mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* llama/ggml: add LLM training support more compact progress bar llama_save_model_to_file llama_opt_param_filter ggml_graph_dup force_grads refactor ggml_opt, fix test-opt * remove logits_all * refactor CUDA implementation for ACC * reset graph at beginning of opt period
		
			
				
	
	
		
			97 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "arg.h"
 | 
						|
#include "common.h"
 | 
						|
#include "log.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <cstdio>
 | 
						|
#include <cstring>
 | 
						|
#include <ctime>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4244 4267) // possible loss of data
 | 
						|
#endif
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    common_params params;
 | 
						|
 | 
						|
    params.escape = false;
 | 
						|
 | 
						|
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (params.use_mmap) {
 | 
						|
        LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n", __func__);
 | 
						|
        params.use_mmap = false;
 | 
						|
    }
 | 
						|
    if (params.cache_type_k != GGML_TYPE_F32) {
 | 
						|
        LOG_INF("%s: force changing k cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
 | 
						|
        params.cache_type_k = GGML_TYPE_F32;
 | 
						|
    }
 | 
						|
    if (params.cache_type_v != GGML_TYPE_F32) {
 | 
						|
        LOG_INF("%s: force changing v cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
 | 
						|
        params.cache_type_v = GGML_TYPE_F32;
 | 
						|
    }
 | 
						|
 | 
						|
    common_init();
 | 
						|
    llama_backend_init();
 | 
						|
    llama_numa_init(params.numa);
 | 
						|
 | 
						|
    // load the model and apply lora adapter, if any
 | 
						|
    common_init_result llama_init = common_init_from_params(params);
 | 
						|
    llama_model_ptr   & model = llama_init.model;
 | 
						|
    llama_context_ptr & ctx   = llama_init.context;
 | 
						|
 | 
						|
    if (model == NULL) {
 | 
						|
        LOG_ERR("%s: unable to load model\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // print system information
 | 
						|
    {
 | 
						|
        LOG_INF("\n");
 | 
						|
        LOG_INF("%s\n", common_params_get_system_info(params).c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    constexpr float val_split = 0.05f;
 | 
						|
 | 
						|
    std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
 | 
						|
    ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get())/2);
 | 
						|
 | 
						|
    struct ggml_opt_optimizer_params optimizer_params = ggml_opt_get_default_optimizer_params(nullptr);
 | 
						|
    optimizer_params.adamw.alpha = 1e-7f; // learning rate
 | 
						|
 | 
						|
    struct llama_opt_params lopt_params {
 | 
						|
        /*n_ctx_train     =*/ 0,
 | 
						|
        /*param_filter    =*/ llama_opt_param_filter_all,
 | 
						|
        /*param_filter_ud =*/ nullptr,
 | 
						|
        /*get_opt_pars    =*/ ggml_opt_get_constant_optimizer_params,
 | 
						|
        /*get_opt_pars_ud =*/ &optimizer_params,
 | 
						|
    };
 | 
						|
    llama_opt_init(ctx.get(), model.get(), lopt_params);
 | 
						|
 | 
						|
    const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - val_split);
 | 
						|
 | 
						|
    ggml_opt_result_t result_train = ggml_opt_result_init();
 | 
						|
    ggml_opt_result_t result_eval  = ggml_opt_result_init();
 | 
						|
 | 
						|
    for (int epoch = 0; epoch < 2; ++epoch) {
 | 
						|
        llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
 | 
						|
            ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
 | 
						|
        ggml_opt_result_reset(result_train);
 | 
						|
        ggml_opt_result_reset(result_eval);
 | 
						|
    }
 | 
						|
    ggml_opt_result_free(result_train);
 | 
						|
    ggml_opt_result_free(result_eval);
 | 
						|
 | 
						|
    llama_model_save_to_file(model.get(), "finetuned-model.gguf");
 | 
						|
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |