mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* Refactor Vulkan backend to allow multiple contexts * Fix too many shader groups called validation error in llama3 on AMD and Intel GPUs * Fix Vulkan debug build error
		
			
				
	
	
		
			116 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#version 450
 | 
						|
 | 
						|
#include "mul_mat_vec_base.comp"
 | 
						|
 | 
						|
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
 | 
						|
 | 
						|
shared FLOAT_TYPE tmp[32];
 | 
						|
 | 
						|
void main() {
 | 
						|
    const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
 | 
						|
 | 
						|
    uint a_offset, b_offset, d_offset;
 | 
						|
    get_offsets(a_offset, b_offset, d_offset);
 | 
						|
 | 
						|
    const uint num_blocks_per_row = p.ncols / QUANT_K;
 | 
						|
    const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
 | 
						|
 | 
						|
    const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
 | 
						|
    const uint ix  = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
 | 
						|
 | 
						|
    const uint step = 8/K_QUANTS_PER_ITERATION;             // 8 or 4
 | 
						|
 | 
						|
    const uint il = tid/step;                               // 0...3
 | 
						|
    const uint ir = tid - step*il;                          // 0...7 or 0...3
 | 
						|
    const uint n =  2 * K_QUANTS_PER_ITERATION;             // 2 or 4
 | 
						|
 | 
						|
    const uint v_im = il / 2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
 | 
						|
    const uint v_in = il % 2;
 | 
						|
 | 
						|
    const uint l0 = n * (2 * ir + v_in);            // 0...15
 | 
						|
    const uint q_offset = 32*v_im + l0;
 | 
						|
    const uint y_offset = 64*v_im + l0;
 | 
						|
 | 
						|
    tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
 | 
						|
 | 
						|
    [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | 
						|
        const uint y1_idx = i * QUANT_K + y_offset;
 | 
						|
        const uint y2_idx = y1_idx + 128;
 | 
						|
 | 
						|
        const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
 | 
						|
        const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
 | 
						|
 | 
						|
        const uint8_t sc0 = uint8_t(  data_a[ib0 + i].scales[v_im * 2    ]       & 0x3f);
 | 
						|
        const uint8_t sc1 = uint8_t(  data_a[ib0 + i].scales[v_im * 2 + 1]       & 0x3f);
 | 
						|
        const uint8_t sc2 = uint8_t(  data_a[ib0 + i].scales[v_im * 2 + 4]       & 0x3f);
 | 
						|
        const uint8_t sc3 = uint8_t(  data_a[ib0 + i].scales[v_im * 2 + 5]       & 0x3f);
 | 
						|
        const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8]       & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2    ] & 0xc0) >> 2));
 | 
						|
        const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9]       & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2));
 | 
						|
        const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2));
 | 
						|
        const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2));
 | 
						|
 | 
						|
#if K_QUANTS_PER_ITERATION == 2
 | 
						|
        const uint8_t q4_0  = uint8_t(data_a[ib0 + i].qs[q_offset     ] & 0xf);
 | 
						|
        const uint8_t q4_1  = uint8_t(data_a[ib0 + i].qs[q_offset +  1] & 0xf);
 | 
						|
        const uint8_t q4_2  = uint8_t(data_a[ib0 + i].qs[q_offset +  2] & 0xf);
 | 
						|
        const uint8_t q4_3  = uint8_t(data_a[ib0 + i].qs[q_offset +  3] & 0xf);
 | 
						|
        const uint8_t q4_4  = uint8_t(data_a[ib0 + i].qs[q_offset     ]  >> 4);
 | 
						|
        const uint8_t q4_5  = uint8_t(data_a[ib0 + i].qs[q_offset +  1]  >> 4);
 | 
						|
        const uint8_t q4_6  = uint8_t(data_a[ib0 + i].qs[q_offset +  2]  >> 4);
 | 
						|
        const uint8_t q4_7  = uint8_t(data_a[ib0 + i].qs[q_offset +  3]  >> 4);
 | 
						|
        const uint8_t q4_8  = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
 | 
						|
        const uint8_t q4_9  = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
 | 
						|
        const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 66] & 0xf);
 | 
						|
        const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 67] & 0xf);
 | 
						|
        const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64]  >> 4);
 | 
						|
        const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65]  >> 4);
 | 
						|
        const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 66]  >> 4);
 | 
						|
        const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 67]  >> 4);
 | 
						|
 | 
						|
        const FLOAT_TYPE sx = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx]) * q4_0 + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * q4_1 + FLOAT_TYPE(data_b[b_offset + y1_idx + 2]) * q4_2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 3]) * q4_3);
 | 
						|
        const FLOAT_TYPE sy = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * q4_4 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * q4_5 + FLOAT_TYPE(data_b[b_offset + y1_idx + 34]) * q4_6 + FLOAT_TYPE(data_b[b_offset + y1_idx + 35]) * q4_7);
 | 
						|
        const FLOAT_TYPE sz = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx]) * q4_8 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * q4_9 + FLOAT_TYPE(data_b[b_offset + y2_idx + 2]) * q4_10 + FLOAT_TYPE(data_b[b_offset + y2_idx + 3]) * q4_11);
 | 
						|
        const FLOAT_TYPE sw = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * q4_12 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * q4_13 + FLOAT_TYPE(data_b[b_offset + y2_idx + 34]) * q4_14 + FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * q4_15);
 | 
						|
        const FLOAT_TYPE smin = FLOAT_TYPE(
 | 
						|
            FLOAT_TYPE(data_b[b_offset + y1_idx    ]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx    ]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * sc7
 | 
						|
          + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * sc7
 | 
						|
          + FLOAT_TYPE(data_b[b_offset + y1_idx + 2]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 34]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 2]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 34]) * sc7
 | 
						|
          + FLOAT_TYPE(data_b[b_offset + y1_idx + 3]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 35]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 3]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * sc7
 | 
						|
        );
 | 
						|
        tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin);
 | 
						|
#else
 | 
						|
        const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset     ] & 0xf);
 | 
						|
        const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset +  1] & 0xf);
 | 
						|
        const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset     ]  >> 4);
 | 
						|
        const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset +  1]  >> 4);
 | 
						|
        const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
 | 
						|
        const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
 | 
						|
        const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 64]  >> 4);
 | 
						|
        const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 65]  >> 4);
 | 
						|
 | 
						|
        const FLOAT_TYPE sx = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx     ]) * q4_0  + FLOAT_TYPE(data_b[b_offset + y1_idx +  1]) * q4_1);
 | 
						|
        const FLOAT_TYPE sy = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * q4_2  + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * q4_3);
 | 
						|
        const FLOAT_TYPE sz = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx     ]) * q4_4  + FLOAT_TYPE(data_b[b_offset + y2_idx +  1]) * q4_5);
 | 
						|
        const FLOAT_TYPE sw = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * q4_6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * q4_7);
 | 
						|
        const FLOAT_TYPE smin = FLOAT_TYPE(
 | 
						|
            FLOAT_TYPE(data_b[b_offset + y1_idx]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * sc7
 | 
						|
          + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * sc7
 | 
						|
        );
 | 
						|
 | 
						|
        tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * FLOAT_TYPE(data_a[ib0 + i].scales[v_im] & 0x3f) + sy * FLOAT_TYPE(data_a[ib0 + i].scales[v_im + 1] & 0x3f) + sz * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 4] & 0x0f) | ((data_a[ib0 + i].scales[v_im] & 0xc0) >> 2)) + sw * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 5] & 0x0f) | ((data_a[ib0 + i].scales[v_im + 1] & 0xc0) >> 2))) - dmin * smin);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    // sum up partial sums and write back result
 | 
						|
    barrier();
 | 
						|
    [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
 | 
						|
        if (tid < s) {
 | 
						|
            tmp[tid] += tmp[tid + s];
 | 
						|
        }
 | 
						|
        barrier();
 | 
						|
    }
 | 
						|
    if (tid == 0) {
 | 
						|
        data_d[d_offset + row] = D_TYPE(tmp[0]);
 | 
						|
    }
 | 
						|
}
 |