mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1094 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1094 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import argparse
 | |
| import csv
 | |
| import heapq
 | |
| import json
 | |
| import logging
 | |
| import os
 | |
| import sqlite3
 | |
| import sys
 | |
| from collections.abc import Iterator, Sequence
 | |
| from glob import glob
 | |
| from typing import Any, Optional, Union
 | |
| 
 | |
| try:
 | |
|     import git
 | |
|     from tabulate import tabulate
 | |
| except ImportError as e:
 | |
|     print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
 | |
|     raise e
 | |
| 
 | |
| 
 | |
| logger = logging.getLogger("compare-llama-bench")
 | |
| 
 | |
| # All llama-bench SQL fields
 | |
| LLAMA_BENCH_DB_FIELDS = [
 | |
|     "build_commit", "build_number", "cpu_info",       "gpu_info",   "backends",     "model_filename",
 | |
|     "model_type",   "model_size",   "model_n_params", "n_batch",    "n_ubatch",     "n_threads",
 | |
|     "cpu_mask",     "cpu_strict",   "poll",           "type_k",     "type_v",       "n_gpu_layers",
 | |
|     "split_mode",   "main_gpu",     "no_kv_offload",  "flash_attn", "tensor_split", "tensor_buft_overrides",
 | |
|     "use_mmap",     "embeddings",   "no_op_offload",  "n_prompt",   "n_gen",        "n_depth",
 | |
|     "test_time",    "avg_ns",       "stddev_ns",      "avg_ts",     "stddev_ts",
 | |
| ]
 | |
| 
 | |
| LLAMA_BENCH_DB_TYPES = [
 | |
|     "TEXT",    "INTEGER", "TEXT",    "TEXT",    "TEXT",    "TEXT",
 | |
|     "TEXT",    "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
 | |
|     "TEXT",    "INTEGER", "INTEGER", "TEXT",    "TEXT",    "INTEGER",
 | |
|     "TEXT",    "INTEGER", "INTEGER", "INTEGER", "TEXT",    "TEXT",
 | |
|     "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
 | |
|     "TEXT",    "INTEGER", "INTEGER", "REAL",    "REAL",
 | |
| ]
 | |
| 
 | |
| # All test-backend-ops SQL fields
 | |
| TEST_BACKEND_OPS_DB_FIELDS = [
 | |
|     "test_time", "build_commit", "backend_name",  "op_name", "op_params", "test_mode",
 | |
|     "supported", "passed",       "error_message", "time_us", "flops",     "bandwidth_gb_s",
 | |
|     "memory_kb", "n_runs"
 | |
| ]
 | |
| 
 | |
| TEST_BACKEND_OPS_DB_TYPES = [
 | |
|     "TEXT",    "TEXT",    "TEXT", "TEXT", "TEXT", "TEXT",
 | |
|     "INTEGER", "INTEGER", "TEXT", "REAL", "REAL", "REAL",
 | |
|     "INTEGER", "INTEGER"
 | |
| ]
 | |
| 
 | |
| assert len(LLAMA_BENCH_DB_FIELDS) == len(LLAMA_BENCH_DB_TYPES)
 | |
| assert len(TEST_BACKEND_OPS_DB_FIELDS) == len(TEST_BACKEND_OPS_DB_TYPES)
 | |
| 
 | |
| # Properties by which to differentiate results per commit for llama-bench:
 | |
| LLAMA_BENCH_KEY_PROPERTIES = [
 | |
|     "cpu_info", "gpu_info", "backends", "n_gpu_layers", "tensor_buft_overrides", "model_filename", "model_type",
 | |
|     "n_batch", "n_ubatch", "embeddings", "cpu_mask", "cpu_strict", "poll", "n_threads", "type_k", "type_v",
 | |
|     "use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen", "n_depth"
 | |
| ]
 | |
| 
 | |
| # Properties by which to differentiate results per commit for test-backend-ops:
 | |
| TEST_BACKEND_OPS_KEY_PROPERTIES = [
 | |
|     "backend_name", "op_name", "op_params", "test_mode"
 | |
| ]
 | |
| 
 | |
| # Properties that are boolean and are converted to Yes/No for the table:
 | |
| LLAMA_BENCH_BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]
 | |
| TEST_BACKEND_OPS_BOOL_PROPERTIES = ["supported", "passed"]
 | |
| 
 | |
| # Header names for the table (llama-bench):
 | |
| LLAMA_BENCH_PRETTY_NAMES = {
 | |
|     "cpu_info": "CPU", "gpu_info": "GPU", "backends": "Backends", "n_gpu_layers": "GPU layers",
 | |
|     "tensor_buft_overrides": "Tensor overrides", "model_filename": "File", "model_type": "Model", "model_size": "Model size [GiB]",
 | |
|     "model_n_params": "Num. of par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", "embeddings": "Embeddings",
 | |
|     "cpu_mask": "CPU mask", "cpu_strict": "CPU strict", "poll": "Poll", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
 | |
|     "use_mmap": "Use mmap", "no_kv_offload": "NKVO", "split_mode": "Split mode", "main_gpu": "Main GPU", "tensor_split": "Tensor split",
 | |
|     "flash_attn": "FlashAttention",
 | |
| }
 | |
| 
 | |
| # Header names for the table (test-backend-ops):
 | |
| TEST_BACKEND_OPS_PRETTY_NAMES = {
 | |
|     "backend_name": "Backend", "op_name": "GGML op", "op_params": "Op parameters", "test_mode": "Mode",
 | |
|     "supported": "Supported", "passed": "Passed", "error_message": "Error",
 | |
|     "flops": "FLOPS", "bandwidth_gb_s": "Bandwidth (GB/s)", "memory_kb": "Memory (KB)", "n_runs": "Runs"
 | |
| }
 | |
| 
 | |
| DEFAULT_SHOW_LLAMA_BENCH = ["model_type"]  # Always show these properties by default.
 | |
| DEFAULT_HIDE_LLAMA_BENCH = ["model_filename"]  # Always hide these properties by default.
 | |
| 
 | |
| DEFAULT_SHOW_TEST_BACKEND_OPS = ["backend_name", "op_name"]  # Always show these properties by default.
 | |
| DEFAULT_HIDE_TEST_BACKEND_OPS = ["error_message"]  # Always hide these properties by default.
 | |
| 
 | |
| GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon ", "AMD Instinct "]  # Strip prefixes for smaller tables.
 | |
| MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"}
 | |
| 
 | |
| DESCRIPTION = """Creates tables from llama-bench or test-backend-ops data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):
 | |
| 
 | |
| For llama-bench:
 | |
| $ git checkout master
 | |
| $ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
 | |
| $ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
 | |
| $ git checkout some_branch
 | |
| $ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
 | |
| $ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
 | |
| $ ./scripts/compare-llama-bench.py
 | |
| 
 | |
| For test-backend-ops:
 | |
| $ git checkout master
 | |
| $ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
 | |
| $ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
 | |
| $ git checkout some_branch
 | |
| $ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
 | |
| $ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
 | |
| $ ./scripts/compare-llama-bench.py --tool test-backend-ops -i test-backend-ops.sqlite
 | |
| 
 | |
| Performance numbers from multiple runs per commit are averaged WITHOUT being weighted by the --repetitions parameter of llama-bench.
 | |
| """
 | |
| 
 | |
| parser = argparse.ArgumentParser(
 | |
|     description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter)
 | |
| help_b = (
 | |
|     "The baseline commit to compare performance to. "
 | |
|     "Accepts either a branch name, tag name, or commit hash. "
 | |
|     "Defaults to latest master commit with data."
 | |
| )
 | |
| parser.add_argument("-b", "--baseline", help=help_b)
 | |
| help_c = (
 | |
|     "The commit whose performance is to be compared to the baseline. "
 | |
|     "Accepts either a branch name, tag name, or commit hash. "
 | |
|     "Defaults to the non-master commit for which llama-bench was run most recently."
 | |
| )
 | |
| parser.add_argument("-c", "--compare", help=help_c)
 | |
| help_t = (
 | |
|     "The tool whose data is being compared. "
 | |
|     "Either 'llama-bench' or 'test-backend-ops'. "
 | |
|     "This determines the database schema and comparison logic used. "
 | |
|     "If left unspecified, try to determine from the input file."
 | |
| )
 | |
| parser.add_argument("-t", "--tool", help=help_t, default=None, choices=[None, "llama-bench", "test-backend-ops"])
 | |
| help_i = (
 | |
|     "JSON/JSONL/SQLite/CSV files for comparing commits. "
 | |
|     "Specify multiple times to use multiple input files (JSON/CSV only). "
 | |
|     "Defaults to 'llama-bench.sqlite' in the current working directory. "
 | |
|     "If no such file is found and there is exactly one .sqlite file in the current directory, "
 | |
|     "that file is instead used as input."
 | |
| )
 | |
| parser.add_argument("-i", "--input", action="append", help=help_i)
 | |
| help_o = (
 | |
|     "Output format for the table. "
 | |
|     "Defaults to 'pipe' (GitHub compatible). "
 | |
|     "Also supports e.g. 'latex' or 'mediawiki'. "
 | |
|     "See tabulate documentation for full list."
 | |
| )
 | |
| parser.add_argument("-o", "--output", help=help_o, default="pipe")
 | |
| help_s = (
 | |
|     "Columns to add to the table. "
 | |
|     "Accepts a comma-separated list of values. "
 | |
|     f"Legal values for test-backend-ops: {', '.join(TEST_BACKEND_OPS_KEY_PROPERTIES)}. "
 | |
|     f"Legal values for llama-bench: {', '.join(LLAMA_BENCH_KEY_PROPERTIES[:-3])}. "
 | |
|     "Defaults to model name (model_type) and CPU and/or GPU name (cpu_info, gpu_info) "
 | |
|     "plus any column where not all data points are the same. "
 | |
|     "If the columns are manually specified, then the results for each unique combination of the "
 | |
|     "specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench."
 | |
| )
 | |
| parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
 | |
| parser.add_argument("-s", "--show", help=help_s)
 | |
| parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
 | |
| parser.add_argument("--plot", help="generate a performance comparison plot and save to specified file (e.g., plot.png)")
 | |
| parser.add_argument("--plot_x", help="parameter to use as x axis for plotting (default: n_depth)", default="n_depth")
 | |
| parser.add_argument("--plot_log_scale", action="store_true", help="use log scale for x axis in plots (off by default)")
 | |
| 
 | |
| known_args, unknown_args = parser.parse_known_args()
 | |
| 
 | |
| logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
 | |
| 
 | |
| 
 | |
| if known_args.check:
 | |
|     # Check if all required Python libraries are installed. Would have failed earlier if not.
 | |
|     sys.exit(0)
 | |
| 
 | |
| if unknown_args:
 | |
|     logger.error(f"Received unknown args: {unknown_args}.\n")
 | |
|     parser.print_help()
 | |
|     sys.exit(1)
 | |
| 
 | |
| input_file = known_args.input
 | |
| tool = known_args.tool
 | |
| 
 | |
| if not input_file:
 | |
|     if tool == "llama-bench" and os.path.exists("./llama-bench.sqlite"):
 | |
|         input_file = ["llama-bench.sqlite"]
 | |
|     elif tool == "test-backend-ops" and os.path.exists("./test-backend-ops.sqlite"):
 | |
|         input_file = ["test-backend-ops.sqlite"]
 | |
| 
 | |
| if not input_file:
 | |
|     sqlite_files = glob("*.sqlite")
 | |
|     if len(sqlite_files) == 1:
 | |
|         input_file = sqlite_files
 | |
| 
 | |
| if not input_file:
 | |
|     logger.error("Cannot find a suitable input file, please provide one.\n")
 | |
|     parser.print_help()
 | |
|     sys.exit(1)
 | |
| 
 | |
| 
 | |
| class LlamaBenchData:
 | |
|     repo: Optional[git.Repo]
 | |
|     build_len_min: int
 | |
|     build_len_max: int
 | |
|     build_len: int = 8
 | |
|     builds: list[str] = []
 | |
|     tool: str = "llama-bench"  # Tool type: "llama-bench" or "test-backend-ops"
 | |
| 
 | |
|     def __init__(self, tool: str = "llama-bench"):
 | |
|         self.tool = tool
 | |
|         try:
 | |
|             self.repo = git.Repo(".", search_parent_directories=True)
 | |
|         except git.InvalidGitRepositoryError:
 | |
|             self.repo = None
 | |
| 
 | |
|         # Set schema-specific properties based on tool
 | |
|         if self.tool == "llama-bench":
 | |
|             self.check_keys = set(LLAMA_BENCH_KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])
 | |
|         elif self.tool == "test-backend-ops":
 | |
|             self.check_keys = set(TEST_BACKEND_OPS_KEY_PROPERTIES + ["build_commit", "test_time"])
 | |
|         else:
 | |
|             assert False
 | |
| 
 | |
|     def _builds_init(self):
 | |
|         self.build_len = self.build_len_min
 | |
| 
 | |
|     def _check_keys(self, keys: set) -> Optional[set]:
 | |
|         """Private helper method that checks against required data keys and returns missing ones."""
 | |
|         if not keys >= self.check_keys:
 | |
|             return self.check_keys - keys
 | |
|         return None
 | |
| 
 | |
|     def find_parent_in_data(self, commit: git.Commit) -> Optional[str]:
 | |
|         """Helper method to find the most recent parent measured in number of commits for which there is data."""
 | |
|         heap: list[tuple[int, git.Commit]] = [(0, commit)]
 | |
|         seen_hexsha8 = set()
 | |
|         while heap:
 | |
|             depth, current_commit = heapq.heappop(heap)
 | |
|             current_hexsha8 = commit.hexsha[:self.build_len]
 | |
|             if current_hexsha8 in self.builds:
 | |
|                 return current_hexsha8
 | |
|             for parent in commit.parents:
 | |
|                 parent_hexsha8 = parent.hexsha[:self.build_len]
 | |
|                 if parent_hexsha8 not in seen_hexsha8:
 | |
|                     seen_hexsha8.add(parent_hexsha8)
 | |
|                     heapq.heappush(heap, (depth + 1, parent))
 | |
|         return None
 | |
| 
 | |
|     def get_all_parent_hexsha8s(self, commit: git.Commit) -> Sequence[str]:
 | |
|         """Helper method to recursively get hexsha8 values for all parents of a commit."""
 | |
|         unvisited = [commit]
 | |
|         visited   = []
 | |
| 
 | |
|         while unvisited:
 | |
|             current_commit = unvisited.pop(0)
 | |
|             visited.append(current_commit.hexsha[:self.build_len])
 | |
|             for parent in current_commit.parents:
 | |
|                 if parent.hexsha[:self.build_len] not in visited:
 | |
|                     unvisited.append(parent)
 | |
| 
 | |
|         return visited
 | |
| 
 | |
|     def get_commit_name(self, hexsha8: str) -> str:
 | |
|         """Helper method to find a human-readable name for a commit if possible."""
 | |
|         if self.repo is None:
 | |
|             return hexsha8
 | |
|         for h in self.repo.heads:
 | |
|             if h.commit.hexsha[:self.build_len] == hexsha8:
 | |
|                 return h.name
 | |
|         for t in self.repo.tags:
 | |
|             if t.commit.hexsha[:self.build_len] == hexsha8:
 | |
|                 return t.name
 | |
|         return hexsha8
 | |
| 
 | |
|     def get_commit_hexsha8(self, name: str) -> Optional[str]:
 | |
|         """Helper method to search for a commit given a human-readable name."""
 | |
|         if self.repo is None:
 | |
|             return None
 | |
|         for h in self.repo.heads:
 | |
|             if h.name == name:
 | |
|                 return h.commit.hexsha[:self.build_len]
 | |
|         for t in self.repo.tags:
 | |
|             if t.name == name:
 | |
|                 return t.commit.hexsha[:self.build_len]
 | |
|         for c in self.repo.iter_commits("--all"):
 | |
|             if c.hexsha[:self.build_len] == name[:self.build_len]:
 | |
|                 return c.hexsha[:self.build_len]
 | |
|         return None
 | |
| 
 | |
|     def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
 | |
|         """Helper method that gets rows of (build_commit, test_time) sorted by the latter."""
 | |
|         return []
 | |
| 
 | |
|     def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
 | |
|         """
 | |
|         Helper method that gets table rows for some list of properties.
 | |
|         Rows are created by combining those where all provided properties are equal.
 | |
|         The resulting rows are then grouped by the provided properties and the t/s values are averaged.
 | |
|         The returned rows are unique in terms of property combinations.
 | |
|         """
 | |
|         return []
 | |
| 
 | |
| 
 | |
| class LlamaBenchDataSQLite3(LlamaBenchData):
 | |
|     connection: Optional[sqlite3.Connection] = None
 | |
|     cursor: sqlite3.Cursor
 | |
|     table_name: str
 | |
| 
 | |
|     def __init__(self, tool: str = "llama-bench"):
 | |
|         super().__init__(tool)
 | |
|         if self.connection is None:
 | |
|             self.connection = sqlite3.connect(":memory:")
 | |
|             self.cursor = self.connection.cursor()
 | |
| 
 | |
|             # Set table name and schema based on tool
 | |
|             if self.tool == "llama-bench":
 | |
|                 self.table_name = "llama_bench"
 | |
|                 db_fields = LLAMA_BENCH_DB_FIELDS
 | |
|                 db_types = LLAMA_BENCH_DB_TYPES
 | |
|             elif self.tool == "test-backend-ops":
 | |
|                 self.table_name = "test_backend_ops"
 | |
|                 db_fields = TEST_BACKEND_OPS_DB_FIELDS
 | |
|                 db_types = TEST_BACKEND_OPS_DB_TYPES
 | |
|             else:
 | |
|                 assert False
 | |
| 
 | |
|             self.cursor.execute(f"CREATE TABLE {self.table_name}({', '.join(' '.join(x) for x in zip(db_fields, db_types))});")
 | |
| 
 | |
|     def _builds_init(self):
 | |
|         if self.connection:
 | |
|             self.build_len_min = self.cursor.execute(f"SELECT MIN(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
 | |
|             self.build_len_max = self.cursor.execute(f"SELECT MAX(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
 | |
| 
 | |
|             if self.build_len_min != self.build_len_max:
 | |
|                 logger.warning("Data contains commit hashes of differing lengths. It's possible that the wrong commits will be compared. "
 | |
|                                "Try purging the the database of old commits.")
 | |
|                 self.cursor.execute(f"UPDATE {self.table_name} SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")
 | |
| 
 | |
|             builds = self.cursor.execute(f"SELECT DISTINCT build_commit FROM {self.table_name};").fetchall()
 | |
|             self.builds = list(map(lambda b: b[0], builds))  # list[tuple[str]] -> list[str]
 | |
|         super()._builds_init()
 | |
| 
 | |
|     def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
 | |
|         data = self.cursor.execute(
 | |
|             f"SELECT build_commit, test_time FROM {self.table_name} ORDER BY test_time;").fetchall()
 | |
|         return reversed(data) if reverse else data
 | |
| 
 | |
|     def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
 | |
|         if self.tool == "llama-bench":
 | |
|             return self._get_rows_llama_bench(properties, hexsha8_baseline, hexsha8_compare)
 | |
|         elif self.tool == "test-backend-ops":
 | |
|             return self._get_rows_test_backend_ops(properties, hexsha8_baseline, hexsha8_compare)
 | |
|         else:
 | |
|             assert False
 | |
| 
 | |
|     def _get_rows_llama_bench(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
 | |
|         select_string = ", ".join(
 | |
|             [f"tb.{p}" for p in properties] + ["tb.n_prompt", "tb.n_gen", "tb.n_depth", "AVG(tb.avg_ts)", "AVG(tc.avg_ts)"])
 | |
|         equal_string = " AND ".join(
 | |
|             [f"tb.{p} = tc.{p}" for p in LLAMA_BENCH_KEY_PROPERTIES] + [
 | |
|                 f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'"]
 | |
|         )
 | |
|         group_order_string = ", ".join([f"tb.{p}" for p in properties] + ["tb.n_gen", "tb.n_prompt", "tb.n_depth"])
 | |
|         query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
 | |
|                  f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
 | |
|         return self.cursor.execute(query).fetchall()
 | |
| 
 | |
|     def _get_rows_test_backend_ops(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
 | |
|         # For test-backend-ops, we compare FLOPS and bandwidth metrics (prioritizing FLOPS over bandwidth)
 | |
|         select_string = ", ".join(
 | |
|             [f"tb.{p}" for p in properties] + [
 | |
|                 "AVG(tb.flops)", "AVG(tc.flops)",
 | |
|                 "AVG(tb.bandwidth_gb_s)", "AVG(tc.bandwidth_gb_s)"
 | |
|             ])
 | |
|         equal_string = " AND ".join(
 | |
|             [f"tb.{p} = tc.{p}" for p in TEST_BACKEND_OPS_KEY_PROPERTIES] + [
 | |
|                 f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'",
 | |
|                 "tb.supported = 1", "tc.supported = 1", "tb.passed = 1", "tc.passed = 1"]  # Only compare successful tests
 | |
|         )
 | |
|         group_order_string = ", ".join([f"tb.{p}" for p in properties])
 | |
|         query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
 | |
|                  f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
 | |
|         return self.cursor.execute(query).fetchall()
 | |
| 
 | |
| 
 | |
| class LlamaBenchDataSQLite3File(LlamaBenchDataSQLite3):
 | |
|     def __init__(self, data_file: str, tool: Any):
 | |
|         self.connection = sqlite3.connect(data_file)
 | |
|         self.cursor = self.connection.cursor()
 | |
| 
 | |
|         # Check which table exists in the database
 | |
|         tables = self.cursor.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall()
 | |
|         table_names = [table[0] for table in tables]
 | |
| 
 | |
|         # Tool selection logic
 | |
|         if tool is None:
 | |
|             if "llama_bench" in table_names:
 | |
|                 self.table_name = "llama_bench"
 | |
|                 tool = "llama-bench"
 | |
|             elif "test_backend_ops" in table_names:
 | |
|                 self.table_name = "test_backend_ops"
 | |
|                 tool = "test-backend-ops"
 | |
|             else:
 | |
|                 raise RuntimeError(f"No suitable table found in database. Available tables: {table_names}")
 | |
|         elif tool == "llama-bench":
 | |
|             if "llama_bench" in table_names:
 | |
|                 self.table_name = "llama_bench"
 | |
|                 tool = "llama-bench"
 | |
|             else:
 | |
|                 raise RuntimeError(f"Table 'test' not found for tool 'llama-bench'. Available tables: {table_names}")
 | |
|         elif tool == "test-backend-ops":
 | |
|             if "test_backend_ops" in table_names:
 | |
|                 self.table_name = "test_backend_ops"
 | |
|                 tool = "test-backend-ops"
 | |
|             else:
 | |
|                 raise RuntimeError(f"Table 'test_backend_ops' not found for tool 'test-backend-ops'. Available tables: {table_names}")
 | |
|         else:
 | |
|             raise RuntimeError(f"Unknown tool: {tool}")
 | |
| 
 | |
|         super().__init__(tool)
 | |
|         self._builds_init()
 | |
| 
 | |
|     @staticmethod
 | |
|     def valid_format(data_file: str) -> bool:
 | |
|         connection = sqlite3.connect(data_file)
 | |
|         cursor = connection.cursor()
 | |
| 
 | |
|         try:
 | |
|             if cursor.execute("PRAGMA schema_version;").fetchone()[0] == 0:
 | |
|                 raise sqlite3.DatabaseError("The provided input file does not exist or is empty.")
 | |
|         except sqlite3.DatabaseError as e:
 | |
|             logger.debug(f'"{data_file}" is not a valid SQLite3 file.', exc_info=e)
 | |
|             cursor = None
 | |
| 
 | |
|         connection.close()
 | |
|         return True if cursor else False
 | |
| 
 | |
| 
 | |
| class LlamaBenchDataJSONL(LlamaBenchDataSQLite3):
 | |
|     def __init__(self, data_file: str, tool: str = "llama-bench"):
 | |
|         super().__init__(tool)
 | |
| 
 | |
|         # Get the appropriate field list based on tool
 | |
|         db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
 | |
| 
 | |
|         with open(data_file, "r", encoding="utf-8") as fp:
 | |
|             for i, line in enumerate(fp):
 | |
|                 parsed = json.loads(line)
 | |
| 
 | |
|                 for k in parsed.keys() - set(db_fields):
 | |
|                     del parsed[k]
 | |
| 
 | |
|                 if (missing_keys := self._check_keys(parsed.keys())):
 | |
|                     raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
 | |
| 
 | |
|                 self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
 | |
| 
 | |
|         self._builds_init()
 | |
| 
 | |
|     @staticmethod
 | |
|     def valid_format(data_file: str) -> bool:
 | |
|         try:
 | |
|             with open(data_file, "r", encoding="utf-8") as fp:
 | |
|                 for line in fp:
 | |
|                     json.loads(line)
 | |
|                     break
 | |
|         except Exception as e:
 | |
|             logger.debug(f'"{data_file}" is not a valid JSONL file.', exc_info=e)
 | |
|             return False
 | |
| 
 | |
|         return True
 | |
| 
 | |
| 
 | |
| class LlamaBenchDataJSON(LlamaBenchDataSQLite3):
 | |
|     def __init__(self, data_files: list[str], tool: str = "llama-bench"):
 | |
|         super().__init__(tool)
 | |
| 
 | |
|         # Get the appropriate field list based on tool
 | |
|         db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
 | |
| 
 | |
|         for data_file in data_files:
 | |
|             with open(data_file, "r", encoding="utf-8") as fp:
 | |
|                 parsed = json.load(fp)
 | |
| 
 | |
|                 for i, entry in enumerate(parsed):
 | |
|                     for k in entry.keys() - set(db_fields):
 | |
|                         del entry[k]
 | |
| 
 | |
|                     if (missing_keys := self._check_keys(entry.keys())):
 | |
|                         raise RuntimeError(f"Missing required data key(s) at entry {i + 1}: {', '.join(missing_keys)}")
 | |
| 
 | |
|                     self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))
 | |
| 
 | |
|         self._builds_init()
 | |
| 
 | |
|     @staticmethod
 | |
|     def valid_format(data_files: list[str]) -> bool:
 | |
|         if not data_files:
 | |
|             return False
 | |
| 
 | |
|         for data_file in data_files:
 | |
|             try:
 | |
|                 with open(data_file, "r", encoding="utf-8") as fp:
 | |
|                     json.load(fp)
 | |
|             except Exception as e:
 | |
|                 logger.debug(f'"{data_file}" is not a valid JSON file.', exc_info=e)
 | |
|                 return False
 | |
| 
 | |
|         return True
 | |
| 
 | |
| 
 | |
| class LlamaBenchDataCSV(LlamaBenchDataSQLite3):
 | |
|     def __init__(self, data_files: list[str], tool: str = "llama-bench"):
 | |
|         super().__init__(tool)
 | |
| 
 | |
|         # Get the appropriate field list based on tool
 | |
|         db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
 | |
| 
 | |
|         for data_file in data_files:
 | |
|             with open(data_file, "r", encoding="utf-8") as fp:
 | |
|                 for i, parsed in enumerate(csv.DictReader(fp)):
 | |
|                     keys = set(parsed.keys())
 | |
| 
 | |
|                     for k in keys - set(db_fields):
 | |
|                         del parsed[k]
 | |
| 
 | |
|                     if (missing_keys := self._check_keys(keys)):
 | |
|                         raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
 | |
| 
 | |
|                     self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
 | |
| 
 | |
|         self._builds_init()
 | |
| 
 | |
|     @staticmethod
 | |
|     def valid_format(data_files: list[str]) -> bool:
 | |
|         if not data_files:
 | |
|             return False
 | |
| 
 | |
|         for data_file in data_files:
 | |
|             try:
 | |
|                 with open(data_file, "r", encoding="utf-8") as fp:
 | |
|                     for parsed in csv.DictReader(fp):
 | |
|                         break
 | |
|             except Exception as e:
 | |
|                 logger.debug(f'"{data_file}" is not a valid CSV file.', exc_info=e)
 | |
|                 return False
 | |
| 
 | |
|         return True
 | |
| 
 | |
| 
 | |
| def format_flops(flops_value: float) -> str:
 | |
|     """Format FLOPS values with appropriate units for better readability."""
 | |
|     if flops_value == 0:
 | |
|         return "0.00"
 | |
| 
 | |
|     # Define unit thresholds and names
 | |
|     units = [
 | |
|         (1e12, "T"),   # TeraFLOPS
 | |
|         (1e9, "G"),    # GigaFLOPS
 | |
|         (1e6, "M"),    # MegaFLOPS
 | |
|         (1e3, "k"),    # kiloFLOPS
 | |
|         (1, "")        # FLOPS
 | |
|     ]
 | |
| 
 | |
|     for threshold, unit in units:
 | |
|         if abs(flops_value) >= threshold:
 | |
|             formatted_value = flops_value / threshold
 | |
|             if formatted_value >= 100:
 | |
|                 return f"{formatted_value:.1f}{unit}"
 | |
|             else:
 | |
|                 return f"{formatted_value:.2f}{unit}"
 | |
| 
 | |
|     # Fallback for very small values
 | |
|     return f"{flops_value:.2f}"
 | |
| 
 | |
| 
 | |
| def format_flops_for_table(flops_value: float, target_unit: str) -> str:
 | |
|     """Format FLOPS values for table display without unit suffix (since unit is in header)."""
 | |
|     if flops_value == 0:
 | |
|         return "0.00"
 | |
| 
 | |
|     # Define unit thresholds based on target unit
 | |
|     unit_divisors = {
 | |
|         "TFLOPS": 1e12,
 | |
|         "GFLOPS": 1e9,
 | |
|         "MFLOPS": 1e6,
 | |
|         "kFLOPS": 1e3,
 | |
|         "FLOPS": 1
 | |
|     }
 | |
| 
 | |
|     divisor = unit_divisors.get(target_unit, 1)
 | |
|     formatted_value = flops_value / divisor
 | |
| 
 | |
|     if formatted_value >= 100:
 | |
|         return f"{formatted_value:.1f}"
 | |
|     else:
 | |
|         return f"{formatted_value:.2f}"
 | |
| 
 | |
| 
 | |
| def get_flops_unit_name(flops_values: list) -> str:
 | |
|     """Determine the best FLOPS unit name based on the magnitude of values."""
 | |
|     if not flops_values or all(v == 0 for v in flops_values):
 | |
|         return "FLOPS"
 | |
| 
 | |
|     # Find the maximum absolute value to determine appropriate unit
 | |
|     max_flops = max(abs(v) for v in flops_values if v != 0)
 | |
| 
 | |
|     if max_flops >= 1e12:
 | |
|         return "TFLOPS"
 | |
|     elif max_flops >= 1e9:
 | |
|         return "GFLOPS"
 | |
|     elif max_flops >= 1e6:
 | |
|         return "MFLOPS"
 | |
|     elif max_flops >= 1e3:
 | |
|         return "kFLOPS"
 | |
|     else:
 | |
|         return "FLOPS"
 | |
| 
 | |
| 
 | |
| bench_data = None
 | |
| if len(input_file) == 1:
 | |
|     if LlamaBenchDataSQLite3File.valid_format(input_file[0]):
 | |
|         bench_data = LlamaBenchDataSQLite3File(input_file[0], tool)
 | |
|     elif LlamaBenchDataJSON.valid_format(input_file):
 | |
|         bench_data = LlamaBenchDataJSON(input_file, tool)
 | |
|     elif LlamaBenchDataJSONL.valid_format(input_file[0]):
 | |
|         bench_data = LlamaBenchDataJSONL(input_file[0], tool)
 | |
|     elif LlamaBenchDataCSV.valid_format(input_file):
 | |
|         bench_data = LlamaBenchDataCSV(input_file, tool)
 | |
| else:
 | |
|     if LlamaBenchDataJSON.valid_format(input_file):
 | |
|         bench_data = LlamaBenchDataJSON(input_file, tool)
 | |
|     elif LlamaBenchDataCSV.valid_format(input_file):
 | |
|         bench_data = LlamaBenchDataCSV(input_file, tool)
 | |
| 
 | |
| if not bench_data:
 | |
|     raise RuntimeError("No valid (or some invalid) input files found.")
 | |
| 
 | |
| if not bench_data.builds:
 | |
|     raise RuntimeError(f"{input_file} does not contain any builds.")
 | |
| 
 | |
| tool = bench_data.tool  # May have chosen a default if tool was None.
 | |
| 
 | |
| 
 | |
| hexsha8_baseline = name_baseline = None
 | |
| 
 | |
| # If the user specified a baseline, try to find a commit for it:
 | |
| if known_args.baseline is not None:
 | |
|     if known_args.baseline in bench_data.builds:
 | |
|         hexsha8_baseline = known_args.baseline
 | |
|     if hexsha8_baseline is None:
 | |
|         hexsha8_baseline = bench_data.get_commit_hexsha8(known_args.baseline)
 | |
|         name_baseline = known_args.baseline
 | |
|     if hexsha8_baseline is None:
 | |
|         logger.error(f"cannot find data for baseline={known_args.baseline}.")
 | |
|         sys.exit(1)
 | |
| # Otherwise, search for the most recent parent of master for which there is data:
 | |
| elif bench_data.repo is not None:
 | |
|     hexsha8_baseline = bench_data.find_parent_in_data(bench_data.repo.heads.master.commit)
 | |
| 
 | |
|     if hexsha8_baseline is None:
 | |
|         logger.error("No baseline was provided and did not find data for any master branch commits.\n")
 | |
|         parser.print_help()
 | |
|         sys.exit(1)
 | |
| else:
 | |
|     logger.error("No baseline was provided and the current working directory "
 | |
|                  "is not part of a git repository from which a baseline could be inferred.\n")
 | |
|     parser.print_help()
 | |
|     sys.exit(1)
 | |
| 
 | |
| 
 | |
| name_baseline = bench_data.get_commit_name(hexsha8_baseline)
 | |
| 
 | |
| hexsha8_compare = name_compare = None
 | |
| 
 | |
| # If the user has specified a compare value, try to find a corresponding commit:
 | |
| if known_args.compare is not None:
 | |
|     if known_args.compare in bench_data.builds:
 | |
|         hexsha8_compare = known_args.compare
 | |
|     if hexsha8_compare is None:
 | |
|         hexsha8_compare = bench_data.get_commit_hexsha8(known_args.compare)
 | |
|         name_compare = known_args.compare
 | |
|     if hexsha8_compare is None:
 | |
|         logger.error(f"cannot find data for compare={known_args.compare}.")
 | |
|         sys.exit(1)
 | |
| # Otherwise, search for the commit for llama-bench was most recently run
 | |
| # and that is not a parent of master:
 | |
| elif bench_data.repo is not None:
 | |
|     hexsha8s_master = bench_data.get_all_parent_hexsha8s(bench_data.repo.heads.master.commit)
 | |
|     for (hexsha8, _) in bench_data.builds_timestamp(reverse=True):
 | |
|         if hexsha8 not in hexsha8s_master:
 | |
|             hexsha8_compare = hexsha8
 | |
|             break
 | |
| 
 | |
|     if hexsha8_compare is None:
 | |
|         logger.error("No compare target was provided and did not find data for any non-master commits.\n")
 | |
|         parser.print_help()
 | |
|         sys.exit(1)
 | |
| else:
 | |
|     logger.error("No compare target was provided and the current working directory "
 | |
|                  "is not part of a git repository from which a compare target could be inferred.\n")
 | |
|     parser.print_help()
 | |
|     sys.exit(1)
 | |
| 
 | |
| name_compare = bench_data.get_commit_name(hexsha8_compare)
 | |
| 
 | |
| # Get tool-specific configuration
 | |
| if tool == "llama-bench":
 | |
|     key_properties = LLAMA_BENCH_KEY_PROPERTIES
 | |
|     bool_properties = LLAMA_BENCH_BOOL_PROPERTIES
 | |
|     pretty_names = LLAMA_BENCH_PRETTY_NAMES
 | |
|     default_show = DEFAULT_SHOW_LLAMA_BENCH
 | |
|     default_hide = DEFAULT_HIDE_LLAMA_BENCH
 | |
| elif tool == "test-backend-ops":
 | |
|     key_properties = TEST_BACKEND_OPS_KEY_PROPERTIES
 | |
|     bool_properties = TEST_BACKEND_OPS_BOOL_PROPERTIES
 | |
|     pretty_names = TEST_BACKEND_OPS_PRETTY_NAMES
 | |
|     default_show = DEFAULT_SHOW_TEST_BACKEND_OPS
 | |
|     default_hide = DEFAULT_HIDE_TEST_BACKEND_OPS
 | |
| else:
 | |
|     assert False
 | |
| 
 | |
| # If the user provided columns to group the results by, use them:
 | |
| if known_args.show is not None:
 | |
|     show = known_args.show.split(",")
 | |
|     unknown_cols = []
 | |
|     for prop in show:
 | |
|         valid_props = key_properties if tool == "test-backend-ops" else key_properties[:-3]  # Exclude n_prompt, n_gen, n_depth for llama-bench
 | |
|         if prop not in valid_props:
 | |
|             unknown_cols.append(prop)
 | |
|     if unknown_cols:
 | |
|         logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
 | |
|         parser.print_usage()
 | |
|         sys.exit(1)
 | |
|     rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
 | |
| # Otherwise, select those columns where the values are not all the same:
 | |
| else:
 | |
|     rows_full = bench_data.get_rows(key_properties, hexsha8_baseline, hexsha8_compare)
 | |
|     properties_different = []
 | |
| 
 | |
|     if tool == "llama-bench":
 | |
|         # For llama-bench, skip n_prompt, n_gen, n_depth from differentiation logic
 | |
|         check_properties = [kp for kp in key_properties if kp not in ["n_prompt", "n_gen", "n_depth"]]
 | |
|         for i, kp_i in enumerate(key_properties):
 | |
|             if kp_i in default_show or kp_i in ["n_prompt", "n_gen", "n_depth"]:
 | |
|                 continue
 | |
|             for row_full in rows_full:
 | |
|                 if row_full[i] != rows_full[0][i]:
 | |
|                     properties_different.append(kp_i)
 | |
|                     break
 | |
|     elif tool == "test-backend-ops":
 | |
|         # For test-backend-ops, check all key properties
 | |
|         for i, kp_i in enumerate(key_properties):
 | |
|             if kp_i in default_show:
 | |
|                 continue
 | |
|             for row_full in rows_full:
 | |
|                 if row_full[i] != rows_full[0][i]:
 | |
|                     properties_different.append(kp_i)
 | |
|                     break
 | |
|     else:
 | |
|         assert False
 | |
| 
 | |
|     show = []
 | |
| 
 | |
|     if tool == "llama-bench":
 | |
|         # Show CPU and/or GPU by default even if the hardware for all results is the same:
 | |
|         if rows_full and "n_gpu_layers" not in properties_different:
 | |
|             ngl = int(rows_full[0][key_properties.index("n_gpu_layers")])
 | |
| 
 | |
|             if ngl != 99 and "cpu_info" not in properties_different:
 | |
|                 show.append("cpu_info")
 | |
| 
 | |
|         show += properties_different
 | |
| 
 | |
|         index_default = 0
 | |
|         for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
 | |
|             if prop in show:
 | |
|                 index_default += 1
 | |
|         show = show[:index_default] + default_show + show[index_default:]
 | |
|     elif tool == "test-backend-ops":
 | |
|         show = default_show + properties_different
 | |
|     else:
 | |
|         assert False
 | |
| 
 | |
|     for prop in default_hide:
 | |
|         try:
 | |
|             show.remove(prop)
 | |
|         except ValueError:
 | |
|             pass
 | |
| 
 | |
|     # Add plot_x parameter to parameters to show if it's not already present:
 | |
|     if known_args.plot:
 | |
|         for k, v in pretty_names.items():
 | |
|             if v == known_args.plot_x and k not in show:
 | |
|                 show.append(k)
 | |
|                 break
 | |
| 
 | |
|     rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
 | |
| 
 | |
| if not rows_show:
 | |
|     logger.error(f"No comparable data was found between {name_baseline} and {name_compare}.\n")
 | |
|     sys.exit(1)
 | |
| 
 | |
| table = []
 | |
| primary_metric = "FLOPS"  # Default to FLOPS for test-backend-ops
 | |
| 
 | |
| if tool == "llama-bench":
 | |
|     # For llama-bench, create test names and compare avg_ts values
 | |
|     for row in rows_show:
 | |
|         n_prompt = int(row[-5])
 | |
|         n_gen    = int(row[-4])
 | |
|         n_depth  = int(row[-3])
 | |
|         if n_prompt != 0 and n_gen == 0:
 | |
|             test_name = f"pp{n_prompt}"
 | |
|         elif n_prompt == 0 and n_gen != 0:
 | |
|             test_name = f"tg{n_gen}"
 | |
|         else:
 | |
|             test_name = f"pp{n_prompt}+tg{n_gen}"
 | |
|         if n_depth != 0:
 | |
|             test_name = f"{test_name}@d{n_depth}"
 | |
|         #           Regular columns    test name    avg t/s values              Speedup
 | |
|         #            VVVVVVVVVVVVV     VVVVVVVVV    VVVVVVVVVVVVVV              VVVVVVV
 | |
|         table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
 | |
| elif tool == "test-backend-ops":
 | |
|     # Determine the primary metric by checking rows until we find one with valid data
 | |
|     if rows_show:
 | |
|         primary_metric = "FLOPS"  # Default to FLOPS
 | |
|         flops_values = []
 | |
| 
 | |
|         # Collect all FLOPS values to determine the best unit
 | |
|         for sample_row in rows_show:
 | |
|             baseline_flops = float(sample_row[-4])
 | |
|             compare_flops = float(sample_row[-3])
 | |
|             baseline_bandwidth = float(sample_row[-2])
 | |
| 
 | |
|             if baseline_flops > 0:
 | |
|                 flops_values.extend([baseline_flops, compare_flops])
 | |
|             elif baseline_bandwidth > 0 and not flops_values:
 | |
|                 primary_metric = "Bandwidth (GB/s)"
 | |
| 
 | |
|         # If we have FLOPS data, determine the appropriate unit
 | |
|         if flops_values:
 | |
|             primary_metric = get_flops_unit_name(flops_values)
 | |
| 
 | |
|     # For test-backend-ops, prioritize FLOPS > bandwidth for comparison
 | |
|     for row in rows_show:
 | |
|         # Extract metrics: flops, bandwidth_gb_s (baseline and compare)
 | |
|         baseline_flops = float(row[-4])
 | |
|         compare_flops = float(row[-3])
 | |
|         baseline_bandwidth = float(row[-2])
 | |
|         compare_bandwidth = float(row[-1])
 | |
| 
 | |
|         # Determine which metric to use for comparison (prioritize FLOPS > bandwidth)
 | |
|         if baseline_flops > 0 and compare_flops > 0:
 | |
|             # Use FLOPS comparison (higher is better)
 | |
|             speedup = compare_flops / baseline_flops
 | |
|             baseline_str = format_flops_for_table(baseline_flops, primary_metric)
 | |
|             compare_str = format_flops_for_table(compare_flops, primary_metric)
 | |
|         elif baseline_bandwidth > 0 and compare_bandwidth > 0:
 | |
|             # Use bandwidth comparison (higher is better)
 | |
|             speedup = compare_bandwidth / baseline_bandwidth
 | |
|             baseline_str = f"{baseline_bandwidth:.2f}"
 | |
|             compare_str = f"{compare_bandwidth:.2f}"
 | |
|         else:
 | |
|             # Fallback if no valid data is available
 | |
|             baseline_str = "N/A"
 | |
|             compare_str = "N/A"
 | |
|             from math import nan
 | |
|             speedup = nan
 | |
| 
 | |
|         table.append(list(row[:-4]) + [baseline_str, compare_str, speedup])
 | |
| else:
 | |
|     assert False
 | |
| 
 | |
| # Some a-posteriori fixes to make the table contents prettier:
 | |
| for bool_property in bool_properties:
 | |
|     if bool_property in show:
 | |
|         ip = show.index(bool_property)
 | |
|         for row_table in table:
 | |
|             row_table[ip] = "Yes" if int(row_table[ip]) == 1 else "No"
 | |
| 
 | |
| if tool == "llama-bench":
 | |
|     if "model_type" in show:
 | |
|         ip = show.index("model_type")
 | |
|         for (old, new) in MODEL_SUFFIX_REPLACE.items():
 | |
|             for row_table in table:
 | |
|                 row_table[ip] = row_table[ip].replace(old, new)
 | |
| 
 | |
|     if "model_size" in show:
 | |
|         ip = show.index("model_size")
 | |
|         for row_table in table:
 | |
|             row_table[ip] = float(row_table[ip]) / 1024 ** 3
 | |
| 
 | |
|     if "gpu_info" in show:
 | |
|         ip = show.index("gpu_info")
 | |
|         for row_table in table:
 | |
|             for gns in GPU_NAME_STRIP:
 | |
|                 row_table[ip] = row_table[ip].replace(gns, "")
 | |
| 
 | |
|             gpu_names = row_table[ip].split(", ")
 | |
|             num_gpus = len(gpu_names)
 | |
|             all_names_the_same = len(set(gpu_names)) == 1
 | |
|             if len(gpu_names) >= 2 and all_names_the_same:
 | |
|                 row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
 | |
| 
 | |
| headers  = [pretty_names.get(p, p) for p in show]
 | |
| if tool == "llama-bench":
 | |
|     headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
 | |
| elif tool == "test-backend-ops":
 | |
|     headers += [f"{primary_metric} {name_baseline}", f"{primary_metric} {name_compare}", "Speedup"]
 | |
| else:
 | |
|     assert False
 | |
| 
 | |
| if known_args.plot:
 | |
|     def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False, tool_type: str = "llama-bench", metric_name: str = "t/s"):
 | |
|         try:
 | |
|             import matplotlib
 | |
|             import matplotlib.pyplot as plt
 | |
|             matplotlib.use('Agg')
 | |
|         except ImportError as e:
 | |
|             logger.error("matplotlib is required for --plot.")
 | |
|             raise e
 | |
| 
 | |
|         data_headers = headers[:-4] # Exclude the last 4 columns (Test, baseline t/s, compare t/s, Speedup)
 | |
|         plot_x_index = None
 | |
|         plot_x_label = plot_x_param
 | |
| 
 | |
|         if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
 | |
|             pretty_name = LLAMA_BENCH_PRETTY_NAMES.get(plot_x_param, plot_x_param)
 | |
|             if pretty_name in data_headers:
 | |
|                 plot_x_index = data_headers.index(pretty_name)
 | |
|                 plot_x_label = pretty_name
 | |
|             elif plot_x_param in data_headers:
 | |
|                 plot_x_index = data_headers.index(plot_x_param)
 | |
|                 plot_x_label = plot_x_param
 | |
|             else:
 | |
|                 logger.error(f"Parameter '{plot_x_param}' not found in current table columns. Available columns: {', '.join(data_headers)}")
 | |
|                 return
 | |
| 
 | |
|         grouped_data = {}
 | |
| 
 | |
|         for i, row in enumerate(table_data):
 | |
|             group_key_parts = []
 | |
|             test_name = row[-4]
 | |
| 
 | |
|             base_test = ""
 | |
|             x_value = None
 | |
| 
 | |
|             if plot_x_param in ["n_prompt", "n_gen", "n_depth"]:
 | |
|                 for j, val in enumerate(row[:-4]):
 | |
|                     header_name = data_headers[j]
 | |
|                     if val is not None and str(val).strip():
 | |
|                         group_key_parts.append(f"{header_name}={val}")
 | |
| 
 | |
|                 if plot_x_param == "n_prompt" and "pp" in test_name:
 | |
|                     base_test = test_name.split("@")[0]
 | |
|                     x_value = base_test
 | |
|                 elif plot_x_param == "n_gen" and "tg" in test_name:
 | |
|                     x_value = test_name.split("@")[0]
 | |
|                 elif plot_x_param == "n_depth" and "@d" in test_name:
 | |
|                     base_test = test_name.split("@d")[0]
 | |
|                     x_value = int(test_name.split("@d")[1])
 | |
|                 else:
 | |
|                     base_test = test_name
 | |
| 
 | |
|                 if base_test.strip():
 | |
|                     group_key_parts.append(f"Test={base_test}")
 | |
|             else:
 | |
|                 for j, val in enumerate(row[:-4]):
 | |
|                     if j != plot_x_index:
 | |
|                         header_name = data_headers[j]
 | |
|                         if val is not None and str(val).strip():
 | |
|                             group_key_parts.append(f"{header_name}={val}")
 | |
|                     else:
 | |
|                         x_value = val
 | |
| 
 | |
|                 group_key_parts.append(f"Test={test_name}")
 | |
| 
 | |
|             group_key = tuple(group_key_parts)
 | |
| 
 | |
|             if group_key not in grouped_data:
 | |
|                 grouped_data[group_key] = []
 | |
| 
 | |
|             grouped_data[group_key].append({
 | |
|                 'x_value': x_value,
 | |
|                 'baseline': float(row[-3]),
 | |
|                 'compare': float(row[-2]),
 | |
|                 'speedup': float(row[-1])
 | |
|             })
 | |
| 
 | |
|         if not grouped_data:
 | |
|             logger.error("No data available for plotting")
 | |
|             return
 | |
| 
 | |
|         def make_axes(num_groups, max_cols=2, base_size=(8, 4)):
 | |
|             from math import ceil
 | |
|             cols = 1 if num_groups == 1 else min(max_cols, num_groups)
 | |
|             rows = ceil(num_groups / cols)
 | |
| 
 | |
|             # Scale figure size by grid dimensions
 | |
|             w, h = base_size
 | |
|             fig, ax_arr = plt.subplots(rows, cols,
 | |
|                                        figsize=(w * cols, h * rows),
 | |
|                                        squeeze=False)
 | |
| 
 | |
|             axes = ax_arr.flatten()[:num_groups]
 | |
|             return fig, axes
 | |
| 
 | |
|         num_groups = len(grouped_data)
 | |
|         fig, axes = make_axes(num_groups)
 | |
| 
 | |
|         plot_idx = 0
 | |
| 
 | |
|         for group_key, points in grouped_data.items():
 | |
|             if plot_idx >= len(axes):
 | |
|                 break
 | |
|             ax = axes[plot_idx]
 | |
| 
 | |
|             try:
 | |
|                 points_sorted = sorted(points, key=lambda p: float(p['x_value']) if p['x_value'] is not None else 0)
 | |
|                 x_values = [float(p['x_value']) if p['x_value'] is not None else 0 for p in points_sorted]
 | |
|             except ValueError:
 | |
|                 points_sorted = sorted(points, key=lambda p: group_key)
 | |
|                 x_values = [p['x_value'] for p in points_sorted]
 | |
| 
 | |
|             baseline_vals = [p['baseline'] for p in points_sorted]
 | |
|             compare_vals = [p['compare'] for p in points_sorted]
 | |
| 
 | |
|             ax.plot(x_values, baseline_vals, 'o-', color='skyblue',
 | |
|                     label=f'{baseline_name}', linewidth=2, markersize=6)
 | |
|             ax.plot(x_values, compare_vals, 's--', color='lightcoral', alpha=0.8,
 | |
|                     label=f'{compare_name}', linewidth=2, markersize=6)
 | |
| 
 | |
|             if log_scale:
 | |
|                 ax.set_xscale('log', base=2)
 | |
|                 unique_x = sorted(set(x_values))
 | |
|                 ax.set_xticks(unique_x)
 | |
|                 ax.set_xticklabels([str(int(x)) for x in unique_x])
 | |
| 
 | |
|             title_parts = []
 | |
|             for part in group_key:
 | |
|                 if '=' in part:
 | |
|                     key, value = part.split('=', 1)
 | |
|                     title_parts.append(f"{key}: {value}")
 | |
| 
 | |
|             title = ', '.join(title_parts) if title_parts else "Performance comparison"
 | |
| 
 | |
|             # Determine y-axis label based on tool type
 | |
|             if tool_type == "llama-bench":
 | |
|                 y_label = "Tokens per second (t/s)"
 | |
|             elif tool_type == "test-backend-ops":
 | |
|                 y_label = metric_name
 | |
|             else:
 | |
|                 assert False
 | |
| 
 | |
|             ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
 | |
|             ax.set_ylabel(y_label, fontsize=12, fontweight='bold')
 | |
|             ax.set_title(title, fontsize=12, fontweight='bold')
 | |
|             ax.legend(loc='best', fontsize=10)
 | |
|             ax.grid(True, alpha=0.3)
 | |
| 
 | |
|             plot_idx += 1
 | |
| 
 | |
|         for i in range(plot_idx, len(axes)):
 | |
|             axes[i].set_visible(False)
 | |
| 
 | |
|         fig.suptitle(f'Performance comparison: {compare_name} vs. {baseline_name}',
 | |
|                      fontsize=14, fontweight='bold')
 | |
|         fig.subplots_adjust(top=1)
 | |
| 
 | |
|         plt.tight_layout()
 | |
|         plt.savefig(output_file, dpi=300, bbox_inches='tight')
 | |
|         plt.close()
 | |
| 
 | |
|     create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale, tool, primary_metric)
 | |
| 
 | |
| print(tabulate( # noqa: NP100
 | |
|     table,
 | |
|     headers=headers,
 | |
|     floatfmt=".2f",
 | |
|     tablefmt=known_args.output
 | |
| ))
 | 
