            for (size_t i = 0; i < queue_results.size(); i++) {
 | 
						|
                if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
 | 
						|
                    server_task_result_ptr res = std::move(queue_results[i]);
 | 
						|
                    queue_results.erase(queue_results.begin() + i);
 | 
						|
                    return res;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // should never reach here
 | 
						|
    }
 | 
						|
 | 
						|
    // same as recv(), but have timeout in seconds
 | 
						|
    // if timeout is reached, nullptr is returned
 | 
						|
    server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
 | 
						|
        while (true) {
 | 
						|
            std::unique_lock<std::mutex> lock(mutex_results);
 | 
						|
 | 
						|
            for (int i = 0; i < (int) queue_results.size(); i++) {
 | 
						|
                if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
 | 
						|
                    server_task_result_ptr res = std::move(queue_results[i]);
 | 
						|
                    queue_results.erase(queue_results.begin() + i);
 | 
						|
                    return res;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
 | 
						|
            if (!running) {
 | 
						|
                SRV_DBG("%s : queue result stop\n", __func__);
 | 
						|
                std::terminate(); // we cannot return here since the caller is HTTP code
 | 
						|
            }
 | 
						|
            if (cr_res == std::cv_status::timeout) {
 | 
						|
                return nullptr;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // should never reach here
 | 
						|
    }
 | 
						|
 | 
						|
    // single-task version of recv()
 | 
						|
    server_task_result_ptr recv(int id_task) {
 | 
						|
        std::unordered_set<int> id_tasks = {id_task};
 | 
						|
        return recv(id_tasks);
 | 
						|
    }
 | 
						|
 | 
						|
    // Send a new result to a waiting id_task
 | 
						|
    void send(server_task_result_ptr && result) {
 | 
						|
        SRV_DBG("sending result for task id = %d\n", result->id);
 | 
						|
 | 
						|
        std::unique_lock<std::mutex> lock(mutex_results);
 | 
						|
        for (const auto & id_task : waiting_task_ids) {
 | 
						|
            if (result->id == id_task) {
 | 
						|
                SRV_DBG("task id = %d pushed to result queue\n", result->id);
 | 
						|
 | 
						|
                queue_results.emplace_back(std::move(result));
 | 
						|
                condition_results.notify_all();
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // terminate the waiting loop
 | 
						|
    void terminate() {
 | 
						|
        running = false;
 | 
						|
        condition_results.notify_all();
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct server_context {
 | 
						|
    common_params params_base;
 | 
						|
 | 
						|
    // note: keep these alive - they determine the lifetime of the model, context, etc.
 | 
						|
    common_init_result llama_init;
 | 
						|
    common_init_result llama_init_dft;
 | 
						|
 | 
						|
    llama_model * model = nullptr;
 | 
						|
    llama_context * ctx = nullptr;
 | 
						|
 | 
						|
    const llama_vocab * vocab = nullptr;
 | 
						|
 | 
						|
    llama_model * model_dft = nullptr;
 | 
						|
 | 
						|
    llama_context_params cparams_dft;
 | 
						|
 | 
						|
    llama_batch batch = {};
 | 
						|
 | 
						|
    bool clean_kv_cache = true;
 | 
						|
    bool add_bos_token  = true;
 | 
						|
    bool has_eos_token  = false;
 | 
						|
 | 
						|
    int32_t n_ctx; // total context for all clients / slots
 | 
						|
 | 
						|
    // slots / clients
 | 
						|
    std::vector<server_slot> slots;
 | 
						|
    json default_generation_settings_for_props;
 | 
						|
 | 
						|
    server_queue    queue_tasks;
 | 
						|
    server_response queue_results;
 | 
						|
 | 
						|
    server_metrics metrics;
 | 
						|
 | 
						|
    // Necessary similarity of prompt for slot selection
 | 
						|
    float slot_prompt_similarity = 0.0f;
 | 
						|
 | 
						|
    common_chat_templates_ptr chat_templates;
 | 
						|
 | 
						|
    ~server_context() {
 | 
						|
        // Clear any sampling context
 | 
						|
        for (server_slot & slot : slots) {
 | 
						|
            common_sampler_free(slot.smpl);
 | 
						|
            slot.smpl = nullptr;
 | 
						|
 | 
						|
            llama_free(slot.ctx_dft);
 | 
						|
            slot.ctx_dft = nullptr;
 | 
						|
 | 
						|
            common_speculative_free(slot.spec);
 | 
						|
            slot.spec = nullptr;
 | 
						|
 | 
						|
            llama_batch_free(slot.batch_spec);
 | 
						|
        }
 | 
						|
 | 
						|
        llama_batch_free(batch);
 | 
						|
    }
 | 
						|
 | 
						|
    bool load_model(const common_params & params) {
 | 
						|
        SRV_INF("loading model '%s'\n", params.model.path.c_str());
 | 
						|
 | 
						|
        params_base = params;
 | 
						|
 | 
						|
        llama_init = common_init_from_params(params_base);
 | 
						|
 | 
						|
        model = llama_init.model.get();
 | 
						|
        ctx   = llama_init.context.get();
 | 
						|
 | 
						|
        if (model == nullptr) {
 | 
						|
            SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        vocab = llama_model_get_vocab(model);
 | 
						|
 | 
						|
        n_ctx = llama_n_ctx(ctx);
 | 
						|
 | 
						|
        add_bos_token = llama_vocab_get_add_bos(vocab);
 | 
						|
        has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
 | 
						|
 | 
						|
        if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
 | 
						|
            SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
 | 
						|
 | 
						|
            auto params_dft = params_base;
 | 
						|
 | 
						|
            params_dft.devices      = params_base.speculative.devices;
 | 
						|
            params_dft.model        = params_base.speculative.model;
 | 
						|
            params_dft.n_ctx        = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
 | 
						|
            params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
 | 
						|
            params_dft.n_parallel   = 1;
 | 
						|
 | 
						|
            // force F16 KV cache for the draft model for extra performance
 | 
						|
            params_dft.cache_type_k = GGML_TYPE_F16;
 | 
						|
            params_dft.cache_type_v = GGML_TYPE_F16;
 | 
						|
 | 
						|
            llama_init_dft = common_init_from_params(params_dft);
 | 
						|
 | 
						|
            model_dft = llama_init_dft.model.get();
 | 
						|
 | 
						|
            if (model_dft == nullptr) {
 | 
						|
                SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
 | 
						|
                SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
 | 
						|
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
 | 
						|
 | 
						|
            cparams_dft = common_context_params_to_llama(params_dft);
 | 
						|
            cparams_dft.n_batch = n_ctx_dft;
 | 
						|
 | 
						|
            // the context is not needed - we will create one for each slot
 | 
						|
            llama_init_dft.context.reset();
 | 
						|
        }
 | 
						|
 | 
						|
        chat_templates = common_chat_templates_init(model, params_base.chat_template);
 | 
						|
        try {
 | 
						|
            common_chat_format_example(chat_templates.get(), params.use_jinja);
 | 
						|
        } catch (const std::exception & e) {
 | 
						|
            SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
 | 
						|
            SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
 | 
						|
            chat_templates = common_chat_templates_init(model, "chatml");
 | 
						|
        }
 | 
						|
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    void init() {
 | 
						|
        const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
 | 
						|
 | 
						|
        SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
 | 
						|
 | 
						|
        for (int i = 0; i < params_base.n_parallel; i++) {
 | 
						|
            server_slot slot;
 | 
						|
 | 
						|
            slot.id = i;
 | 
						|
            slot.ctx = ctx;
 | 
						|
            slot.n_ctx = n_ctx_slot;
 | 
						|
            slot.n_predict = params_base.n_predict;
 | 
						|
 | 
						|
            if (model_dft) {
 | 
						|
                slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
 | 
						|
 | 
						|
                slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
 | 
						|
                if (slot.ctx_dft == nullptr) {
 | 
						|
                    SRV_ERR("%s", "failed to create draft context\n");
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
 | 
						|
                slot.spec = common_speculative_init(slot.ctx_dft);
 | 
						|
                if (slot.spec == nullptr) {
 | 
						|
                    SRV_ERR("%s", "failed to create speculator\n");
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
 | 
						|
 | 
						|
            slot.params.sampling = params_base.sampling;
 | 
						|
 | 
						|
            slot.callback_on_release = [this](int) {
 | 
						|
                queue_tasks.pop_deferred_task();
 | 
						|
            };
 | 
						|
 | 
						|
            slot.reset();
 | 
						|
 | 
						|
            slots.push_back(std::move(slot));
 | 
						|
        }
 | 
						|
 | 
						|
        default_generation_settings_for_props = slots[0].to_json();
 | 
						|
 | 
						|
        // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
 | 
						|
        // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
 | 
						|
        {
 | 
						|
            const int32_t n_batch = llama_n_batch(ctx);
 | 
						|
 | 
						|
            // only a single seq_id per token is needed
 | 
						|
            batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
 | 
						|
        }
 | 
						|
 | 
						|
        metrics.init();
 | 
						|
    }
 | 
						|
 | 
						|
    server_slot * get_slot_by_id(int id) {
 | 
						|
        for (server_slot & slot : slots) {
 | 
						|
            if (slot.id == id) {
 | 
						|
                return &slot;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    server_slot * get_available_slot(const server_task & task) {
 | 
						|
        server_slot * ret = nullptr;
 | 
						|
 | 
						|
        // find the slot that has at least n% prompt similarity
 | 
						|
        if (ret == nullptr && slot_prompt_similarity != 0.0f) {
 | 
						|
            int lcs_len = 0;
 | 
						|
            float similarity = 0;
 | 
						|
 | 
						|
            for (server_slot & slot : slots) {
 | 
						|
                // skip the slot if it is not available
 | 
						|
                if (slot.is_processing()) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                // skip the slot if it does not contains cached tokens
 | 
						|
                if (slot.cache_tokens.empty()) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
 | 
						|
                int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
 | 
						|
 | 
						|
                // fraction of the common subsequence length compared to the current slot's prompt length
 | 
						|
                float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
 | 
						|
 | 
						|
                // select the current slot if the criteria match
 | 
						|
                if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
 | 
						|
                    lcs_len = cur_lcs_len;
 | 
						|
                    similarity = cur_similarity;
 | 
						|
                    ret = &slot;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (ret != nullptr) {
 | 
						|
                SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // find the slot that has been least recently used
 | 
						|
        if (ret == nullptr) {
 | 
						|
            int64_t t_last = ggml_time_us();
 | 
						|
            for (server_slot & slot : slots) {
 | 
						|
                // skip the slot if it is not available
 | 
						|
                if (slot.is_processing()) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                // select the current slot if the criteria match
 | 
						|
                if (slot.t_last_used < t_last) {
 | 
						|
                    t_last = slot.t_last_used;
 | 
						|
                    ret = &slot;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (ret != nullptr) {
 | 
						|
                SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    bool can_be_detokenized(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
 | 
						|
        const llama_model * model = llama_get_model(ctx);
 | 
						|
        const llama_vocab * vocab = llama_model_get_vocab(model);
 | 
						|
        const int32_t n_vocab = llama_vocab_n_tokens(vocab);
 | 
						|
        for (const auto & token : tokens) {
 | 
						|
            if (token < 0 || token >= n_vocab) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    bool launch_slot_with_task(server_slot & slot, server_task && task) {
 | 
						|
        slot.reset();
 | 
						|
        slot.id_task       = task.id;
 | 
						|
        slot.index         = task.index;
 | 
						|
        slot.task_type     = task.type;
 | 
						|
        slot.params        = std::move(task.params);
 | 
						|
        slot.prompt_tokens = std::move(task.prompt_tokens);
 | 
						|
 | 
						|
        if (!are_lora_equal(slot.params.lora, slot.lora)) {
 | 
						|
            // if lora is changed, we cannot reuse cached tokens
 | 
						|
            slot.cache_tokens.clear();
 | 
						|
            slot.lora = slot.params.lora;
 | 
						|
        }
 | 
						|
 | 
						|
        bool can_detokenize = can_be_detokenized(ctx, slot.prompt_tokens);
 | 
						|
        if (!can_detokenize) {
 | 
						|
            send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
 | 
						|
 | 
						|
        if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
 | 
						|
            // Might be better to reject the request with a 400 ?
 | 
						|
            SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
 | 
						|
            slot.params.n_predict = slot.n_predict;
 | 
						|
        }
 | 
						|
 | 
						|
        if (slot.params.ignore_eos && has_eos_token) {
 | 
						|
            slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            if (slot.smpl != nullptr) {
 | 
						|
                common_sampler_free(slot.smpl);
 | 
						|
            }
 | 
						|
 | 
						|
            slot.smpl = common_sampler_init(model, slot.params.sampling);
 | 
						|
            if (slot.smpl == nullptr) {
 | 
						|
                // for now, the only error that may happen here is invalid grammar
 | 
						|
                send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (slot.ctx_dft) {
 | 
						|
            llama_batch_free(slot.batch_spec);
 | 
						|
 | 
						|
            slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
 | 
						|
        }
 | 
						|
 | 
						|
        slot.state = SLOT_STATE_STARTED;
 | 
						|
 | 
						|
        SLT_INF(slot, "%s", "processing task\n");
 | 
						|
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    void kv_cache_clear() {
 | 
						|
        SRV_DBG("%s", "clearing KV cache\n");
 | 
						|
 | 
						|
        // clear the entire KV cache
 | 
						|
        llama_kv_self_clear(ctx);
 | 
						|
        clean_kv_cache = false;
 | 
						|
    }
 | 
						|
 | 
						|
    bool process_token(completion_token_output & result, server_slot & slot) {
 | 
						|
        // remember which tokens were sampled - used for repetition penalties during sampling
 | 
						|
        const std::string token_str = result.text_to_send;
 | 
						|
        slot.sampled = result.tok;
 | 
						|
 | 
						|
        slot.generated_text += token_str;
 | 
						|
        if (slot.params.return_tokens) {
 | 
						|
            slot.generated_tokens.push_back(result.tok);
 | 
						|
        }
 | 
						|
        slot.has_next_token = true;
 | 
						|
 | 
						|
        // check if there is incomplete UTF-8 character at the end
 | 
						|
        bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
 | 
						|
 | 
						|
        // search stop word and delete it
 | 
						|
        if (!incomplete) {
 | 
						|
            size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
 | 
						|
 | 
						|
            const std::string str_test = slot.generated_text.substr(pos);
 | 
						|
            bool send_text = true;
 | 
						|
 | 
						|
            size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
 | 
						|
            if (stop_pos != std::string::npos) {
 | 
						|
                slot.generated_text.erase(
 | 
						|
                    slot.generated_text.begin() + pos + stop_pos,
 | 
						|
                    slot.generated_text.end());
 | 
						|
                pos = std::min(slot.n_sent_text, slot.generated_text.size());
 | 
						|
            } else if (slot.has_next_token) {
 | 
						|
                stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
 | 
						|
                send_text = stop_pos == std::string::npos;
 | 
						|
            }
 | 
						|
 | 
						|
            // check if there is any token to predict
 | 
						|
            if (send_text) {
 | 
						|
                // no send the stop word in the response
 | 
						|
                result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
 | 
						|
                slot.n_sent_text += result.text_to_send.size();
 | 
						|
                // add the token to slot queue and cache
 | 
						|
            } else {
 | 
						|
                result.text_to_send = "";
 | 
						|
            }
 | 
						|
 | 
						|
            slot.add_token(result);
 | 
						|
            if (slot.params.stream) {
 | 
						|
                send_partial_response(slot, result);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (incomplete) {
 | 
						|
            slot.has_next_token = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // check the limits
 | 
						|
        if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
 | 
						|
            slot.stop           = STOP_TYPE_LIMIT;
 | 
						|
            slot.has_next_token = false;
 | 
						|
 | 
						|
            SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
 | 
						|
        }
 | 
						|
 | 
						|
        if (slot.has_new_line) {
 | 
						|
            // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
 | 
						|
            if (slot.params.n_indent > 0) {
 | 
						|
                // check the current indentation
 | 
						|
                // TODO: improve by not doing it more than once for each new line
 | 
						|
                if (slot.last_nl_pos > 0) {
 | 
						|
                    size_t pos = slot.last_nl_pos;
 | 
						|
 | 
						|
                    int n_indent = 0;
 | 
						|
                    while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
 | 
						|
                        n_indent++;
 | 
						|
                        pos++;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
 | 
						|
                        slot.stop           = STOP_TYPE_LIMIT;
 | 
						|
                        slot.has_next_token = false;
 | 
						|
 | 
						|
                        // cut the last line
 | 
						|
                        slot.generated_text.erase(pos, std::string::npos);
 | 
						|
 | 
						|
                        SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                // find the next new line
 | 
						|
                {
 | 
						|
                    const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
 | 
						|
 | 
						|
                    if (pos != std::string::npos) {
 | 
						|
                        slot.last_nl_pos = pos + 1;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // check if there is a new line in the generated text
 | 
						|
        if (result.text_to_send.find('\n') != std::string::npos) {
 | 
						|
            slot.has_new_line = true;
 | 
						|
 | 
						|
            // if we have seen a new line, we stop after a certain time limit, but only upon another new line
 | 
						|
            if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
 | 
						|
                slot.stop           = STOP_TYPE_LIMIT;
 | 
						|
                slot.has_next_token = false;
 | 
						|
 | 
						|
                SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // if context shift is disabled, we stop when it reaches the context limit
 | 
						|
        if (slot.n_past >= slot.n_ctx) {
 | 
						|
            slot.truncated      = true;
 | 
						|
            slot.stop           = STOP_TYPE_LIMIT;
 | 
						|
            slot.has_next_token = false;
 | 
						|
 | 
						|
            SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
 | 
						|
                    slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
 | 
						|
        }
 | 
						|
 | 
						|
        if (llama_vocab_is_eog(vocab, result.tok)) {
 | 
						|
            slot.stop           = STOP_TYPE_EOS;
 | 
						|
            slot.has_next_token = false;
 | 
						|
 | 
						|
            SLT_DBG(slot, "%s", "stopped by EOS\n");
 | 
						|
        }
 | 
						|
 | 
						|
        const auto n_ctx_train = llama_model_n_ctx_train(model);
 | 
						|
 | 
						|
        if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
 | 
						|
            slot.truncated      = true;
 | 
						|
            slot.stop           = STOP_TYPE_LIMIT;
 | 
						|
            slot.has_next_token = false; // stop prediction
 | 
						|
 | 
						|
            SLT_WRN(slot,
 | 
						|
                    "n_predict (%d) is set for infinite generation. "
 | 
						|
                    "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
 | 
						|
                    slot.params.n_predict, n_ctx_train);
 | 
						|
        }
 | 
						|
 | 
						|
        SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
 | 
						|
 | 
						|
        return slot.has_next_token; // continue
 | 
						|
    }
 | 
						|
 | 
						|
    void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
 | 
						|
        size_t n_probs = slot.params.sampling.n_probs;
 | 
						|
        size_t n_vocab = llama_vocab_n_tokens(vocab);
 | 
						|
        if (post_sampling) {
 | 
						|
            const auto * cur_p = common_sampler_get_candidates(slot.smpl);
 | 
						|
            const size_t max_probs = cur_p->size;
 | 
						|
 | 
						|
            // set probability for sampled token
 | 
						|
            for (size_t i = 0; i < max_probs; i++) {
 | 
						|
                if (cur_p->data[i].id == result.tok) {
 | 
						|
                    result.prob = cur_p->data[i].p;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // set probability for top n_probs tokens
 | 
						|
            result.probs.reserve(max_probs);
 | 
						|
            for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
 | 
						|
                result.probs.push_back({
 | 
						|
                    cur_p->data[i].id,
 | 
						|
                    common_token_to_piece(ctx, cur_p->data[i].id, special),
 | 
						|
                    cur_p->data[i].p
 | 
						|
                });
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            // TODO: optimize this with min-p optimization
 | 
						|
            std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
 | 
						|
 | 
						|
            // set probability for sampled token
 | 
						|
            for (size_t i = 0; i < n_vocab; i++) {
 | 
						|
                // set probability for sampled token
 | 
						|
                if (cur[i].id == result.tok) {
 | 
						|
                    result.prob = cur[i].p;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // set probability for top n_probs tokens
 | 
						|
            result.probs.reserve(n_probs);
 | 
						|
            for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
 | 
						|
                result.probs.push_back({
 | 
						|
                    cur[i].id,
 | 
						|
                    common_token_to_piece(ctx, cur[i].id, special),
 | 
						|
                    cur[i].p
 | 
						|
                });
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
 | 
						|
        send_error(task.id, error, type);
 | 
						|
    }
 | 
						|
 | 
						|
    void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
 | 
						|
        send_error(slot.id_task, error, type);
 | 
						|
    }
 | 
						|
 | 
						|
    void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
 | 
						|
        SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
 | 
						|
 | 
						|
        auto res = std::make_unique<server_task_result_error>();
 | 
						|
        res->id       = id_task;
 | 
						|
        res->err_type = type;
 | 
						|
        res->err_msg  = error;
 | 
						|
 | 
						|
        queue_results.send(std::move(res));
 | 
						|
    }
 | 
						|
 | 
						|
    void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
 | 
						|
        auto res = std::make_unique<server_task_result_cmpl_partial>();
 | 
						|
 | 
						|
        res->id      = slot.id_task;
 | 
						|
        res->index   = slot.index;
 | 
						|
        res->content = tkn.text_to_send;
 | 
						|
        res->tokens  = { tkn.tok };
 | 
						|
 | 
						|
        res->n_decoded           = slot.n_decoded;
 | 
						|
        res->n_prompt_tokens     = slot.n_prompt_tokens;
 | 
						|
        res->post_sampling_probs = slot.params.post_sampling_probs;
 | 
						|
 | 
						|
        res->verbose           = slot.params.verbose;
 | 
						|
        res->oaicompat         = slot.params.oaicompat;
 | 
						|
        res->oaicompat_model   = slot.params.oaicompat_model;
 | 
						|
        res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
 | 
						|
 | 
						|
        // populate res.probs_output
 | 
						|
        if (slot.params.sampling.n_probs > 0) {
 | 
						|
            res->prob_output = tkn; // copy the token probs
 | 
						|
        }
 | 
						|
 | 
						|
        // populate timings if this is final response or timings_per_token is enabled
 | 
						|
        if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
 | 
						|
            res->timings = slot.get_timings();
 | 
						|
        }
 | 
						|
 | 
						|
        queue_results.send(std::move(res));
 | 
						|
    }
 | 
						|
 | 
						|
    void send_final_response(server_slot & slot) {
 | 
						|
        auto res = std::make_unique<server_task_result_cmpl_final>();
 | 
						|
        res->id              = slot.id_task;
 | 
						|
        res->id_slot         = slot.id;
 | 
						|
 | 
						|
        res->index           = slot.index;
 | 
						|
        res->content         = std::move(slot.generated_text);
 | 
						|
        res->tokens          = std::move(slot.generated_tokens);
 | 
						|
        res->timings         = slot.get_timings();
 | 
						|
        res->prompt          = common_detokenize(ctx, slot.prompt_tokens, true);
 | 
						|
        res->response_fields = std::move(slot.params.response_fields);
 | 
						|
 | 
						|
        res->truncated           = slot.truncated;
 | 
						|
        res->n_decoded           = slot.n_decoded;
 | 
						|
        res->n_prompt_tokens     = slot.n_prompt_tokens;
 | 
						|
        res->n_tokens_cached     = slot.n_past;
 | 
						|
        res->has_new_line        = slot.has_new_line;
 | 
						|
        res->stopping_word       = slot.stopping_word;
 | 
						|
        res->stop                = slot.stop;
 | 
						|
        res->post_sampling_probs = slot.params.post_sampling_probs;
 | 
						|
 | 
						|
        res->verbose               = slot.params.verbose;
 | 
						|
        res->stream                = slot.params.stream;
 | 
						|
        res->oaicompat             = slot.params.oaicompat;
 | 
						|
        res->oaicompat_model       = slot.params.oaicompat_model;
 | 
						|
        res->oaicompat_cmpl_id     = slot.params.oaicompat_cmpl_id;
 | 
						|
        res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
 | 
						|
        // populate res.probs_output
 | 
						|
        if (slot.params.sampling.n_probs > 0) {
 | 
						|
            if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
 | 
						|
                const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
 | 
						|
 | 
						|
                size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
 | 
						|
                res->probs_output = std::vector<completion_token_output>(
 | 
						|
                        slot.generated_token_probs.begin(),
 | 
						|
                        slot.generated_token_probs.end() - safe_offset);
 | 
						|
            } else {
 | 
						|
                res->probs_output = std::vector<completion_token_output>(
 | 
						|
                        slot.generated_token_probs.begin(),
 | 
						|
                        slot.generated_token_probs.end());
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        res->generation_params = slot.params; // copy the parameters
 | 
						|
 | 
						|
        queue_results.send(std::move(res));
 | 
						|
    }
 | 
						|
 | 
						|
    void send_embedding(const server_slot & slot, const llama_batch & batch) {
 | 
						|
        auto res = std::make_unique<server_task_result_embd>();
 | 
						|
        res->id        = slot.id_task;
 | 
						|
        res->index     = slot.index;
 | 
						|
        res->n_tokens  = slot.n_prompt_tokens;
 | 
						|
        res->oaicompat = slot.params.oaicompat;
 | 
						|
 | 
						|
        const int n_embd = llama_model_n_embd(model);
 | 
						|
 | 
						|
        std::vector<float> embd_res(n_embd, 0.0f);
 | 
						|
 | 
						|
        for (int i = 0; i < batch.n_tokens; ++i) {
 | 
						|
            if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
 | 
						|
            if (embd == NULL) {
 | 
						|
                embd = llama_get_embeddings_ith(ctx, i);
 | 
						|
            }
 | 
						|
 | 
						|
            if (embd == NULL) {
 | 
						|
                SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
 | 
						|
 | 
						|
                res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            // normalize only when there is pooling
 | 
						|
            // TODO: configurable
 | 
						|
            if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
 | 
						|
                common_embd_normalize(embd, embd_res.data(), n_embd, 2);
 | 
						|
                res->embedding.push_back(embd_res);
 | 
						|
            } else {
 | 
						|
                res->embedding.push_back({ embd, embd + n_embd });
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        SLT_DBG(slot, "%s", "sending embeddings\n");
 | 
						|
 | 
						|
        queue_results.send(std::move(res));
 | 
						|
    }
 | 
						|
 | 
						|
    void send_rerank(const server_slot & slot, const llama_batch & batch) {
 | 
						|
        auto res = std::make_unique<server_task_result_rerank>();
 | 
						|
        res->id    = slot.id_task;
 | 
						|
        res->index = slot.index;
 | 
						|
        res->n_tokens = slot.n_prompt_tokens;
 | 
						|
 | 
						|
        for (int i = 0; i < batch.n_tokens; ++i) {
 | 
						|
            if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
 | 
						|
            if (embd == NULL) {
 | 
						|
                embd = llama_get_embeddings_ith(ctx, i);
 | 
						|
            }
 | 
						|
 | 
						|
            if (embd == NULL) {
 | 
						|
                SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
 | 
						|
 | 
						|
                res->score = -1e6;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            res->score = embd[0];
 | 
						|
        }
 | 
						|
 | 
						|
        SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
 | 
						|
 | 
						|
        queue_results.send(std::move(res));
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Functions to create new task(s) and receive result(s)
 | 
						|
    //
 | 
						|
 | 
						|
    void cancel_tasks(const std::unordered_set<int> & id_tasks) {
 | 
						|
        std::vector<server_task> cancel_tasks;
 | 
						|
        cancel_tasks.reserve(id_tasks.size());
 | 
						|
        for (const auto & id_task : id_tasks) {
 | 
						|
            SRV_WRN("cancel task, id_task = %d\n", id_task);
 | 
						|
 | 
						|
            server_task task(SERVER_TASK_TYPE_CANCEL);
 | 
						|
            task.id_target = id_task;
 | 
						|
            queue_results.remove_waiting_task_id(id_task);
 | 
						|
            cancel_tasks.push_back(std::move(task));
 | 
						|
        }
 | 
						|
        // push to beginning of the queue, so it has highest priority
 | 
						|
        queue_tasks.post(std::move(cancel_tasks), true);
 | 
						|
    }
 | 
						|
 | 
						|
    // receive the results from task(s)
 | 
						|
    void receive_multi_results(
 | 
						|
            const std::unordered_set<int> & id_tasks,
 | 
						|
            const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
 | 
						|
            const std::function<void(json)> & error_handler,
 | 
						|
            const std::function<bool()> & is_connection_closed) {
 | 
						|
        std::vector<server_task_result_ptr> results(id_tasks.size());
 | 
						|
        for (int i = 0; i < (int)id_tasks.size(); i++) {
 | 
						|
            server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
 | 
						|
 | 
						|
            if (is_connection_closed()) {
 | 
						|
                cancel_tasks(id_tasks);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            if (result == nullptr) {
 | 
						|
                i--; // retry
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            if (result->is_error()) {
 | 
						|
                error_handler(result->to_json());
 | 
						|
                cancel_tasks(id_tasks);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            GGML_ASSERT(
 | 
						|
                dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
 | 
						|
                || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
 | 
						|
                || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
 | 
						|
            );
 | 
						|
            const size_t idx = result->get_index();
 | 
						|
            GGML_ASSERT(idx < results.size() && "index out of range");
 | 
						|
            results[idx] = std::move(result);
 | 
						|
        }
 | 
						|
        result_handler(results);
 | 
						|
    }
 | 
						|
 | 
						|
    // receive the results from task(s), in stream mode
 | 
						|
    void receive_cmpl_results_stream(
 | 
						|
            const std::unordered_set<int> & id_tasks,
 | 
						|
            const std::function<bool(server_task_result_ptr&)> & result_handler,
 | 
						|
            const std::function<void(json)> & error_handler,
 | 
						|
            const std::function<bool()> & is_connection_closed) {
 | 
						|
        size_t n_finished = 0;
 | 
						|
        while (true) {
 | 
						|
            server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
 | 
						|
 | 
						|
            if (is_connection_closed()) {
 | 
						|
                cancel_tasks(id_tasks);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            if (result == nullptr) {
 | 
						|
                continue; // retry
 | 
						|
            }
 | 
						|
 | 
						|
            if (result->is_error()) {
 | 
						|
                error_handler(result->to_json());
 | 
						|
                cancel_tasks(id_tasks);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            GGML_ASSERT(
 | 
						|
                dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
 | 
						|
                || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
 | 
						|
            );
 | 
						|
            if (!result_handler(result)) {
 | 
						|
                cancel_tasks(id_tasks);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            if (result->is_stop()) {
 | 
						|
                if (++n_finished == id_tasks.size()) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Functions to process the task
 | 
						|
    //
 | 
						|
 | 
						|
    void process_single_task(server_task && task) {
 | 
						|
        switch (task.type) {
 | 
						|
            case SERVER_TASK_TYPE_COMPLETION:
 | 
						|
            case SERVER_TASK_TYPE_INFILL:
 | 
						|
            case SERVER_TASK_TYPE_EMBEDDING:
 | 
						|
            case SERVER_TASK_TYPE_RERANK:
 | 
						|
                {
 | 
						|
                    const int id_slot = task.id_selected_slot;
 | 
						|
 | 
						|
                    server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
 | 
						|
 | 
						|
                    if (slot == nullptr) {
 | 
						|
                        // if no slot is available, we defer this task for processing later
 | 
						|
                        SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
 | 
						|
                        queue_tasks.defer(std::move(task));
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                    if (slot->is_processing()) {
 | 
						|
                        // if requested slot is unavailable, we defer this task for processing later
 | 
						|
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
 | 
						|
                        queue_tasks.defer(std::move(task));
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (!launch_slot_with_task(*slot, std::move(task))) {
 | 
						|
                        SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                } break;
 | 
						|
            case SERVER_TASK_TYPE_CANCEL:
 | 
						|
                {
 | 
						|
                    // release slot linked with the task id
 | 
						|
                    for (auto & slot : slots) {
 | 
						|
                        if (slot.id_task == task.id_target) {
 | 
						|
                            slot.release();
 | 
						|
                            break;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                } break;
 | 
						|
            case SERVER_TASK_TYPE_NEXT_RESPONSE:
 | 
						|
                {
 | 
						|
                    // do nothing
 | 
						|
                } break;
 | 
						|
            case SERVER_TASK_TYPE_METRICS:
 | 
						|
                {
 | 
						|
                    json slots_data = json::array();
 | 
						|
 | 
						|
                    int n_idle_slots       = 0;
 | 
						|
                    int n_processing_slots = 0;
 | 
						|
 | 
						|
                    for (server_slot & slot : slots) {
 | 
						|
                        json slot_data = slot.to_json();
 | 
						|
 | 
						|
                        if (slot.is_processing()) {
 | 
						|
                            n_processing_slots++;
 | 
						|
                        } else {
 | 
						|
                            n_idle_slots++;
 | 
						|
                        }
 | 
						|
 | 
						|
                        slots_data.push_back(slot_data);
 | 
						|
                    }
 | 
						|
                    SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
 | 
						|
 | 
						|
                    auto res = std::make_unique<server_task_result_metrics>();
 | 
						|
                    res->id                  = task.id;
 | 
						|
                    res->slots_data          = std::move(slots_data);
 | 
						|
                    res->n_idle_slots        = n_idle_slots;
 | 
						|
                    res->n_processing_slots  = n_processing_slots;
 | 
						|
                    res->n_tasks_deferred    = queue_tasks.queue_tasks_deferred.size();
 | 
						|
                    res->t_start             = metrics.t_start;
 | 
						|
 | 
						|
                    res->kv_cache_tokens_count = llama_kv_self_n_tokens(ctx);
 | 
						|
                    res->kv_cache_used_cells   = llama_kv_self_used_cells(ctx);
 | 
						|
 | 
						|
                    res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
 | 
						|
                    res->t_prompt_processing_total       = metrics.t_prompt_processing_total;
 | 
						|
                    res->n_tokens_predicted_total        = metrics.n_tokens_predicted_total;
 | 
						|
                    res->t_tokens_generation_total       = metrics.t_tokens_generation_total;
 | 
						|
 | 
						|
                    res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
 | 
						|
                    res->t_prompt_processing       = metrics.t_prompt_processing;
 | 
						|
                    res->n_tokens_predicted        = metrics.n_tokens_predicted;
 | 
						|
                    res->t_tokens_generation       = metrics.t_tokens_generation;
 | 
						|
 | 
						|
                    res->n_decode_total          = metrics.n_decode_total;
 | 
						|
                    res->n_busy_slots_total      = metrics.n_busy_slots_total;
 | 
						|
 | 
						|
                    if (task.metrics_reset_bucket) {
 | 
						|
                        metrics.reset_bucket();
 | 
						|
                    }
 | 
						|
                    queue_results.send(std::move(res));
 | 
						|
                } break;
 | 
						|
            case SERVER_TASK_TYPE_SLOT_SAVE:
 | 
						|
                {
 | 
						|
                    int id_slot = task.slot_action.slot_id;
 | 
						|
                    server_slot * slot = get_slot_by_id(id_slot);
 | 
						|
                    if (slot == nullptr) {
 | 
						|
                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                    if (slot->is_processing()) {
 | 
						|
                        // if requested slot is unavailable, we defer this task for processing later
 | 
						|
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
 | 
						|
                        queue_tasks.defer(std::move(task));
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
 | 
						|
                    const size_t token_count = slot->cache_tokens.size();
 | 
						|
                    const int64_t t_start = ggml_time_us();
 | 
						|
 | 
						|
                    std::string filename = task.slot_action.filename;
 | 
						|
                    std::string filepath = task.slot_action.filepath;
 | 
						|
 | 
						|
                    const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
 | 
						|
 | 
						|
                    const int64_t t_end = ggml_time_us();
 | 
						|
                    const double t_save_ms = (t_end - t_start) / 1000.0;
 | 
						|
 | 
						|
                    auto res = std::make_unique<server_task_result_slot_save_load>();
 | 
						|
                    res->id       = task.id;
 | 
						|
                    res->id_slot  = id_slot;
 | 
						|
                    res->filename = filename;
 | 
						|
                    res->is_save  = true;
 | 
						|
                    res->n_tokens = token_count;
 | 
						|
                    res->n_bytes  = nwrite;
 | 
						|
                    res->t_ms     = t_save_ms;
 | 
						|
                    queue_results.send(std::move(res));
 | 
						|
                } break;
 | 
						|
            case SERVER_TASK_TYPE_SLOT_RESTORE:
 | 
						|
                {
 | 
						|
                    int id_slot = task.slot_action.slot_id;
 | 
						|
                    server_slot * slot = get_slot_by_id(id_slot);
 | 
						|
                    if (slot == nullptr) {
 | 
						|
                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                    if (slot->is_processing()) {
 | 
						|
                        // if requested slot is unavailable, we defer this task for processing later
 | 
						|
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
 | 
						|
                        queue_tasks.defer(std::move(task));
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
 | 
						|
                    const int64_t t_start = ggml_time_us();
 | 
						|
 | 
						|
                    std::string filename = task.slot_action.filename;
 | 
						|
                    std::string filepath = task.slot_action.filepath;
 | 
						|
 | 
						|
                    slot->cache_tokens.resize(slot->n_ctx);
 | 
						|
                    size_t token_count = 0;
 | 
						|
                    size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
 | 
						|
                    if (nread == 0) {
 | 
						|
                        slot->cache_tokens.resize(0);
 | 
						|
                        send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                    slot->cache_tokens.resize(token_count);
 | 
						|
 | 
						|
                    const int64_t t_end = ggml_time_us();
 | 
						|
                    const double t_restore_ms = (t_end - t_start) / 1000.0;
 | 
						|
 | 
						|
                    auto res = std::make_unique<server_task_result_slot_save_load>();
 | 
						|
                    res->id       = task.id;
 | 
						|
                    res->id_slot  = id_slot;
 | 
						|
                    res->filename = filename;
 | 
						|
                    res->is_save  = false;
 | 
						|
                    res->n_tokens = token_count;
 | 
						|
                    res->n_bytes  = nread;
 | 
						|
                    res->t_ms     = t_restore_ms;
 | 
						|
                    queue_results.send(std::move(res));
 | 
						|
                } break;
 | 
						|
            case SERVER_TASK_TYPE_SLOT_ERASE:
 | 
						|
                {
 | 
						|
                    int id_slot = task.slot_action.slot_id;
 | 
						|
                    server_slot * slot = get_slot_by_id(id_slot);
 | 
						|
                    if (slot == nullptr) {
 | 
						|
                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                    if (slot->is_processing()) {
 | 
						|
                        // if requested slot is unavailable, we defer this task for processing later
 | 
						|
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
 | 
						|
                        queue_tasks.defer(std::move(task));
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Erase token cache
 | 
						|
                    const size_t n_erased = slot->cache_tokens.size();
 | 
						|
                    llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
 | 
						|
                    slot->cache_tokens.clear();
 | 
						|
 | 
						|
                    auto res = std::make_unique<server_task_result_slot_erase>();
 | 
						|
                    res->id       = task.id;
 | 
						|
                    res->id_slot  = id_slot;
 | 
						|
                    res->n_erased = n_erased;
 | 
						|
                    queue_results.send(std::move(res));
 | 
						|
                } break;
 | 
						|
            case SERVER_TASK_TYPE_SET_LORA:
 | 
						|
                {
 | 
						|
                    params_base.lora_adapters = std::move(task.set_lora);
 | 
						|
                    auto res = std::make_unique<server_task_result_apply_lora>();
 | 
						|
                    res->id = task.id;
 | 
						|
                    queue_results.send(std::move(res));
 | 
						|
                } break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    void update_slots() {
 | 
						|
        // check if all slots are idle
 | 
						|
        {
 | 
						|
            bool all_idle = true;
 | 
						|
 | 
						|
            for (auto & slot : slots) {
 | 
						|
                if (slot.is_processing()) {
 | 
						|
                    all_idle = false;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (all_idle) {
 | 
						|
                SRV_INF("%s", "all slots are idle\n");
 | 
						|
                if (clean_kv_cache) {
 | 
						|
                    kv_cache_clear();
 | 
						|
                }
 | 
						|
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            SRV_DBG("%s", "posting NEXT_RESPONSE\n");
 | 
						|
 | 
						|
            server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
 | 
						|
            task.id = queue_tasks.get_new_id();
 | 
						|
            queue_tasks.post(std::move(task));
 | 
						|
        }
 | 
						|
 | 
						|
        // apply context-shift if needed
 | 
						|
        // TODO: simplify and improve
 | 
						|
        for (server_slot & slot : slots) {
 | 
						|
            if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
 | 
						|
                if (!params_base.ctx_shift) {
 | 
						|
                    // this check is redundant (for good)
 | 
						|
                    // we should never get here, because generation should already stopped in process_token()
 | 
						|
                    slot.release();
 | 
						|
                    send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                // Shift context
 | 
						|
                const int n_keep    = slot.params.n_keep + add_bos_token;
 | 
						|
                const int n_left    = slot.n_past - n_keep;
 | 
						|
                const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
 | 
						|
 | 
						|
                SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
 | 
						|
 | 
						|
                llama_kv_self_seq_rm (ctx, slot.id, n_keep            , n_keep + n_discard);
 | 
						|
                llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past,        -n_discard);
 | 
						|
 | 
						|
                if (slot.params.cache_prompt) {
 | 
						|
                    for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
 | 
						|
                        slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
 | 
						|
                    }
 | 
						|
 | 
						|
                    slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
 | 
						|
                }
 | 
						|
 | 
						|
                slot.n_past -= n_discard;
 | 
						|
 | 
						|
                slot.truncated = true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // start populating the batch for this iteration
 | 
						|
        common_batch_clear(batch);
 | 
						|
 | 
						|
        // track if given slot can be batched with slots already in the batch
 | 
						|
        server_slot * slot_batched = nullptr;
 | 
						|
 | 
						|
        auto accept_special_token = [&](server_slot & slot, llama_token token) {
 | 
						|
            return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
 | 
						|
        };
 | 
						|
 | 
						|
        // frist, add sampled tokens from any ongoing sequences
 | 
						|
        for (auto & slot : slots) {
 | 
						|
            if (slot.state != SLOT_STATE_GENERATING) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            // check if we can batch this slot with the previous one
 | 
						|
            if (!slot_batched) {
 | 
						|
                slot_batched = &slot;
 | 
						|
            } else if (!slot_batched->can_batch_with(slot)) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            slot.i_batch = batch.n_tokens;
 | 
						|
 | 
						|
            common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
 | 
						|
 | 
						|
            slot.n_past += 1;
 | 
						|
 | 
						|
            if (slot.params.cache_prompt) {
 | 
						|
                slot.cache_tokens.push_back(slot.sampled);
 | 
						|
            }
 | 
						|
 | 
						|
            SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
 | 
						|
                    slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
 | 
						|
        }
 | 
						|
 | 
						|
        // process in chunks of params.n_batch
 | 
						|
        int32_t n_batch  = llama_n_batch(ctx);
 | 
						|
        int32_t n_ubatch = llama_n_ubatch(ctx);
 | 
						|
 | 
						|
        // next, batch any pending prompts without exceeding n_batch
 | 
						|
        if (params_base.cont_batching || batch.n_tokens == 0) {
 | 
						|
            for (auto & slot : slots) {
 | 
						|
                // check if we can batch this slot with the previous one
 | 
						|
                if (slot.is_processing()) {
 | 
						|
                    if (!slot_batched) {
 | 
						|
                        slot_batched = &slot;
 | 
						|
                    } else if (!slot_batched->can_batch_with(slot)) {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                // this slot still has a prompt to be processed
 | 
						|
                if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
 | 
						|
                    auto & prompt_tokens = slot.prompt_tokens;
 | 
						|
 | 
						|
                    // TODO: maybe move branch to outside of this loop in the future
 | 
						|
                    if (slot.state == SLOT_STATE_STARTED) {
 | 
						|
                        slot.t_start_process_prompt = ggml_time_us();
 | 
						|
                        slot.t_start_generation = 0;
 | 
						|
 | 
						|
                        slot.n_past = 0;
 | 
						|
                        slot.n_prompt_tokens = prompt_tokens.size();
 | 
						|
                        slot.state = SLOT_STATE_PROCESSING_PROMPT;
 | 
						|
 | 
						|
                        SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
 | 
						|
 | 
						|
                        // print prompt tokens (for debugging)
 | 
						|
                        if (1) {
 | 
						|
                            // first 16 tokens (avoid flooding logs)
 | 
						|
                            for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
 | 
						|
                                SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
 | 
						|
                            }
 | 
						|
                        } else {
 | 
						|
                            // all
 | 
						|
                            for (int i = 0; i < (int) prompt_tokens.size(); i++) {
 | 
						|
                                SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
 | 
						|
                        // empty prompt passed -> release the slot and send empty response
 | 
						|
                        if (prompt_tokens.empty()) {
 | 
						|
                            SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
 | 
						|
 | 
						|
                            slot.release();
 | 
						|
                            slot.print_timings();
 | 
						|
                            send_final_response(slot);
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
 | 
						|
                        if (slot.is_non_causal()) {
 | 
						|
                            if (slot.n_prompt_tokens > n_ubatch) {
 | 
						|
                                slot.release();
 | 
						|
                                send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
 | 
						|
                                continue;
 | 
						|
                            }
 | 
						|
 | 
						|
                            if (slot.n_prompt_tokens > slot.n_ctx) {
 | 
						|
                                slot.release();
 | 
						|
                                send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
 | 
						|
                                continue;
 | 
						|
                            }
 | 
						|
                        } else {
 | 
						|
                            if (!params_base.ctx_shift) {
 | 
						|
                                // if context shift is disabled, we make sure prompt size is smaller than KV size
 | 
						|
                                // TODO: there should be a separate parameter that control prompt truncation
 | 
						|
                                //       context shift should be applied only during the generation phase
 | 
						|
                                if (slot.n_prompt_tokens >= slot.n_ctx) {
 | 
						|
                                    slot.release();
 | 
						|
                                    send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
 | 
						|
                                    continue;
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                            if (slot.params.n_keep < 0) {
 | 
						|
                                slot.params.n_keep = slot.n_prompt_tokens;
 | 
						|
                            }
 | 
						|
                            slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
 | 
						|
 | 
						|
                            // if input prompt is too big, truncate it
 | 
						|
                            if (slot.n_prompt_tokens >= slot.n_ctx) {
 | 
						|
                                const int n_left = slot.n_ctx - slot.params.n_keep;
 | 
						|
 | 
						|
                                const int n_block_size = n_left / 2;
 | 
						|
                                const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
 | 
						|
 | 
						|
                                llama_tokens new_tokens(
 | 
						|
                                        prompt_tokens.begin(),
 | 
						|
                                        prompt_tokens.begin() + slot.params.n_keep);
 | 
						|
 | 
						|
                                new_tokens.insert(
 | 
						|
                                        new_tokens.end(),
 | 
						|
                                        prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
 | 
						|
                                        prompt_tokens.end());
 | 
						|
 | 
						|
                                prompt_tokens = std::move(new_tokens);
 | 
						|
 | 
						|
                                slot.truncated = true;
 | 
						|
                                slot.n_prompt_tokens = prompt_tokens.size();
 | 
						|
 | 
						|
                                SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
 | 
						|
 | 
						|
                                GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
 | 
						|
                            }
 | 
						|
 | 
						|
                            if (slot.params.cache_prompt) {
 | 
						|
                                // reuse any previously computed tokens that are common with the new prompt
 | 
						|
                                slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
 | 
						|
 | 
						|
                                // reuse chunks from the cached prompt by shifting their KV cache in the new position
 | 
						|
                                if (params_base.n_cache_reuse > 0) {
 | 
						|
                                    size_t head_c = slot.n_past; // cache
 | 
						|
                                    size_t head_p = slot.n_past; // current prompt
 | 
						|
 | 
						|
                                    SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
 | 
						|
 | 
						|
                                    while (head_c < slot.cache_tokens.size() &&
 | 
						|
                                           head_p < prompt_tokens.size()) {
 | 
						|
 | 
						|
                                        size_t n_match = 0;
 | 
						|
                                        while (head_c + n_match < slot.cache_tokens.size() &&
 | 
						|
                                               head_p + n_match < prompt_tokens.size()     &&
 | 
						|
                                               slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
 | 
						|
 | 
						|
                                            n_match++;
 | 
						|
                                        }
 | 
						|
 | 
						|
                                        if (n_match >= (size_t) params_base.n_cache_reuse) {
 | 
						|
                                            SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
 | 
						|
                                            //for (size_t i = head_p; i < head_p + n_match; i++) {
 | 
						|
                                            //    SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
 | 
						|
                                            //}
 | 
						|
 | 
						|
                                            const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
 | 
						|
 | 
						|
                                            llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
 | 
						|
                                            llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
 | 
						|
 | 
						|
                                            for (size_t i = 0; i < n_match; i++) {
 | 
						|
                                                slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
 | 
						|
                                                slot.n_past++;
 | 
						|
                                            }
 | 
						|
 | 
						|
                                            head_c += n_match;
 | 
						|
                                            head_p += n_match;
 | 
						|
                                        } else {
 | 
						|
                                            head_c += 1;
 | 
						|
                                        }
 | 
						|
                                    }
 | 
						|
 | 
						|
                                    SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
 | 
						|
                        if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
 | 
						|
                            // we have to evaluate at least 1 token to generate logits.
 | 
						|
                            SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
 | 
						|
 | 
						|
                            slot.n_past--;
 | 
						|
                        }
 | 
						|
 | 
						|
                        slot.n_prompt_tokens_processed = 0;
 | 
						|
                    }
 | 
						|
 | 
						|
                    // non-causal tasks require to fit the entire prompt in the physical batch
 | 
						|
                    if (slot.is_non_causal()) {
 | 
						|
                        // cannot fit the prompt in the current batch - will try next iter
 | 
						|
                        if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
 | 
						|
                    // keep only the common part
 | 
						|
                    if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
 | 
						|
                        // could not partially delete (likely using a non-Transformer model)
 | 
						|
                        llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
 | 
						|
 | 
						|
                        // there is no common part left
 | 
						|
                        slot.n_past = 0;
 | 
						|
                    }
 | 
						|
 | 
						|
                    SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
 | 
						|
 | 
						|
                    // remove the non-common part from the cache
 | 
						|
                    slot.cache_tokens.resize(slot.n_past);
 | 
						|
 | 
						|
                    // add prompt tokens for processing in the current batch
 | 
						|
                    while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
 | 
						|
                        // without pooling, we want to output the embeddings for all the tokens in the batch
 | 
						|
                        const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
 | 
						|
 | 
						|
                        common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
 | 
						|
 | 
						|
                        if (slot.params.cache_prompt) {
 | 
						|
                            slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
 | 
						|
                        }
 | 
						|
 | 
						|
                        slot.n_prompt_tokens_processed++;
 | 
						|
                        slot.n_past++;
 | 
						|
                    }
 | 
						|
 | 
						|
                    SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
 | 
						|
 | 
						|
                    // entire prompt has been processed
 | 
						|
                    if (slot.n_past == slot.n_prompt_tokens) {
 | 
						|
                        slot.state = SLOT_STATE_DONE_PROMPT;
 | 
						|
 | 
						|
                        GGML_ASSERT(batch.n_tokens > 0);
 | 
						|
 | 
						|
                        common_sampler_reset(slot.smpl);
 | 
						|
 | 
						|
                        // Process all prompt tokens through sampler system
 | 
						|
                        for (int i = 0; i < slot.n_prompt_tokens; ++i) {
 | 
						|
                            common_sampler_accept(slot.smpl, prompt_tokens[i], false);
 | 
						|
                        }
 | 
						|
 | 
						|
                        // extract the logits only for the last token
 | 
						|
                        batch.logits[batch.n_tokens - 1] = true;
 | 
						|
 | 
						|
                        slot.n_decoded = 0;
 | 
						|
                        slot.i_batch   = batch.n_tokens - 1;
 | 
						|
 | 
						|
                        SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if (batch.n_tokens >= n_batch) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (batch.n_tokens == 0) {
 | 
						|
            SRV_WRN("%s", "no tokens to decode\n");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
 | 
						|
 | 
						|
        if (slot_batched) {
 | 
						|
            // make sure we're in the right embedding mode
 | 
						|
            llama_set_embeddings(ctx, slot_batched->is_non_causal());
 | 
						|
            // apply lora, only need to do it once per batch
 | 
						|
            common_set_adapter_lora(ctx, slot_batched->lora);
 | 
						|
        }
 | 
						|
 | 
						|
        // process the created batch of tokens
 | 
						|
        for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
 | 
						|
            const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
 | 
						|
 | 
						|
            llama_batch batch_view = {
 | 
						|
                n_tokens,
 | 
						|
                batch.token    + i,
 | 
						|
                nullptr,
 | 
						|
                batch.pos      + i,
 | 
						|
                batch.n_seq_id + i,
 | 
						|
                batch.seq_id   + i,
 | 
						|
                batch.logits   + i,
 | 
						|
            };
 | 
						|
 | 
						|
            const int ret = llama_decode(ctx, batch_view);
 | 
						|
            metrics.on_decoded(slots);
 | 
						|
 | 
						|
            if (ret != 0) {
 | 
						|
                if (n_batch == 1 || ret < 0) {
 | 
						|
                    // if you get here, it means the KV cache is full - try increasing it via the context size
 | 
						|
                    SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
 | 
						|
                    for (auto & slot : slots) {
 | 
						|
                        slot.release();
 | 
						|
                        send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
 | 
						|
                    }
 | 
						|
                    break; // break loop of n_batch
 | 
						|
                }
 | 
						|
 | 
						|
                // retry with half the batch size to try to find a free slot in the KV cache
 | 
						|
                n_batch /= 2;
 | 
						|
                i -= n_batch;
 | 
						|
 | 
						|
                SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
 | 
						|
 | 
						|
                continue; // continue loop of n_batch
 | 
						|
            }
 | 
						|
 | 
						|
            for (auto & slot : slots) {
 | 
						|
                if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
 | 
						|
                    continue; // continue loop of slots
 | 
						|
                }
 | 
						|
 | 
						|
                if (slot.state == SLOT_STATE_DONE_PROMPT) {
 | 
						|
                    if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
 | 
						|
                        // prompt evaluated for embedding
 | 
						|
                        send_embedding(slot, batch_view);
 | 
						|
                        slot.release();
 | 
						|
                        slot.i_batch = -1;
 | 
						|
                        continue; // continue loop of slots
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
 | 
						|
                        send_rerank(slot, batch_view);
 | 
						|
                        slot.release();
 | 
						|
                        slot.i_batch = -1;
 | 
						|
                        continue; // continue loop of slots
 | 
						|
                    }
 | 
						|
 | 
						|
                    // prompt evaluated for next-token prediction
 | 
						|
                    slot.state = SLOT_STATE_GENERATING;
 | 
						|
                } else if (slot.state != SLOT_STATE_GENERATING) {
 | 
						|
                    continue; // continue loop of slots
 | 
						|
                }
 | 
						|
 | 
						|
                const int tok_idx = slot.i_batch - i;
 | 
						|
 | 
						|
                llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
 | 
						|
 | 
						|
                slot.i_batch = -1;
 | 
						|
 | 
						|
                common_sampler_accept(slot.smpl, id, true);
 | 
						|
 | 
						|
                slot.n_decoded += 1;
 | 
						|
 | 
						|
                const int64_t t_current = ggml_time_us();
 | 
						|
 | 
						|
                if (slot.n_decoded == 1) {
 | 
						|
                    slot.t_start_generation = t_current;
 | 
						|
                    slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
 | 
						|
                    metrics.on_prompt_eval(slot);
 | 
						|
                }
 | 
						|
 | 
						|
                slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
 | 
						|
 | 
						|
                completion_token_output result;
 | 
						|
                result.tok          = id;
 | 
						|
                result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
 | 
						|
                result.prob         = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
 | 
						|
 | 
						|
                if (slot.params.sampling.n_probs > 0) {
 | 
						|
                    populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
 | 
						|
                }
 | 
						|
 | 
						|
                if (!process_token(result, slot)) {
 | 
						|
                    // release slot because of stop condition
 | 
						|
                    slot.release();
 | 
						|
                    slot.print_timings();
 | 
						|
                    send_final_response(slot);
 | 
						|
                    metrics.on_prediction(slot);
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // do speculative decoding
 | 
						|
            for (auto & slot : slots) {
 | 
						|
                if (!slot.is_processing() || !slot.can_speculate()) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                if (slot.state != SLOT_STATE_GENERATING) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                // determine the max draft that fits the current slot state
 | 
						|
                int n_draft_max = slot.params.speculative.n_max;
 | 
						|
 | 
						|
                // note: n_past is not yet increased for the `id` token sampled above
 | 
						|
                //       also, need to leave space for 1 extra token to allow context shifts
 | 
						|
                n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
 | 
						|
 | 
						|
                if (slot.n_remaining > 0) {
 | 
						|
                    n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
 | 
						|
                }
 | 
						|
 | 
						|
                SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
 | 
						|
 | 
						|
                if (n_draft_max < slot.params.speculative.n_min) {
 | 
						|
                    SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
 | 
						|
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                llama_token id = slot.sampled;
 | 
						|
 | 
						|
                struct common_speculative_params params_spec;
 | 
						|
                params_spec.n_draft   = n_draft_max;
 | 
						|
                params_spec.n_reuse   = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
 | 
						|
                params_spec.p_min     = slot.params.speculative.p_min;
 | 
						|
 | 
						|
                llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
 | 
						|
 | 
						|
                // keep track of total number of tokens generated in the draft
 | 
						|
                slot.n_draft_total += draft.size();
 | 
						|
 | 
						|
                // ignore small drafts
 | 
						|
                if (slot.params.speculative.n_min > (int) draft.size()) {
 | 
						|
                    SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
 | 
						|
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                // construct the speculation batch
 | 
						|
                common_batch_clear(slot.batch_spec);
 | 
						|
                common_batch_add  (slot.batch_spec, id, slot.n_past, { slot.id }, true);
 | 
						|
 | 
						|
                for (size_t i = 0; i < draft.size(); ++i) {
 | 
						|
                    common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
 | 
						|
                }
 | 
						|
 | 
						|
                SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
 | 
						|
 | 
						|
                llama_decode(ctx, slot.batch_spec);
 | 
						|
 | 
						|
                // the accepted tokens from the speculation
 | 
						|
                const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
 | 
						|
 | 
						|
                slot.n_past    += ids.size();
 | 
						|
                slot.n_decoded += ids.size();
 | 
						|
 | 
						|
                // update how many tokens out of draft was accepted
 | 
						|
                slot.n_draft_accepted += ids.size() - 1;
 | 
						|
 | 
						|
                slot.cache_tokens.push_back(id);
 | 
						|
                slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
 | 
						|
 | 
						|
                llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
 | 
						|
 | 
						|
                for (size_t i = 0; i < ids.size(); ++i) {
 | 
						|
                    completion_token_output result;
 | 
						|
 | 
						|
                    result.tok          = ids[i];
 | 
						|
                    result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
 | 
						|
                    result.prob         = 1.0f; // set later
 | 
						|
 | 
						|
                    // TODO: set result.probs
 | 
						|
 | 
						|
                    if (!process_token(result, slot)) {
 | 
						|
                        // release slot because of stop condition
 | 
						|
                        slot.release();
 | 
						|
                        slot.print_timings();
 | 
						|
                        send_final_response(slot);
 | 
						|
                        metrics.on_prediction(slot);
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        SRV_DBG("%s", "run slots completed\n");
 | 
						|
    }
 | 
						|
 | 
						|
    json model_meta() const {
 | 
						|
        return json {
 | 
						|
            {"vocab_type",  llama_vocab_type       (vocab)},
 | 
						|
            {"n_vocab",     llama_vocab_n_tokens   (vocab)},
 | 
						|
            {"n_ctx_train", llama_model_n_ctx_train(model)},
 | 
						|
            {"n_embd",      llama_model_n_embd     (model)},
 | 
						|
            {"n_params",    llama_model_n_params   (model)},
 | 
						|
            {"size",        llama_model_size       (model)},
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
 | 
						|
    // skip GH copilot requests when using default port
 | 
						|
    if (req.path == "/v1/health" || req.path == "/v1/completions") {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
 | 
						|
 | 
						|
    SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
 | 
						|
 | 
						|
    SRV_DBG("request:  %s\n", req.body.c_str());
 | 
						|
    SRV_DBG("response: %s\n", res.body.c_str());
 | 
						|
}
 | 
						|
 | 
						|
std::function<void(int)> shutdown_handler;
 | 
						|
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
 | 
						|
 | 
						|
inline void signal_handler(int signal) {
 | 
						|
    if (is_terminating.test_and_set()) {
 | 
						|
        // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
 | 
						|
        // this is for better developer experience, we can remove when the server is stable enough
 | 
						|
        fprintf(stderr, "Received second interrupt, terminating immediately.\n");
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    shutdown_handler(signal);
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    // own arguments required by this example
 | 
						|
    common_params params;
 | 
						|
 | 
						|
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    common_init();
 | 
						|
 | 
						|
    // struct that contains llama context and inference
 | 
						|
    server_context ctx_server;
 | 
						|
 | 
						|
    llama_backend_init();
 | 
						|
    llama_numa_init(params.numa);
 | 
						|
 | 
						|
    LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
 | 
						|
    LOG_INF("\n");
 | 
						|
    LOG_INF("%s\n", common_params_get_system_info(params).c_str());
 | 
						|
    LOG_INF("\n");
 | 
						|
 | 
						|
    std::unique_ptr<httplib::Server> svr;
 | 
						|
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
 | 
						|
    if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
 | 
						|
        LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
 | 
						|
        svr.reset(
 | 
						|
            new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
 | 
						|
        );
 | 
						|
    } else {
 | 
						|
        LOG_INF("Running without SSL\n");
 | 
						|
        svr.reset(new httplib::Server());
 | 
						|
    }
 | 
						|
#else
 | 
						|
    if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
 | 
						|
        LOG_ERR("Server is built without SSL support\n");
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    svr.reset(new httplib::Server());
 | 
						|
#endif
 | 
						|
 | 
						|
    std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
 | 
						|
 | 
						|
    svr->set_default_headers({{"Server", "llama.cpp"}});
 | 
						|
    svr->set_logger(log_server_request);
 | 
						|
 | 
						|
    auto res_error = [](httplib::Response & res, const json & error_data) {
 | 
						|
        json final_response {{"error", error_data}};
 | 
						|
        res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
 | 
						|
        res.status = json_value(error_data, "code", 500);
 | 
						|
    };
 | 
						|
 | 
						|
    auto res_ok = [](httplib::Response & res, const json & data) {
 | 
						|
        res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
 | 
						|
        res.status = 200;
 | 
						|
    };
 | 
						|
 | 
						|
    svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
 | 
						|
        std::string message;
 | 
						|
        try {
 | 
						|
            std::rethrow_exception(ep);
 | 
						|
        } catch (const std::exception & e) {
 | 
						|
            message = e.what();
 | 
						|
        } catch (...) {
 | 
						|
            message = "Unknown Exception";
 | 
						|
        }
 | 
						|
 | 
						|
        try {
 | 
						|
            json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
 | 
						|
            LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
 | 
						|
            res_error(res, formatted_error);
 | 
						|
        } catch (const std::exception & e) {
 | 
						|
            LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
 | 
						|
        }
 | 
						|
    });
 | 
						|
 | 
						|
    svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
 | 
						|
        if (res.status == 404) {
 | 
						|
            res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
 | 
						|
        }
 | 
						|
        // for other error codes, we skip processing here because it's already done by res_error()
 | 
						|
    });
 | 
						|
 | 
						|
    // set timeouts and change hostname and port
 | 
						|
    svr->set_read_timeout (params.timeout_read);
 | 
						|
    svr->set_write_timeout(params.timeout_write);
 | 
						|
 | 
						|
    std::unordered_map<std::string, std::string> log_data;
 | 
						|
 | 
						|
    log_data["hostname"] = params.hostname;
 | 
						|
    log_data["port"]     = std::to_string(params.port);
 | 
						|
 | 
						|
    if (params.api_keys.size() == 1) {
 | 
						|
        auto key = params.api_keys[0];
 | 
						|
        log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
 | 
						|
    } else if (params.api_keys.size() > 1) {
 | 
						|
        log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
 | 
						|
    }
 | 
						|
 | 
						|
    // Necessary similarity of prompt for slot selection
 | 
						|
    ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
 | 
						|
 | 
						|
    //
 | 
						|
    // Middlewares
 | 
						|
    //
 | 
						|
 | 
						|
    auto middleware_validate_api_key = [¶ms, &res_error](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        static const std::unordered_set<std::string> public_endpoints = {
 | 
						|
            "/health",
 | 
						|
            "/models",
 | 
						|
            "/v1/models",
 | 
						|
        };
 | 
						|
 | 
						|
        // If API key is not set, skip validation
 | 
						|
        if (params.api_keys.empty()) {
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        // If path is public or is static file, skip validation
 | 
						|
        if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        // Check for API key in the header
 | 
						|
        auto auth_header = req.get_header_value("Authorization");
 | 
						|
 | 
						|
        std::string prefix = "Bearer ";
 | 
						|
        if (auth_header.substr(0, prefix.size()) == prefix) {
 | 
						|
            std::string received_api_key = auth_header.substr(prefix.size());
 | 
						|
            if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
 | 
						|
                return true; // API key is valid
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // API key is invalid or not provided
 | 
						|
        res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
 | 
						|
 | 
						|
        LOG_WRN("Unauthorized: Invalid API Key\n");
 | 
						|
 | 
						|
        return false;
 | 
						|
    };
 | 
						|
 | 
						|
    auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        server_state current_state = state.load();
 | 
						|
        if (current_state == SERVER_STATE_LOADING_MODEL) {
 | 
						|
            auto tmp = string_split<std::string>(req.path, '.');
 | 
						|
            if (req.path == "/" || tmp.back() == "html") {
 | 
						|
                res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
 | 
						|
                res.status = 503;
 | 
						|
            } else {
 | 
						|
                res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
 | 
						|
            }
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    };
 | 
						|
 | 
						|
    // register server middlewares
 | 
						|
    svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
 | 
						|
        // If this is OPTIONS request, skip validation because browsers don't include Authorization header
 | 
						|
        if (req.method == "OPTIONS") {
 | 
						|
            res.set_header("Access-Control-Allow-Credentials", "true");
 | 
						|
            res.set_header("Access-Control-Allow-Methods",     "GET, POST");
 | 
						|
            res.set_header("Access-Control-Allow-Headers",     "*");
 | 
						|
            res.set_content("", "text/html"); // blank response, no data
 | 
						|
            return httplib::Server::HandlerResponse::Handled; // skip further processing
 | 
						|
        }
 | 
						|
        if (!middleware_server_state(req, res)) {
 | 
						|
            return httplib::Server::HandlerResponse::Handled;
 | 
						|
        }
 | 
						|
        if (!middleware_validate_api_key(req, res)) {
 | 
						|
            return httplib::Server::HandlerResponse::Handled;
 | 
						|
        }
 | 
						|
        return httplib::Server::HandlerResponse::Unhandled;
 | 
						|
    });
 | 
						|
 | 
						|
    //
 | 
						|
    // Route handlers (or controllers)
 | 
						|
    //
 | 
						|
 | 
						|
    const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
 | 
						|
        // error and loading states are handled by middleware
 | 
						|
        json health = {{"status", "ok"}};
 | 
						|
        res_ok(res, health);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        if (!params.endpoint_slots) {
 | 
						|
            res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        // request slots data using task queue
 | 
						|
        int task_id = ctx_server.queue_tasks.get_new_id();
 | 
						|
        {
 | 
						|
            server_task task(SERVER_TASK_TYPE_METRICS);
 | 
						|
            task.id = task_id;
 | 
						|
            ctx_server.queue_results.add_waiting_task_id(task_id);
 | 
						|
            ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
 | 
						|
        }
 | 
						|
 | 
						|
        // get the result
 | 
						|
        server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
 | 
						|
        ctx_server.queue_results.remove_waiting_task_id(task_id);
 | 
						|
 | 
						|
        if (result->is_error()) {
 | 
						|
            res_error(res, result->to_json());
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        // TODO: get rid of this dynamic_cast
 | 
						|
        auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
 | 
						|
        GGML_ASSERT(res_metrics != nullptr);
 | 
						|
 | 
						|
        // optionally return "fail_on_no_slot" error
 | 
						|
        if (req.has_param("fail_on_no_slot")) {
 | 
						|
            if (res_metrics->n_idle_slots == 0) {
 | 
						|
                res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        res_ok(res, res_metrics->slots_data);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
 | 
						|
        if (!params.endpoint_metrics) {
 | 
						|
            res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        // request slots data using task queue
 | 
						|
        int task_id = ctx_server.queue_tasks.get_new_id();
 | 
						|
        {
 | 
						|
            server_task task(SERVER_TASK_TYPE_METRICS);
 | 
						|
            task.id = task_id;
 | 
						|
            ctx_server.queue_results.add_waiting_task_id(task_id);
 | 
						|
            ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
 | 
						|
        }
 | 
						|
 | 
						|
        // get the result
 | 
						|
        server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
 | 
						|
        ctx_server.queue_results.remove_waiting_task_id(task_id);
 | 
						|
 | 
						|
        if (result->is_error()) {
 | 
						|
            res_error(res, result->to_json());
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        // TODO: get rid of this dynamic_cast
 | 
						|
        auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
 | 
						|
        GGML_ASSERT(res_metrics != nullptr);
 | 
						|
 | 
						|
        // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
 | 
						|
        json all_metrics_def = json {
 | 
						|
            {"counter", {{
 | 
						|
                    {"name",  "prompt_tokens_total"},
 | 
						|
                    {"help",  "Number of prompt tokens processed."},
 | 
						|
                    {"value",  (uint64_t) res_metrics->n_prompt_tokens_processed_total}
 | 
						|
            }, {
 | 
						|
                    {"name",  "prompt_seconds_total"},
 | 
						|
                    {"help",  "Prompt process time"},
 | 
						|
                    {"value",  (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
 | 
						|
            }, {
 | 
						|
                    {"name",  "tokens_predicted_total"},
 | 
						|
                    {"help",  "Number of generation tokens processed."},
 | 
						|
                    {"value",  (uint64_t) res_metrics->n_tokens_predicted_total}
 | 
						|
            }, {
 | 
						|
                    {"name",  "tokens_predicted_seconds_total"},
 | 
						|
                    {"help",  "Predict process time"},
 | 
						|
                    {"value",  (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
 | 
						|
            }, {
 | 
						|
                    {"name",  "n_decode_total"},
 | 
						|
                    {"help",  "Total number of llama_decode() calls"},
 | 
						|
                    {"value",  res_metrics->n_decode_total}
 | 
						|
            }, {
 | 
						|
                    {"name",  "n_busy_slots_per_decode"},
 | 
						|
                    {"help",  "Average number of busy slots per llama_decode() call"},
 | 
						|
                    {"value",  (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
 | 
						|
            }}},
 | 
						|
            {"gauge", {{
 | 
						|
                    {"name",  "prompt_tokens_seconds"},
 | 
						|
                    {"help",  "Average prompt throughput in tokens/s."},
 | 
						|
                    {"value",  res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
 | 
						|
            },{
 | 
						|
                    {"name",  "predicted_tokens_seconds"},
 | 
						|
                    {"help",  "Average generation throughput in tokens/s."},
 | 
						|
                    {"value",  res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
 | 
						|
            },{
 | 
						|
                    {"name",  "kv_cache_usage_ratio"},
 | 
						|
                    {"help",  "KV-cache usage. 1 means 100 percent usage."},
 | 
						|
                    {"value",  1. * res_metrics->kv_cache_used_cells / params.n_ctx}
 | 
						|
            },{
 | 
						|
                    {"name",  "kv_cache_tokens"},
 | 
						|
                    {"help",  "KV-cache tokens."},
 | 
						|
                    {"value",  (uint64_t) res_metrics->kv_cache_tokens_count}
 | 
						|
            },{
 | 
						|
                    {"name",  "requests_processing"},
 | 
						|
                    {"help",  "Number of requests processing."},
 | 
						|
                    {"value",  (uint64_t) res_metrics->n_processing_slots}
 | 
						|
            },{
 | 
						|
                    {"name",  "requests_deferred"},
 | 
						|
                    {"help",  "Number of requests deferred."},
 | 
						|
                    {"value",  (uint64_t) res_metrics->n_tasks_deferred}
 | 
						|
            }}}
 | 
						|
        };
 | 
						|
 | 
						|
        std::stringstream prometheus;
 | 
						|
 | 
						|
        for (const auto & el : all_metrics_def.items()) {
 | 
						|
            const auto & type        = el.key();
 | 
						|
            const auto & metrics_def = el.value();
 | 
						|
 | 
						|
            for (const auto & metric_def : metrics_def) {
 | 
						|
                const std::string name = metric_def.at("name");
 | 
						|
                const std::string help = metric_def.at("help");
 | 
						|
 | 
						|
                auto value = json_value(metric_def, "value", 0.);
 | 
						|
                prometheus << "# HELP llamacpp:" << name << " " << help  << "\n"
 | 
						|
                            << "# TYPE llamacpp:" << name << " " << type  << "\n"
 | 
						|
                            << "llamacpp:"        << name << " " << value << "\n";
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
 | 
						|
 | 
						|
        res.set_content(prometheus.str(), "text/plain; version=0.0.4");
 | 
						|
        res.status = 200; // HTTP OK
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
 | 
						|
        json request_data = json::parse(req.body);
 | 
						|
        std::string filename = request_data.at("filename");
 | 
						|
        if (!fs_validate_filename(filename)) {
 | 
						|
            res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        std::string filepath = params.slot_save_path + filename;
 | 
						|
 | 
						|
        int task_id = ctx_server.queue_tasks.get_new_id();
 | 
						|
        {
 | 
						|
            server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
 | 
						|
            task.id = task_id;
 | 
						|
            task.slot_action.slot_id  = id_slot;
 | 
						|
            task.slot_action.filename = filename;
 | 
						|
            task.slot_action.filepath = filepath;
 | 
						|
 | 
						|
            ctx_server.queue_results.add_waiting_task_id(task_id);
 | 
						|
            ctx_server.queue_tasks.post(std::move(task));
 | 
						|
        }
 | 
						|
 | 
						|
        server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
 | 
						|
        ctx_server.queue_results.remove_waiting_task_id(task_id);
 | 
						|
 | 
						|
        if (result->is_error()) {
 | 
						|
            res_error(res, result->to_json());
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        res_ok(res, result->to_json());
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
 | 
						|
        json request_data = json::parse(req.body);
 | 
						|
        std::string filename = request_data.at("filename");
 | 
						|
        if (!fs_validate_filename(filename)) {
 | 
						|
            res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        std::string filepath = params.slot_save_path + filename;
 | 
						|
 | 
						|
        int task_id = ctx_server.queue_tasks.get_new_id();
 | 
						|
        {
 | 
						|
            server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
 | 
						|
            task.id = task_id;
 | 
						|
            task.slot_action.slot_id  = id_slot;
 | 
						|
            task.slot_action.filename = filename;
 | 
						|
            task.slot_action.filepath = filepath;
 | 
						|
 | 
						|
            ctx_server.queue_results.add_waiting_task_id(task_id);
 | 
						|
            ctx_server.queue_tasks.post(std::move(task));
 | 
						|
        }
 | 
						|
 | 
						|
        server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
 | 
						|
        ctx_server.queue_results.remove_waiting_task_id(task_id);
 | 
						|
 | 
						|
        if (result->is_error()) {
 | 
						|
            res_error(res, result->to_json());
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
 | 
						|
        res_ok(res, result->to_json());
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
 | 
						|
        int task_id = ctx_server.queue_tasks.get_new_id();
 | 
						|
        {
 | 
						|
            server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
 | 
						|
            task.id = task_id;
 | 
						|
            task.slot_action.slot_id = id_slot;
 | 
						|
 | 
						|
            ctx_server.queue_results.add_waiting_task_id(task_id);
 | 
						|
            ctx_server.queue_tasks.post(std::move(task));
 | 
						|
        }
 | 
						|
 | 
						|
        server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
 | 
						|
        ctx_server.queue_results.remove_waiting_task_id(task_id);
 | 
						|
 | 
						|
        if (result->is_error()) {
 | 
						|
            res_error(res, result->to_json());
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
 | 
						|
        res_ok(res, result->to_json());
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_slots_action = [¶ms, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        if (params.slot_save_path.empty()) {
 | 
						|
            res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        std::string id_slot_str = req.path_params.at("id_slot");
 | 
						|
        int id_slot;
 | 
						|
 | 
						|
        try {
 | 
						|
            id_slot = std::stoi(id_slot_str);
 | 
						|
        } catch (const std::exception &) {
 | 
						|
            res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        std::string action = req.get_param_value("action");
 | 
						|
 | 
						|
        if (action == "save") {
 | 
						|
            handle_slots_save(req, res, id_slot);
 | 
						|
        } else if (action == "restore") {
 | 
						|
            handle_slots_restore(req, res, id_slot);
 | 
						|
        } else if (action == "erase") {
 | 
						|
            handle_slots_erase(req, res, id_slot);
 | 
						|
        } else {
 | 
						|
            res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
 | 
						|
        // this endpoint is publicly available, please only return what is safe to be exposed
 | 
						|
        json data = {
 | 
						|
            { "default_generation_settings", ctx_server.default_generation_settings_for_props },
 | 
						|
            { "total_slots",                 ctx_server.params_base.n_parallel },
 | 
						|
            { "model_path",                  ctx_server.params_base.model.path },
 | 
						|
            { "chat_template",               common_chat_templates_source(ctx_server.chat_templates.get()) },
 | 
						|
            { "bos_token",                   common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
 | 
						|
            { "eos_token",                   common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
 | 
						|
            { "build_info",                  build_info },
 | 
						|
        };
 | 
						|
        if (ctx_server.params_base.use_jinja) {
 | 
						|
            if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
 | 
						|
                data["chat_template_tool_use"] = tool_use_src;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        res_ok(res, data);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        if (!ctx_server.params_base.endpoint_props) {
 | 
						|
            res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        json data = json::parse(req.body);
 | 
						|
 | 
						|
        // update any props here
 | 
						|
 | 
						|
        res_ok(res, {{ "success", true }});
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
 | 
						|
        json data = {
 | 
						|
            {
 | 
						|
                "template", common_chat_templates_source(ctx_server.chat_templates.get()),
 | 
						|
            },
 | 
						|
            {
 | 
						|
                "model_info", {
 | 
						|
                    { "llama.context_length", ctx_server.slots.back().n_ctx, },
 | 
						|
                }
 | 
						|
            },
 | 
						|
        };
 | 
						|
 | 
						|
        res_ok(res, data);
 | 
						|
    };
 | 
						|
 | 
						|
    // handle completion-like requests (completion, chat, infill)
 | 
						|
    // we can optionally provide a custom format for partial results and final results
 | 
						|
    const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
 | 
						|
            server_task_type type,
 | 
						|
            json & data,
 | 
						|
            std::function<bool()> is_connection_closed,
 | 
						|
            httplib::Response & res,
 | 
						|
            oaicompat_type oaicompat) {
 | 
						|
        GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
 | 
						|
 | 
						|
        if (ctx_server.params_base.embedding) {
 | 
						|
            res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        auto completion_id = gen_chatcmplid();
 | 
						|
        std::unordered_set<int> task_ids;
 | 
						|
        try {
 | 
						|
            std::vector<server_task> tasks;
 | 
						|
 | 
						|
            const auto & prompt = data.at("prompt");
 | 
						|
            // TODO: this log can become very long, put it behind a flag or think about a more compact format
 | 
						|
            //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
 | 
						|
 | 
						|
            std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
 | 
						|
            tasks.reserve(tokenized_prompts.size());
 | 
						|
            for (size_t i = 0; i < tokenized_prompts.size(); i++) {
 | 
						|
                server_task task = server_task(type);
 | 
						|
 | 
						|
                task.id    = ctx_server.queue_tasks.get_new_id();
 | 
						|
                task.index = i;
 | 
						|
 | 
						|
                task.prompt_tokens    = std::move(tokenized_prompts[i]);
 | 
						|
                task.params           = server_task::params_from_json_cmpl(
 | 
						|
                        ctx_server.ctx,
 | 
						|
                        ctx_server.params_base,
 | 
						|
                        data);
 | 
						|
                task.id_selected_slot = json_value(data, "id_slot", -1);
 | 
						|
 | 
						|
                // OAI-compat
 | 
						|
                task.params.oaicompat                 = oaicompat;
 | 
						|
                task.params.oaicompat_cmpl_id         = completion_id;
 | 
						|
                // oaicompat_model is already populated by params_from_json_cmpl
 | 
						|
 | 
						|
                tasks.push_back(std::move(task));
 | 
						|
            }
 | 
						|
 | 
						|
            task_ids = server_task::get_list_id(tasks);
 | 
						|
            ctx_server.queue_results.add_waiting_tasks(tasks);
 | 
						|
            ctx_server.queue_tasks.post(std::move(tasks));
 | 
						|
        } catch (const std::exception & e) {
 | 
						|
            res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        bool stream = json_value(data, "stream", false);
 | 
						|
 | 
						|
        if (!stream) {
 | 
						|
            ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
 | 
						|
                if (results.size() == 1) {
 | 
						|
                    // single result
 | 
						|
                    res_ok(res, results[0]->to_json());
 | 
						|
                } else {
 | 
						|
                    // multiple results (multitask)
 | 
						|
                    json arr = json::array();
 | 
						|
                    for (auto & res : results) {
 | 
						|
                        arr.push_back(res->to_json());
 | 
						|
                    }
 | 
						|
                    res_ok(res, arr);
 | 
						|
                }
 | 
						|
            }, [&](const json & error_data) {
 | 
						|
                res_error(res, error_data);
 | 
						|
            }, is_connection_closed);
 | 
						|
 | 
						|
            ctx_server.queue_results.remove_waiting_task_ids(task_ids);
 | 
						|
        } else {
 | 
						|
            const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
 | 
						|
                ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
 | 
						|
                    json res_json = result->to_json();
 | 
						|
                    if (res_json.is_array()) {
 | 
						|
                        for (const auto & res : res_json) {
 | 
						|
                            if (!server_sent_event(sink, "data", res)) {
 | 
						|
                                // sending failed (HTTP connection closed), cancel the generation
 | 
						|
                                return false;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        return true;
 | 
						|
                    } else {
 | 
						|
                        return server_sent_event(sink, "data", res_json);
 | 
						|
                    }
 | 
						|
                }, [&](const json & error_data) {
 | 
						|
                    server_sent_event(sink, "error", error_data);
 | 
						|
                }, [&sink]() {
 | 
						|
                    // note: do not use req.is_connection_closed here because req is already destroyed
 | 
						|
                    return !sink.is_writable();
 | 
						|
                });
 | 
						|
                if (oaicompat != OAICOMPAT_TYPE_NONE) {
 | 
						|
                    static const std::string ev_done = "data: [DONE]\n\n";
 | 
						|
                    sink.write(ev_done.data(), ev_done.size());
 | 
						|
                }
 | 
						|
                sink.done();
 | 
						|
                return false;
 | 
						|
            };
 | 
						|
 | 
						|
            auto on_complete = [task_ids, &ctx_server] (bool) {
 | 
						|
                ctx_server.queue_results.remove_waiting_task_ids(task_ids);
 | 
						|
            };
 | 
						|
 | 
						|
            res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        json data = json::parse(req.body);
 | 
						|
        return handle_completions_impl(
 | 
						|
            SERVER_TASK_TYPE_COMPLETION,
 | 
						|
            data,
 | 
						|
            req.is_connection_closed,
 | 
						|
            res,
 | 
						|
            OAICOMPAT_TYPE_NONE);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        json data = oaicompat_completion_params_parse(json::parse(req.body));
 | 
						|
        return handle_completions_impl(
 | 
						|
            SERVER_TASK_TYPE_COMPLETION,
 | 
						|
            data,
 | 
						|
            req.is_connection_closed,
 | 
						|
            res,
 | 
						|
            OAICOMPAT_TYPE_COMPLETION);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        // check model compatibility
 | 
						|
        std::string err;
 | 
						|
        if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
 | 
						|
            err += "prefix token is missing. ";
 | 
						|
        }
 | 
						|
        if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
 | 
						|
            err += "suffix token is missing. ";
 | 
						|
        }
 | 
						|
        if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
 | 
						|
            err += "middle token is missing. ";
 | 
						|
        }
 | 
						|
        if (!err.empty()) {
 | 
						|
            res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        json data = json::parse(req.body);
 | 
						|
 | 
						|
        // validate input
 | 
						|
        if (data.contains("prompt") && !data.at("prompt").is_string()) {
 | 
						|
            // prompt is optional
 | 
						|
            res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
        }
 | 
						|
 | 
						|
        if (!data.contains("input_prefix")) {
 | 
						|
            res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
        }
 | 
						|
 | 
						|
        if (!data.contains("input_suffix")) {
 | 
						|
            res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
        }
 | 
						|
 | 
						|
        if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
 | 
						|
            // input_extra is optional
 | 
						|
            res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        json input_extra = json_value(data, "input_extra", json::array());
 | 
						|
        for (const auto & chunk : input_extra) {
 | 
						|
            // { "text": string, "filename": string }
 | 
						|
            if (!chunk.contains("text") || !chunk.at("text").is_string()) {
 | 
						|
                res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            // filename is optional
 | 
						|
            if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
 | 
						|
                res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        data["input_extra"] = input_extra; // default to empty array if it's not exist
 | 
						|
 | 
						|
        std::string prompt = json_value(data, "prompt", std::string());
 | 
						|
        std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
 | 
						|
        SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
 | 
						|
        data["prompt"] = format_infill(
 | 
						|
            ctx_server.vocab,
 | 
						|
            data.at("input_prefix"),
 | 
						|
            data.at("input_suffix"),
 | 
						|
            data.at("input_extra"),
 | 
						|
            ctx_server.params_base.n_batch,
 | 
						|
            ctx_server.params_base.n_predict,
 | 
						|
            ctx_server.slots[0].n_ctx, // TODO: there should be a better way
 | 
						|
            ctx_server.params_base.spm_infill,
 | 
						|
            tokenized_prompts[0]
 | 
						|
        );
 | 
						|
 | 
						|
        return handle_completions_impl(
 | 
						|
            SERVER_TASK_TYPE_INFILL,
 | 
						|
            data,
 | 
						|
            req.is_connection_closed,
 | 
						|
            res,
 | 
						|
            OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        LOG_DBG("request: %s\n", req.body.c_str());
 | 
						|
        if (ctx_server.params_base.embedding) {
 | 
						|
            res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        auto body = json::parse(req.body);
 | 
						|
        json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
 | 
						|
 | 
						|
        return handle_completions_impl(
 | 
						|
            SERVER_TASK_TYPE_COMPLETION,
 | 
						|
            data,
 | 
						|
            req.is_connection_closed,
 | 
						|
            res,
 | 
						|
            OAICOMPAT_TYPE_CHAT);
 | 
						|
    };
 | 
						|
 | 
						|
    // same with handle_chat_completions, but without inference part
 | 
						|
    const auto handle_apply_template = [&ctx_server, ¶ms, &res_ok](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        auto body = json::parse(req.body);
 | 
						|
        json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
 | 
						|
        res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_models = [¶ms, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
 | 
						|
        json models = {
 | 
						|
            {"object", "list"},
 | 
						|
            {"data", {
 | 
						|
                {
 | 
						|
                    {"id",       params.model_alias.empty() ? params.model.path : params.model_alias},
 | 
						|
                    {"object",   "model"},
 | 
						|
                    {"created",  std::time(0)},
 | 
						|
                    {"owned_by", "llamacpp"},
 | 
						|
                    {"meta",     ctx_server.model_meta()}
 | 
						|
                },
 | 
						|
             }}
 | 
						|
        };
 | 
						|
 | 
						|
        res_ok(res, models);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        const json body = json::parse(req.body);
 | 
						|
 | 
						|
        json tokens_response = json::array();
 | 
						|
        if (body.count("content") != 0) {
 | 
						|
            const bool add_special = json_value(body, "add_special", false);
 | 
						|
            const bool with_pieces = json_value(body, "with_pieces", false);
 | 
						|
 | 
						|
            llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
 | 
						|
 | 
						|
            if (with_pieces) {
 | 
						|
                for (const auto& token : tokens) {
 | 
						|
                    std::string piece = common_token_to_piece(ctx_server.ctx, token);
 | 
						|
                    json piece_json;
 | 
						|
 | 
						|
                    // Check if the piece is valid UTF-8
 | 
						|
                    if (is_valid_utf8(piece)) {
 | 
						|
                        piece_json = piece;
 | 
						|
                    } else {
 | 
						|
                        // If not valid UTF-8, store as array of byte values
 | 
						|
                        piece_json = json::array();
 | 
						|
                        for (unsigned char c : piece) {
 | 
						|
                            piece_json.push_back(static_cast<int>(c));
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
 | 
						|
                    tokens_response.push_back({
 | 
						|
                        {"id", token},
 | 
						|
                        {"piece", piece_json}
 | 
						|
                    });
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                tokens_response = tokens;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        const json data = format_tokenizer_response(tokens_response);
 | 
						|
        res_ok(res, data);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        const json body = json::parse(req.body);
 | 
						|
 | 
						|
        std::string content;
 | 
						|
        if (body.count("tokens") != 0) {
 | 
						|
            const llama_tokens tokens = body.at("tokens");
 | 
						|
            content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
 | 
						|
        }
 | 
						|
 | 
						|
        const json data = format_detokenized_response(content);
 | 
						|
        res_ok(res, data);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
 | 
						|
        const json body = json::parse(req.body);
 | 
						|
 | 
						|
        if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
 | 
						|
            res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        // for the shape of input/content, see tokenize_input_prompts()
 | 
						|
        json prompt;
 | 
						|
        if (body.count("input") != 0) {
 | 
						|
            prompt = body.at("input");
 | 
						|
        } else if (body.contains("content")) {
 | 
						|
            oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
 | 
						|
            prompt = body.at("content");
 | 
						|
        } else {
 | 
						|
            res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        bool use_base64 = false;
 | 
						|
        if (body.count("encoding_format") != 0) {
 | 
						|
            const std::string& format = body.at("encoding_format");
 | 
						|
            if (format == "base64") {
 | 
						|
                use_base64 = true;
 | 
						|
            } else if (format != "float") {
 | 
						|
                res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
 | 
						|
        for (const auto & tokens : tokenized_prompts) {
 | 
						|
            // this check is necessary for models that do not add BOS token to the input
 | 
						|
            if (tokens.empty()) {
 | 
						|
                res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // create and queue the task
 | 
						|
        json responses = json::array();
 | 
						|
        bool error = false;
 | 
						|
        std::unordered_set<int> task_ids;
 | 
						|
        {
 | 
						|
            std::vector<server_task> tasks;
 | 
						|
            for (size_t i = 0; i < tokenized_prompts.size(); i++) {
 | 
						|
                server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
 | 
						|
 | 
						|
                task.id            = ctx_server.queue_tasks.get_new_id();
 | 
						|
                task.index         = i;
 | 
						|
                task.prompt_tokens = std::move(tokenized_prompts[i]);
 | 
						|
 | 
						|
                // OAI-compat
 | 
						|
                task.params.oaicompat = oaicompat;
 | 
						|
 | 
						|
                tasks.push_back(std::move(task));
 | 
						|
            }
 | 
						|
 | 
						|
            task_ids = server_task::get_list_id(tasks);
 | 
						|
            ctx_server.queue_results.add_waiting_tasks(tasks);
 | 
						|
            ctx_server.queue_tasks.post(std::move(tasks));
 | 
						|
        }
 | 
						|
 | 
						|
        // get the result
 | 
						|
        ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
 | 
						|
            for (auto & res : results) {
 | 
						|
                GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
 | 
						|
                responses.push_back(res->to_json());
 | 
						|
            }
 | 
						|
        }, [&](const json & error_data) {
 | 
						|
            res_error(res, error_data);
 | 
						|
            error = true;
 | 
						|
        }, req.is_connection_closed);
 | 
						|
 | 
						|
        ctx_server.queue_results.remove_waiting_task_ids(task_ids);
 | 
						|
 | 
						|
        if (error) {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        // write JSON response
 | 
						|
        json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
 | 
						|
            ? format_embeddings_response_oaicompat(body, responses, use_base64)
 | 
						|
            : json(responses);
 | 
						|
        res_ok(res, root);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
 | 
						|
            res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        const json body = json::parse(req.body);
 | 
						|
 | 
						|
        // TODO: implement
 | 
						|
        //int top_n = 1;
 | 
						|
        //if (body.count("top_n") != 1) {
 | 
						|
        //    top_n = body.at("top_n");
 | 
						|
        //} else {
 | 
						|
        //    res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
        //    return;
 | 
						|
        //}
 | 
						|
 | 
						|
        // if true, use TEI API format, otherwise use Jina API format
 | 
						|
        // Jina: https://jina.ai/reranker/
 | 
						|
        // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
 | 
						|
        bool is_tei_format = body.contains("texts");
 | 
						|
 | 
						|
        json query;
 | 
						|
        if (body.count("query") == 1) {
 | 
						|
            query = body.at("query");
 | 
						|
            if (!query.is_string()) {
 | 
						|
                res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        std::vector<std::string> documents = json_value(body, "documents",
 | 
						|
                                             json_value(body, "texts", std::vector<std::string>()));
 | 
						|
        if (documents.empty()) {
 | 
						|
            res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
 | 
						|
 | 
						|
        // create and queue the task
 | 
						|
        json responses = json::array();
 | 
						|
        bool error = false;
 | 
						|
        std::unordered_set<int> task_ids;
 | 
						|
        {
 | 
						|
            std::vector<server_task> tasks;
 | 
						|
            std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
 | 
						|
            tasks.reserve(tokenized_docs.size());
 | 
						|
            for (size_t i = 0; i < tokenized_docs.size(); i++) {
 | 
						|
                server_task task   = server_task(SERVER_TASK_TYPE_RERANK);
 | 
						|
                task.id            = ctx_server.queue_tasks.get_new_id();
 | 
						|
                task.index         = i;
 | 
						|
                task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
 | 
						|
                tasks.push_back(std::move(task));
 | 
						|
            }
 | 
						|
 | 
						|
            task_ids = server_task::get_list_id(tasks);
 | 
						|
            ctx_server.queue_results.add_waiting_tasks(tasks);
 | 
						|
            ctx_server.queue_tasks.post(std::move(tasks));
 | 
						|
        }
 | 
						|
 | 
						|
        ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
 | 
						|
            for (auto & res : results) {
 | 
						|
                GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
 | 
						|
                responses.push_back(res->to_json());
 | 
						|
            }
 | 
						|
        }, [&](const json & error_data) {
 | 
						|
            res_error(res, error_data);
 | 
						|
            error = true;
 | 
						|
        }, req.is_connection_closed);
 | 
						|
 | 
						|
        if (error) {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        // write JSON response
 | 
						|
        json root = format_response_rerank(
 | 
						|
            body,
 | 
						|
            responses,
 | 
						|
            is_tei_format,
 | 
						|
            documents);
 | 
						|
 | 
						|
        res_ok(res, root);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
 | 
						|
        json result = json::array();
 | 
						|
        const auto & loras = ctx_server.params_base.lora_adapters;
 | 
						|
        for (size_t i = 0; i < loras.size(); ++i) {
 | 
						|
            auto & lora = loras[i];
 | 
						|
            result.push_back({
 | 
						|
                {"id", i},
 | 
						|
                {"path", lora.path},
 | 
						|
                {"scale", lora.scale},
 | 
						|
            });
 | 
						|
        }
 | 
						|
        res_ok(res, result);
 | 
						|
        res.status = 200; // HTTP OK
 | 
						|
    };
 | 
						|
 | 
						|
    const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
 | 
						|
        const json body = json::parse(req.body);
 | 
						|
        if (!body.is_array()) {
 | 
						|
            res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        int task_id = ctx_server.queue_tasks.get_new_id();
 | 
						|
        {
 | 
						|
            server_task task(SERVER_TASK_TYPE_SET_LORA);
 | 
						|
            task.id = task_id;
 | 
						|
            task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
 | 
						|
            ctx_server.queue_results.add_waiting_task_id(task_id);
 | 
						|
            ctx_server.queue_tasks.post(std::move(task));
 | 
						|
        }
 | 
						|
 | 
						|
        // get the result
 | 
						|
        server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
 | 
						|
        ctx_server.queue_results.remove_waiting_task_id(task_id);
 | 
						|
 | 
						|
        if (result->is_error()) {
 | 
						|
            res_error(res, result->to_json());
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
 | 
						|
        res_ok(res, result->to_json());
 | 
						|
    };
 | 
						|
 | 
						|
    //
 | 
						|
    // Router
 | 
						|
    //
 | 
						|
 | 
						|
    if (!params.webui) {
 | 
						|
        LOG_INF("Web UI is disabled\n");
 | 
						|
    } else {
 | 
						|
        // register static assets routes
 | 
						|
        if (!params.public_path.empty()) {
 | 
						|
            // Set the base directory for serving static files
 | 
						|
            bool is_found = svr->set_mount_point("/", params.public_path);
 | 
						|
            if (!is_found) {
 | 
						|
                LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
 | 
						|
                return 1;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            // using embedded static index.html
 | 
						|
            svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
 | 
						|
                if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
 | 
						|
                    res.set_content("Error: gzip is not supported by this browser", "text/plain");
 | 
						|
                } else {
 | 
						|
                    res.set_header("Content-Encoding", "gzip");
 | 
						|
                    // COEP and COOP headers, required by pyodide (python interpreter)
 | 
						|
                    res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
 | 
						|
                    res.set_header("Cross-Origin-Opener-Policy", "same-origin");
 | 
						|
                    res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
 | 
						|
                }
 | 
						|
                return false;
 | 
						|
            });
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // register API routes
 | 
						|
    svr->Get ("/health",              handle_health); // public endpoint (no API key check)
 | 
						|
    svr->Get ("/metrics",             handle_metrics);
 | 
						|
    svr->Get ("/props",               handle_props);
 | 
						|
    svr->Post("/props",               handle_props_change);
 | 
						|
    svr->Post("/api/show",            handle_api_show);
 | 
						|
    svr->Get ("/models",              handle_models); // public endpoint (no API key check)
 | 
						|
    svr->Get ("/v1/models",           handle_models); // public endpoint (no API key check)
 | 
						|
    svr->Post("/completion",          handle_completions); // legacy
 | 
						|
    svr->Post("/completions",         handle_completions);
 | 
						|
    svr->Post("/v1/completions",      handle_completions_oai);
 | 
						|
    svr->Post("/chat/completions",    handle_chat_completions);
 | 
						|
    svr->Post("/v1/chat/completions", handle_chat_completions);
 | 
						|
    svr->Post("/infill",              handle_infill);
 | 
						|
    svr->Post("/embedding",           handle_embeddings); // legacy
 | 
						|
    svr->Post("/embeddings",          handle_embeddings);
 | 
						|
    svr->Post("/v1/embeddings",       handle_embeddings_oai);
 | 
						|
    svr->Post("/rerank",              handle_rerank);
 | 
						|
    svr->Post("/reranking",           handle_rerank);
 | 
						|
    svr->Post("/v1/rerank",           handle_rerank);
 | 
						|
    svr->Post("/v1/reranking",        handle_rerank);
 | 
						|
    svr->Post("/tokenize",            handle_tokenize);
 | 
						|
    svr->Post("/detokenize",          handle_detokenize);
 | 
						|
    svr->Post("/apply-template",      handle_apply_template);
 | 
						|
    // LoRA adapters hotswap
 | 
						|
    svr->Get ("/lora-adapters",       handle_lora_adapters_list);
 | 
						|
    svr->Post("/lora-adapters",       handle_lora_adapters_apply);
 | 
						|
    // Save & load slots
 | 
						|
    svr->Get ("/slots",               handle_slots);
 | 
						|
    svr->Post("/slots/:id_slot",      handle_slots_action);
 | 
						|
 | 
						|
    //
 | 
						|
    // Start the server
 | 
						|
    //
 | 
						|
    if (params.n_threads_http < 1) {
 | 
						|
        // +2 threads for monitoring endpoints
 | 
						|
        params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
 | 
						|
    }
 | 
						|
    log_data["n_threads_http"] =  std::to_string(params.n_threads_http);
 | 
						|
    svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); };
 | 
						|
 | 
						|
    // clean up function, to be called before exit
 | 
						|
    auto clean_up = [&svr, &ctx_server]() {
 | 
						|
        SRV_INF("%s: cleaning up before exit...\n", __func__);
 | 
						|
        svr->stop();
 | 
						|
        ctx_server.queue_results.terminate();
 | 
						|
        llama_backend_free();
 | 
						|
    };
 | 
						|
 | 
						|
    bool was_bound = false;
 | 
						|
    if (string_ends_with(std::string(params.hostname), ".sock")) {
 | 
						|
        LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
 | 
						|
        svr->set_address_family(AF_UNIX);
 | 
						|
        // bind_to_port requires a second arg, any value other than 0 should
 | 
						|
        // simply get ignored
 | 
						|
        was_bound = svr->bind_to_port(params.hostname, 8080);
 | 
						|
    } else {
 | 
						|
        LOG_INF("%s: binding port with default address family\n", __func__);
 | 
						|
        // bind HTTP listen port
 | 
						|
        if (params.port == 0) {
 | 
						|
            int bound_port = svr->bind_to_any_port(params.hostname);
 | 
						|
            if ((was_bound = (bound_port >= 0))) {
 | 
						|
                params.port = bound_port;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            was_bound = svr->bind_to_port(params.hostname, params.port);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!was_bound) {
 | 
						|
        LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
 | 
						|
        clean_up();
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // run the HTTP server in a thread
 | 
						|
    std::thread t([&]() { svr->listen_after_bind(); });
 | 
						|
    svr->wait_until_ready();
 | 
						|
 | 
						|
    LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
 | 
						|
 | 
						|
    // load the model
 | 
						|
    LOG_INF("%s: loading model\n", __func__);
 | 
						|
 | 
						|
    if (!ctx_server.load_model(params)) {
 | 
						|
        clean_up();
 | 
						|
        t.join();
 | 
						|
        LOG_ERR("%s: exiting due to model loading error\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    ctx_server.init();
 | 
						|
    state.store(SERVER_STATE_READY);
 | 
						|
 | 
						|
    LOG_INF("%s: model loaded\n", __func__);
 | 
						|
 | 
						|
    // print sample chat example to make it clear which template is used
 | 
						|
    LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
 | 
						|
        common_chat_templates_source(ctx_server.chat_templates.get()),
 | 
						|
        common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
 | 
						|
 | 
						|
    ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
 | 
						|
        ctx_server.process_single_task(std::move(task));
 | 
						|
    });
 | 
						|
 | 
						|
    ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
 | 
						|
        ctx_server.update_slots();
 | 
						|
    });
 | 
						|
 | 
						|
    shutdown_handler = [&](int) {
 | 
						|
        // this will unblock start_loop()
 | 
						|
        ctx_server.queue_tasks.terminate();
 | 
						|
    };
 | 
						|
 | 
						|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | 
						|
    struct sigaction sigint_action;
 | 
						|
    sigint_action.sa_handler = signal_handler;
 | 
						|
    sigemptyset (&sigint_action.sa_mask);
 | 
						|
    sigint_action.sa_flags = 0;
 | 
						|
    sigaction(SIGINT, &sigint_action, NULL);
 | 
						|
    sigaction(SIGTERM, &sigint_action, NULL);
 | 
						|
#elif defined (_WIN32)
 | 
						|
    auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
 | 
						|
        return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
 | 
						|
    };
 | 
						|
    SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
 | 
						|
#endif
 | 
						|
 | 
						|
    LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
 | 
						|
 | 
						|
    // this call blocks the main thread until queue_tasks.terminate() is called
 | 
						|
    ctx_server.queue_tasks.start_loop();
 | 
						|
 | 
						|
    clean_up();
 | 
						|
    t.join();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |