mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			579 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			579 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
import logging
 | 
						|
import os
 | 
						|
import shutil
 | 
						|
import struct
 | 
						|
import tempfile
 | 
						|
from enum import Enum, auto
 | 
						|
from io import BufferedWriter
 | 
						|
from typing import IO, Any, Sequence, Mapping
 | 
						|
from string import ascii_letters, digits
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from .constants import (
 | 
						|
    GGUF_DEFAULT_ALIGNMENT,
 | 
						|
    GGUF_MAGIC,
 | 
						|
    GGUF_VERSION,
 | 
						|
    GGMLQuantizationType,
 | 
						|
    GGUFEndian,
 | 
						|
    GGUFValueType,
 | 
						|
    Keys,
 | 
						|
    RopeScalingType,
 | 
						|
    PoolingType,
 | 
						|
    TokenType,
 | 
						|
)
 | 
						|
 | 
						|
from .quants import quant_shape_from_byte_shape
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
class WriterState(Enum):
 | 
						|
    EMPTY   = auto()
 | 
						|
    HEADER  = auto()
 | 
						|
    KV_DATA = auto()
 | 
						|
    TI_DATA = auto()
 | 
						|
 | 
						|
 | 
						|
class GGUFWriter:
 | 
						|
    fout: BufferedWriter
 | 
						|
    temp_file: tempfile.SpooledTemporaryFile[bytes] | None
 | 
						|
    tensors: list[np.ndarray[Any, Any]]
 | 
						|
    _simple_value_packing = {
 | 
						|
        GGUFValueType.UINT8:   "B",
 | 
						|
        GGUFValueType.INT8:    "b",
 | 
						|
        GGUFValueType.UINT16:  "H",
 | 
						|
        GGUFValueType.INT16:   "h",
 | 
						|
        GGUFValueType.UINT32:  "I",
 | 
						|
        GGUFValueType.INT32:   "i",
 | 
						|
        GGUFValueType.FLOAT32: "f",
 | 
						|
        GGUFValueType.UINT64:  "Q",
 | 
						|
        GGUFValueType.INT64:   "q",
 | 
						|
        GGUFValueType.FLOAT64: "d",
 | 
						|
        GGUFValueType.BOOL:    "?",
 | 
						|
    }
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self, path: os.PathLike[str] | str, arch: str, use_temp_file: bool = True,
 | 
						|
        endianess: GGUFEndian = GGUFEndian.LITTLE,
 | 
						|
    ):
 | 
						|
        self.fout = open(path, "wb")
 | 
						|
        self.arch = arch
 | 
						|
        self.endianess = endianess
 | 
						|
        self.offset_tensor = 0
 | 
						|
        self.data_alignment = GGUF_DEFAULT_ALIGNMENT
 | 
						|
        self.kv_data = bytearray()
 | 
						|
        self.kv_data_count = 0
 | 
						|
        self.ti_data = bytearray()
 | 
						|
        self.ti_data_count = 0
 | 
						|
        self.ti_names = set()
 | 
						|
        self.use_temp_file = use_temp_file
 | 
						|
        self.temp_file = None
 | 
						|
        self.tensors = []
 | 
						|
        logger.info("gguf: This GGUF file is for {0} Endian only".format(
 | 
						|
            "Big" if self.endianess == GGUFEndian.BIG else "Little",
 | 
						|
        ))
 | 
						|
        self.state = WriterState.EMPTY
 | 
						|
 | 
						|
        self.add_architecture()
 | 
						|
 | 
						|
    def write_header_to_file(self) -> None:
 | 
						|
        if self.state is not WriterState.EMPTY:
 | 
						|
            raise ValueError(f'Expected output file to be empty, got {self.state}')
 | 
						|
 | 
						|
        self._write_packed("<I", GGUF_MAGIC, skip_pack_prefix = True)
 | 
						|
        self._write_packed("I", GGUF_VERSION)
 | 
						|
        self._write_packed("Q", self.ti_data_count)
 | 
						|
        self._write_packed("Q", self.kv_data_count)
 | 
						|
        self.flush()
 | 
						|
        self.state = WriterState.HEADER
 | 
						|
 | 
						|
    def write_kv_data_to_file(self) -> None:
 | 
						|
        if self.state is not WriterState.HEADER:
 | 
						|
            raise ValueError(f'Expected output file to contain the header, got {self.state}')
 | 
						|
 | 
						|
        self.fout.write(self.kv_data)
 | 
						|
        self.flush()
 | 
						|
        self.state = WriterState.KV_DATA
 | 
						|
 | 
						|
    def write_ti_data_to_file(self) -> None:
 | 
						|
        if self.state is not WriterState.KV_DATA:
 | 
						|
            raise ValueError(f'Expected output file to contain KV data, got {self.state}')
 | 
						|
 | 
						|
        self.fout.write(self.ti_data)
 | 
						|
        self.flush()
 | 
						|
        self.state = WriterState.TI_DATA
 | 
						|
 | 
						|
    def add_key(self, key: str) -> None:
 | 
						|
        self.add_val(key, GGUFValueType.STRING, add_vtype=False)
 | 
						|
 | 
						|
    def add_uint8(self, key: str, val: int) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.UINT8)
 | 
						|
 | 
						|
    def add_int8(self, key: str, val: int) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.INT8)
 | 
						|
 | 
						|
    def add_uint16(self, key: str, val: int) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.UINT16)
 | 
						|
 | 
						|
    def add_int16(self, key: str, val: int) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.INT16)
 | 
						|
 | 
						|
    def add_uint32(self, key: str, val: int) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.UINT32)
 | 
						|
 | 
						|
    def add_int32(self, key: str, val: int) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.INT32)
 | 
						|
 | 
						|
    def add_float32(self, key: str, val: float) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.FLOAT32)
 | 
						|
 | 
						|
    def add_uint64(self, key: str, val: int) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.UINT64)
 | 
						|
 | 
						|
    def add_int64(self, key: str, val: int) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.INT64)
 | 
						|
 | 
						|
    def add_float64(self, key: str, val: float) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.FLOAT64)
 | 
						|
 | 
						|
    def add_bool(self, key: str, val: bool) -> None:
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.BOOL)
 | 
						|
 | 
						|
    def add_string(self, key: str, val: str) -> None:
 | 
						|
        if not val:
 | 
						|
            return
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.STRING)
 | 
						|
 | 
						|
    def add_array(self, key: str, val: Sequence[Any]) -> None:
 | 
						|
        if not isinstance(val, Sequence):
 | 
						|
            raise ValueError("Value must be a sequence for array type")
 | 
						|
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.ARRAY)
 | 
						|
 | 
						|
    def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True) -> None:
 | 
						|
        if vtype is None:
 | 
						|
            vtype = GGUFValueType.get_type(val)
 | 
						|
 | 
						|
        if add_vtype:
 | 
						|
            self.kv_data += self._pack("I", vtype)
 | 
						|
            self.kv_data_count += 1
 | 
						|
 | 
						|
        pack_fmt = self._simple_value_packing.get(vtype)
 | 
						|
        if pack_fmt is not None:
 | 
						|
            self.kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
 | 
						|
        elif vtype == GGUFValueType.STRING:
 | 
						|
            encoded_val = val.encode("utf-8") if isinstance(val, str) else val
 | 
						|
            self.kv_data += self._pack("Q", len(encoded_val))
 | 
						|
            self.kv_data += encoded_val
 | 
						|
        elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
 | 
						|
            ltype = GGUFValueType.get_type(val[0])
 | 
						|
            if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
 | 
						|
                raise ValueError("All items in a GGUF array should be of the same type")
 | 
						|
            self.kv_data += self._pack("I", ltype)
 | 
						|
            self.kv_data += self._pack("Q", len(val))
 | 
						|
            for item in val:
 | 
						|
                self.add_val(item, add_vtype=False)
 | 
						|
        else:
 | 
						|
            raise ValueError("Invalid GGUF metadata value type or value")
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def ggml_pad(x: int, n: int) -> int:
 | 
						|
        return ((x + n - 1) // n) * n
 | 
						|
 | 
						|
    def add_tensor_info(
 | 
						|
        self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
 | 
						|
        tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
 | 
						|
    ) -> None:
 | 
						|
        if self.state is not WriterState.EMPTY:
 | 
						|
            raise ValueError(f'Expected output file to be empty, got {self.state}')
 | 
						|
 | 
						|
        if name in self.ti_names:
 | 
						|
            raise ValueError(f'Duplicated tensor name {name}')
 | 
						|
        self.ti_names.add(name)
 | 
						|
 | 
						|
        encoded_name = name.encode("utf-8")
 | 
						|
        self.ti_data += self._pack("Q", len(encoded_name))
 | 
						|
        self.ti_data += encoded_name
 | 
						|
        if raw_dtype is None:
 | 
						|
            if tensor_dtype == np.float16:
 | 
						|
                dtype = GGMLQuantizationType.F16
 | 
						|
            elif tensor_dtype == np.float32:
 | 
						|
                dtype = GGMLQuantizationType.F32
 | 
						|
            elif tensor_dtype == np.float64:
 | 
						|
                dtype = GGMLQuantizationType.F64
 | 
						|
            elif tensor_dtype == np.int8:
 | 
						|
                dtype = GGMLQuantizationType.I8
 | 
						|
            elif tensor_dtype == np.int16:
 | 
						|
                dtype = GGMLQuantizationType.I16
 | 
						|
            elif tensor_dtype == np.int32:
 | 
						|
                dtype = GGMLQuantizationType.I32
 | 
						|
            elif tensor_dtype == np.int64:
 | 
						|
                dtype = GGMLQuantizationType.I64
 | 
						|
            else:
 | 
						|
                raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
 | 
						|
        else:
 | 
						|
            dtype = raw_dtype
 | 
						|
            if tensor_dtype == np.uint8:
 | 
						|
                tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
 | 
						|
        n_dims = len(tensor_shape)
 | 
						|
        self.ti_data += self._pack("I", n_dims)
 | 
						|
        for i in range(n_dims):
 | 
						|
            self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
 | 
						|
        self.ti_data += self._pack("I", dtype)
 | 
						|
        self.ti_data += self._pack("Q", self.offset_tensor)
 | 
						|
        self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
 | 
						|
        self.ti_data_count += 1
 | 
						|
 | 
						|
    def add_tensor(
 | 
						|
        self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
 | 
						|
        raw_dtype: GGMLQuantizationType | None = None,
 | 
						|
    ) -> None:
 | 
						|
        if self.endianess == GGUFEndian.BIG:
 | 
						|
            tensor.byteswap(inplace=True)
 | 
						|
        if self.use_temp_file and self.temp_file is None:
 | 
						|
            fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
 | 
						|
            fp.seek(0)
 | 
						|
            self.temp_file = fp
 | 
						|
 | 
						|
        shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
 | 
						|
        self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
 | 
						|
 | 
						|
        if self.temp_file is None:
 | 
						|
            self.tensors.append(tensor)
 | 
						|
            return
 | 
						|
 | 
						|
        tensor.tofile(self.temp_file)
 | 
						|
        self.write_padding(self.temp_file, tensor.nbytes)
 | 
						|
 | 
						|
    def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None:
 | 
						|
        pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
 | 
						|
        if pad != 0:
 | 
						|
            fp.write(bytes([0] * pad))
 | 
						|
 | 
						|
    def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
 | 
						|
        if self.state is not WriterState.TI_DATA:
 | 
						|
            raise ValueError(f'Expected output file to contain tensor info, got {self.state}')
 | 
						|
 | 
						|
        if self.endianess == GGUFEndian.BIG:
 | 
						|
            tensor.byteswap(inplace=True)
 | 
						|
        self.write_padding(self.fout, self.fout.tell())
 | 
						|
        tensor.tofile(self.fout)
 | 
						|
        self.write_padding(self.fout, tensor.nbytes)
 | 
						|
 | 
						|
    def write_tensors_to_file(self, *, progress: bool = False) -> None:
 | 
						|
        self.write_ti_data_to_file()
 | 
						|
 | 
						|
        self.write_padding(self.fout, self.fout.tell())
 | 
						|
 | 
						|
        if self.temp_file is None:
 | 
						|
            self.tensors.reverse()  # to pop from the "beginning" in constant time
 | 
						|
 | 
						|
            if progress:
 | 
						|
                from tqdm import tqdm
 | 
						|
 | 
						|
                total_bytes = sum(t.nbytes for t in self.tensors)
 | 
						|
 | 
						|
                bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
 | 
						|
 | 
						|
                while True:
 | 
						|
                    try:
 | 
						|
                        tensor = self.tensors.pop()
 | 
						|
                    except IndexError:
 | 
						|
                        break
 | 
						|
                    tensor.tofile(self.fout)
 | 
						|
                    bar.update(tensor.nbytes)
 | 
						|
                    self.write_padding(self.fout, tensor.nbytes)
 | 
						|
                return
 | 
						|
            while True:
 | 
						|
                try:
 | 
						|
                    tensor = self.tensors.pop()
 | 
						|
                except IndexError:
 | 
						|
                    break
 | 
						|
                tensor.tofile(self.fout)
 | 
						|
                self.write_padding(self.fout, tensor.nbytes)
 | 
						|
            return
 | 
						|
 | 
						|
        self.temp_file.seek(0)
 | 
						|
 | 
						|
        shutil.copyfileobj(self.temp_file, self.fout)
 | 
						|
        self.flush()
 | 
						|
        self.temp_file.close()
 | 
						|
 | 
						|
    def flush(self) -> None:
 | 
						|
        self.fout.flush()
 | 
						|
 | 
						|
    def close(self) -> None:
 | 
						|
        self.fout.close()
 | 
						|
 | 
						|
    def add_architecture(self) -> None:
 | 
						|
        self.add_string(Keys.General.ARCHITECTURE, self.arch)
 | 
						|
 | 
						|
    def add_author(self, author: str) -> None:
 | 
						|
        self.add_string(Keys.General.AUTHOR, author)
 | 
						|
 | 
						|
    def add_version(self, version: str) -> None:
 | 
						|
        self.add_string(Keys.General.VERSION, version)
 | 
						|
 | 
						|
    def add_tensor_data_layout(self, layout: str) -> None:
 | 
						|
        self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
 | 
						|
 | 
						|
    def add_url(self, url: str) -> None:
 | 
						|
        self.add_string(Keys.General.URL, url)
 | 
						|
 | 
						|
    def add_description(self, description: str) -> None:
 | 
						|
        self.add_string(Keys.General.DESCRIPTION, description)
 | 
						|
 | 
						|
    def add_licence(self, licence: str) -> None:
 | 
						|
        self.add_string(Keys.General.LICENSE, licence)
 | 
						|
 | 
						|
    def add_source_url(self, url: str) -> None:
 | 
						|
        self.add_string(Keys.General.SOURCE_URL, url)
 | 
						|
 | 
						|
    def add_source_hf_repo(self, repo: str) -> None:
 | 
						|
        self.add_string(Keys.General.SOURCE_HF_REPO, repo)
 | 
						|
 | 
						|
    def add_file_type(self, ftype: int) -> None:
 | 
						|
        self.add_uint32(Keys.General.FILE_TYPE, ftype)
 | 
						|
 | 
						|
    def add_name(self, name: str) -> None:
 | 
						|
        self.add_string(Keys.General.NAME, name)
 | 
						|
 | 
						|
    def add_quantization_version(self, quantization_version: int) -> None:
 | 
						|
        self.add_uint32(
 | 
						|
            Keys.General.QUANTIZATION_VERSION, quantization_version)
 | 
						|
 | 
						|
    def add_custom_alignment(self, alignment: int) -> None:
 | 
						|
        self.data_alignment = alignment
 | 
						|
        self.add_uint32(Keys.General.ALIGNMENT, alignment)
 | 
						|
 | 
						|
    def add_vocab_size(self, size: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)
 | 
						|
 | 
						|
    def add_context_length(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_embedding_length(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_block_count(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_leading_dense_block_count(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_feed_forward_length(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_expert_feed_forward_length(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_parallel_residual(self, use: bool) -> None:
 | 
						|
        self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
 | 
						|
 | 
						|
    def add_head_count(self, count: int) -> None:
 | 
						|
        self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
 | 
						|
 | 
						|
    def add_head_count_kv(self, count: int | Sequence[int]) -> None:
 | 
						|
        if isinstance(count, int):
 | 
						|
            self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
 | 
						|
        else:
 | 
						|
            self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
 | 
						|
 | 
						|
    def add_key_length(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_value_length(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_max_alibi_bias(self, bias: float) -> None:
 | 
						|
        self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)
 | 
						|
 | 
						|
    def add_clamp_kqv(self, value: float) -> None:
 | 
						|
        self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_logit_scale(self, value: float) -> None:
 | 
						|
        self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_expert_count(self, count: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
 | 
						|
 | 
						|
    def add_expert_used_count(self, count: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
 | 
						|
 | 
						|
    def add_expert_shared_count(self, count: int) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
 | 
						|
 | 
						|
    def add_expert_weights_scale(self, value: float) -> None:
 | 
						|
        self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_layer_norm_eps(self, value: float) -> None:
 | 
						|
        self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_layer_norm_rms_eps(self, value: float) -> None:
 | 
						|
        self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_causal_attention(self, value: bool) -> None:
 | 
						|
        self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_q_lora_rank(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_kv_lora_rank(self, length: int) -> None:
 | 
						|
        self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_pooling_type(self, value: PoolingType) -> None:
 | 
						|
        self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
 | 
						|
 | 
						|
    def add_rope_dimension_count(self, count: int) -> None:
 | 
						|
        self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
 | 
						|
 | 
						|
    def add_rope_freq_base(self, value: float) -> None:
 | 
						|
        self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_rope_scaling_type(self, value: RopeScalingType) -> None:
 | 
						|
        self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value)
 | 
						|
 | 
						|
    def add_rope_scaling_factor(self, value: float) -> None:
 | 
						|
        self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_rope_scaling_attn_factors(self, value: Sequence[float]) -> None:
 | 
						|
        self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
 | 
						|
        self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_rope_scaling_finetuned(self, value: bool) -> None:
 | 
						|
        self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
 | 
						|
        self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_ssm_conv_kernel(self, value: int) -> None:
 | 
						|
        self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_ssm_inner_size(self, value: int) -> None:
 | 
						|
        self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_ssm_state_size(self, value: int) -> None:
 | 
						|
        self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_ssm_time_step_rank(self, value: int) -> None:
 | 
						|
        self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_tokenizer_model(self, model: str) -> None:
 | 
						|
        self.add_string(Keys.Tokenizer.MODEL, model)
 | 
						|
 | 
						|
    def add_tokenizer_pre(self, pre: str) -> None:
 | 
						|
        self.add_string(Keys.Tokenizer.PRE, pre)
 | 
						|
 | 
						|
    def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
 | 
						|
        self.add_array(Keys.Tokenizer.LIST, tokens)
 | 
						|
 | 
						|
    def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
 | 
						|
        self.add_array(Keys.Tokenizer.MERGES, merges)
 | 
						|
 | 
						|
    def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
 | 
						|
        self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)
 | 
						|
 | 
						|
    def add_token_type_count(self, value: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value)
 | 
						|
 | 
						|
    def add_token_scores(self, scores: Sequence[float]) -> None:
 | 
						|
        self.add_array(Keys.Tokenizer.SCORES, scores)
 | 
						|
 | 
						|
    def add_bos_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.BOS_ID, id)
 | 
						|
 | 
						|
    def add_eos_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.EOS_ID, id)
 | 
						|
 | 
						|
    def add_unk_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.UNK_ID, id)
 | 
						|
 | 
						|
    def add_sep_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.SEP_ID, id)
 | 
						|
 | 
						|
    def add_pad_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.PAD_ID, id)
 | 
						|
 | 
						|
    def add_cls_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.CLS_ID, id)
 | 
						|
 | 
						|
    def add_mask_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.MASK_ID, id)
 | 
						|
 | 
						|
    def add_add_bos_token(self, value: bool) -> None:
 | 
						|
        self.add_bool(Keys.Tokenizer.ADD_BOS, value)
 | 
						|
 | 
						|
    def add_add_eos_token(self, value: bool) -> None:
 | 
						|
        self.add_bool(Keys.Tokenizer.ADD_EOS, value)
 | 
						|
 | 
						|
    def add_add_space_prefix(self, value: bool) -> None:
 | 
						|
        self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
 | 
						|
 | 
						|
    def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
 | 
						|
        if not isinstance(value, str):
 | 
						|
            template_default = None
 | 
						|
            template_names = set()
 | 
						|
 | 
						|
            for choice in value:
 | 
						|
                name = choice.get('name', '')
 | 
						|
                template = choice.get('template')
 | 
						|
 | 
						|
                # Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it
 | 
						|
                name = ''.join((c if c in ascii_letters + digits else '_' for c in name))
 | 
						|
 | 
						|
                if name and template is not None:
 | 
						|
                    if name == 'default':
 | 
						|
                        template_default = template
 | 
						|
                    else:
 | 
						|
                        template_names.add(name)
 | 
						|
                        self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template)
 | 
						|
 | 
						|
            if template_names:
 | 
						|
                self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names))
 | 
						|
 | 
						|
            if template_default is None:
 | 
						|
                return
 | 
						|
 | 
						|
            value = template_default
 | 
						|
 | 
						|
        self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
 | 
						|
 | 
						|
    def add_prefix_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.PREFIX_ID, id)
 | 
						|
 | 
						|
    def add_suffix_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.SUFFIX_ID, id)
 | 
						|
 | 
						|
    def add_middle_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.MIDDLE_ID, id)
 | 
						|
 | 
						|
    def add_eot_token_id(self, id: int) -> None:
 | 
						|
        self.add_uint32(Keys.Tokenizer.EOT_ID, id)
 | 
						|
 | 
						|
    def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
 | 
						|
        pack_prefix = ''
 | 
						|
        if not skip_pack_prefix:
 | 
						|
            pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
 | 
						|
        return struct.pack(f'{pack_prefix}{fmt}', value)
 | 
						|
 | 
						|
    def _write_packed(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None:
 | 
						|
        self.fout.write(self._pack(fmt, value, skip_pack_prefix))
 |