mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1070 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1070 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| 
 | |
| #include "utils.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <fstream>
 | |
| #include <map>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
| #include <signal.h>
 | |
| #include <unistd.h>
 | |
| #elif defined (_WIN32)
 | |
| #include <signal.h>
 | |
| #endif
 | |
| 
 | |
| #define ANSI_COLOR_RED     "\x1b[31m"
 | |
| #define ANSI_COLOR_GREEN   "\x1b[32m"
 | |
| #define ANSI_COLOR_YELLOW  "\x1b[33m"
 | |
| #define ANSI_COLOR_BLUE    "\x1b[34m"
 | |
| #define ANSI_COLOR_MAGENTA "\x1b[35m"
 | |
| #define ANSI_COLOR_CYAN    "\x1b[36m"
 | |
| #define ANSI_COLOR_RESET   "\x1b[0m"
 | |
| #define ANSI_BOLD          "\x1b[1m"
 | |
| 
 | |
| // determine number of model parts based on the dimension
 | |
| static const std::map<int, int> LLAMA_N_PARTS = {
 | |
|     { 4096, 1 },
 | |
|     { 5120, 2 },
 | |
|     { 6656, 4 },
 | |
|     { 8192, 8 },
 | |
| };
 | |
| 
 | |
| // default hparams (LLaMA 7B)
 | |
| struct llama_hparams {
 | |
|     int32_t n_vocab = 32000;
 | |
|     int32_t n_ctx   = 512;   // this is provided as user input?
 | |
|     int32_t n_embd  = 4096;
 | |
|     int32_t n_mult  = 256;
 | |
|     int32_t n_head  = 32;
 | |
|     int32_t n_layer = 32;
 | |
|     int32_t n_rot   = 64;
 | |
|     int32_t f16     = 1;
 | |
| };
 | |
| 
 | |
| struct llama_layer {
 | |
|     // normalization
 | |
|     struct ggml_tensor * attention_norm;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * wq;
 | |
|     struct ggml_tensor * wk;
 | |
|     struct ggml_tensor * wv;
 | |
|     struct ggml_tensor * wo;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ffn_norm;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * w1;
 | |
|     struct ggml_tensor * w2;
 | |
|     struct ggml_tensor * w3;
 | |
| };
 | |
| 
 | |
| struct llama_model {
 | |
|     llama_hparams hparams;
 | |
| 
 | |
|     struct ggml_tensor * tok_embeddings;
 | |
| 
 | |
|     struct ggml_tensor * norm;
 | |
|     struct ggml_tensor * output;
 | |
| 
 | |
|     std::vector<llama_layer> layers;
 | |
| 
 | |
|     // key + value memory
 | |
|     struct ggml_tensor * memory_k;
 | |
|     struct ggml_tensor * memory_v;
 | |
| 
 | |
|     //
 | |
|     struct ggml_context * ctx;
 | |
|     std::map<std::string, struct ggml_tensor *> tensors;
 | |
| };
 | |
| 
 | |
| // load the model's weights from a file
 | |
| bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx) {
 | |
|     fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
 | |
| 
 | |
|     std::vector<char> f_buf(1024*1024);
 | |
| 
 | |
|     auto fin = std::ifstream(fname, std::ios::binary);
 | |
|     fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
 | |
|     if (!fin) {
 | |
|         fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // verify magic
 | |
|     {
 | |
|         uint32_t magic;
 | |
|         fin.read((char *) &magic, sizeof(magic));
 | |
|         if (magic != 0x67676d6c) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int n_ff = 0;
 | |
|     int n_parts = 0;
 | |
| 
 | |
|     // load hparams
 | |
|     {
 | |
|         auto & hparams = model.hparams;
 | |
| 
 | |
|         fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
 | |
|         //fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
 | |
|         fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
 | |
|         fin.read((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
 | |
|         fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
 | |
|         fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
 | |
|         fin.read((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
 | |
|         fin.read((char *) &hparams.f16,     sizeof(hparams.f16));
 | |
| 
 | |
|         hparams.n_ctx = n_ctx;
 | |
| 
 | |
|         n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
 | |
|         n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
 | |
| 
 | |
|         fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
 | |
|         fprintf(stderr, "%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
 | |
|         fprintf(stderr, "%s: n_embd  = %d\n", __func__, hparams.n_embd);
 | |
|         fprintf(stderr, "%s: n_mult  = %d\n", __func__, hparams.n_mult);
 | |
|         fprintf(stderr, "%s: n_head  = %d\n", __func__, hparams.n_head);
 | |
|         fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
 | |
|         fprintf(stderr, "%s: n_rot   = %d\n", __func__, hparams.n_rot);
 | |
|         fprintf(stderr, "%s: f16     = %d\n", __func__, hparams.f16);
 | |
|         fprintf(stderr, "%s: n_ff    = %d\n", __func__, n_ff);
 | |
|         fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
 | |
|     }
 | |
| 
 | |
|     // load vocab
 | |
|     {
 | |
|         const int32_t n_vocab = model.hparams.n_vocab;
 | |
| 
 | |
|         if (n_vocab != model.hparams.n_vocab) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
 | |
|                     __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         std::string word;
 | |
|         for (int i = 0; i < n_vocab; i++) {
 | |
|             uint32_t len;
 | |
|             fin.read((char *) &len, sizeof(len));
 | |
| 
 | |
|             word.resize(len);
 | |
|             fin.read((char *) word.data(), len);
 | |
| 
 | |
|             vocab.token_to_id[word] = i;
 | |
|             vocab.id_to_token[i] = word;
 | |
| 
 | |
|             //if (i < 30000) {
 | |
|             //    fprintf(stderr, "%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
 | |
|             //}
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // for the big tensors, we have the option to store the data in 16-bit floats or quantized
 | |
|     // in order to save memory and also to speed up the computation
 | |
|     ggml_type wtype = GGML_TYPE_COUNT;
 | |
|     switch (model.hparams.f16) {
 | |
|         case 0: wtype = GGML_TYPE_F32;  break;
 | |
|         case 1: wtype = GGML_TYPE_F16;  break;
 | |
|         case 2: wtype = GGML_TYPE_Q4_0; break;
 | |
|         case 3: wtype = GGML_TYPE_Q4_1; break;
 | |
|         default:
 | |
|                 {
 | |
|                     fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
 | |
|                             __func__, fname.c_str(), model.hparams.f16);
 | |
|                     return false;
 | |
|                 }
 | |
|     }
 | |
| 
 | |
|     const ggml_type wtype2 = GGML_TYPE_F32;
 | |
| 
 | |
|     auto & ctx = model.ctx;
 | |
| 
 | |
|     size_t ctx_size = 0;
 | |
| 
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const int n_embd  = hparams.n_embd;
 | |
|         const int n_layer = hparams.n_layer;
 | |
|         const int n_ctx   = hparams.n_ctx;
 | |
|         const int n_vocab = hparams.n_vocab;
 | |
| 
 | |
|         ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // tok_embeddings
 | |
| 
 | |
|         ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
 | |
| 
 | |
|         ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // output
 | |
| 
 | |
|         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
 | |
| 
 | |
|         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
 | |
|         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
 | |
|         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
 | |
|         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
 | |
| 
 | |
|         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
 | |
| 
 | |
|         ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
 | |
|         ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
 | |
|         ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
 | |
| 
 | |
|         ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
 | |
|         ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
 | |
| 
 | |
|         ctx_size += (5 + 10*n_layer)*256; // object overhead
 | |
| 
 | |
|         fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
 | |
|     }
 | |
| 
 | |
|     // create the ggml context
 | |
|     {
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ ctx_size,
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|         };
 | |
| 
 | |
|         model.ctx = ggml_init(params);
 | |
|         if (!model.ctx) {
 | |
|             fprintf(stderr, "%s: ggml_init() failed\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // prepare memory for the weights
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const int n_embd  = hparams.n_embd;
 | |
|         const int n_layer = hparams.n_layer;
 | |
|         const int n_ctx   = hparams.n_ctx;
 | |
|         const int n_vocab = hparams.n_vocab;
 | |
| 
 | |
|         model.layers.resize(n_layer);
 | |
| 
 | |
|         model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
 | |
| 
 | |
|         model.norm   = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
|         model.output = ggml_new_tensor_2d(ctx, wtype,         n_embd, n_vocab);
 | |
| 
 | |
|         // map by name
 | |
|         model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
 | |
| 
 | |
|         model.tensors["norm.weight"]   = model.norm;
 | |
|         model.tensors["output.weight"] = model.output;
 | |
| 
 | |
|         for (int i = 0; i < n_layer; ++i) {
 | |
|             auto & layer = model.layers[i];
 | |
| 
 | |
|             layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|             layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | |
|             layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | |
|             layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | |
|             layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | |
| 
 | |
|             layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|             layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
 | |
|             layer.w2 = ggml_new_tensor_2d(ctx, wtype,   n_ff, n_embd);
 | |
|             layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
 | |
| 
 | |
|             // map by name
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
 | |
| 
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
 | |
| 
 | |
|             model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
 | |
| 
 | |
|             model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
 | |
|             model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
 | |
|             model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // key + value memory
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const int n_embd  = hparams.n_embd;
 | |
|         const int n_layer = hparams.n_layer;
 | |
|         const int n_ctx   = hparams.n_ctx;
 | |
| 
 | |
|         const int n_mem      = n_layer*n_ctx;
 | |
|         const int n_elements = n_embd*n_mem;
 | |
| 
 | |
|         model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
 | |
|         model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
 | |
| 
 | |
|         const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
 | |
| 
 | |
|         fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
 | |
|     }
 | |
| 
 | |
|     const size_t file_offset = fin.tellg();
 | |
| 
 | |
|     fin.close();
 | |
| 
 | |
|     std::vector<uint8_t> tmp;
 | |
| 
 | |
|     for (int i = 0; i < n_parts; ++i) {
 | |
|         const int part_id = i;
 | |
|         //const int part_id = n_parts - i - 1;
 | |
| 
 | |
|         std::string fname_part = fname;
 | |
|         if (i > 0) {
 | |
|             fname_part += "." + std::to_string(i);
 | |
|         }
 | |
| 
 | |
|         fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
 | |
| 
 | |
|         fin = std::ifstream(fname_part, std::ios::binary);
 | |
|         fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
 | |
|         fin.seekg(file_offset);
 | |
| 
 | |
|         // load weights
 | |
|         {
 | |
|             int n_tensors = 0;
 | |
|             size_t total_size = 0;
 | |
| 
 | |
|             fprintf(stderr, "%s: ", __func__);
 | |
| 
 | |
|             while (true) {
 | |
|                 int32_t n_dims;
 | |
|                 int32_t length;
 | |
|                 int32_t ftype;
 | |
| 
 | |
|                 fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 | |
|                 fin.read(reinterpret_cast<char *>(&length), sizeof(length));
 | |
|                 fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
 | |
| 
 | |
|                 if (fin.eof()) {
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 int32_t nelements = 1;
 | |
|                 int32_t ne[2] = { 1, 1 };
 | |
|                 for (int i = 0; i < n_dims; ++i) {
 | |
|                     fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 | |
|                     nelements *= ne[i];
 | |
|                 }
 | |
| 
 | |
|                 std::string name(length, 0);
 | |
|                 fin.read(&name[0], length);
 | |
| 
 | |
|                 if (model.tensors.find(name.data()) == model.tensors.end()) {
 | |
|                     fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
 | |
|                     return false;
 | |
|                 }
 | |
| 
 | |
|                 // split_type = 0: split by columns
 | |
|                 // split_type = 1: split by rows
 | |
|                 int split_type = 0;
 | |
| 
 | |
|                 // split_type = 0:
 | |
|                 // regex:
 | |
|                 //   - tok_embeddings.*
 | |
|                 //   - layers.*.attention.wo.weight
 | |
|                 //   - layers.*.feed_forward.w2.weight
 | |
| 
 | |
|                 // split_type = 1:
 | |
|                 // regex:
 | |
|                 //   - output.*
 | |
|                 //   - layers.*.attention.wq.weight
 | |
|                 //   - layers.*.attention.wk.weight
 | |
|                 //   - layers.*.attention.wv.weight
 | |
|                 //   - layers.*.feed_forward.w1.weight
 | |
|                 //   - layers.*.feed_forward.w3.weight
 | |
|                 if (name.find("tok_embeddings") != std::string::npos) {
 | |
|                     split_type = 0;
 | |
|                 } else if (name.find("layers") != std::string::npos) {
 | |
|                     if (name.find("attention.wo.weight") != std::string::npos) {
 | |
|                         split_type = 0;
 | |
|                     } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
 | |
|                         split_type = 0;
 | |
|                     } else {
 | |
|                         split_type = 1;
 | |
|                     }
 | |
|                 } else if (name.find("output") != std::string::npos) {
 | |
|                     split_type = 1;
 | |
|                 }
 | |
| 
 | |
|                 auto tensor = model.tensors[name.data()];
 | |
| 
 | |
|                 if (n_dims == 1) {
 | |
|                     if (ggml_nelements(tensor) != nelements) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
 | |
|                         return false;
 | |
|                     }
 | |
|                 } else {
 | |
|                     if (ggml_nelements(tensor)/n_parts != nelements) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (n_dims == 1) {
 | |
|                     if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | |
|                                 __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
 | |
|                         return false;
 | |
|                     }
 | |
|                 } else {
 | |
|                     if (split_type == 0) {
 | |
|                         if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
 | |
|                             fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | |
|                                     __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
 | |
|                             return false;
 | |
|                         }
 | |
|                     } else {
 | |
|                         if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
 | |
|                             fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | |
|                                     __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
 | |
|                             return false;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (0) {
 | |
|                     static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
 | |
|                     fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
 | |
|                 }
 | |
| 
 | |
|                 size_t bpe = 0;
 | |
| 
 | |
|                 switch (ftype) {
 | |
|                     case 0: bpe = ggml_type_size(GGML_TYPE_F32);  break;
 | |
|                     case 1: bpe = ggml_type_size(GGML_TYPE_F16);  break;
 | |
|                     case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
 | |
|                     case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
 | |
|                     default:
 | |
|                             {
 | |
|                                 fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
 | |
|                                 return false;
 | |
|                             }
 | |
|                 };
 | |
| 
 | |
|                 if (n_dims == 1 || n_parts == 1) {
 | |
|                     if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
 | |
|                                 __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
 | |
|                         return false;
 | |
|                     }
 | |
| 
 | |
|                     if (part_id == 0) {
 | |
|                         fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
 | |
|                     } else {
 | |
|                         fin.seekg(ggml_nbytes(tensor), std::ios::cur);
 | |
|                     }
 | |
| 
 | |
|                     total_size += ggml_nbytes(tensor);
 | |
|                 } else {
 | |
|                     if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
 | |
|                                 __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
 | |
|                         return false;
 | |
|                     }
 | |
| 
 | |
|                     if (split_type == 0) {
 | |
|                         const int np0 = ne[0];
 | |
| 
 | |
|                         const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
 | |
|                         assert(row_size == tensor->nb[1]);
 | |
| 
 | |
|                         for (int i1 = 0; i1 < ne[1]; ++i1) {
 | |
|                             const size_t offset_row = i1*row_size;
 | |
|                             const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
 | |
|                             fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
 | |
|                         }
 | |
|                     } else {
 | |
|                         const int np1 = ne[1];
 | |
| 
 | |
|                         const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
 | |
| 
 | |
|                         for (int i1 = 0; i1 < ne[1]; ++i1) {
 | |
|                             const size_t offset_row = (i1 + part_id*np1)*row_size;
 | |
|                             fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     total_size += ggml_nbytes(tensor)/n_parts;
 | |
|                 }
 | |
| 
 | |
|                 //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
 | |
|                 if (++n_tensors % 8 == 0) {
 | |
|                     fprintf(stderr, ".");
 | |
|                     fflush(stderr);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             fprintf(stderr, " done\n");
 | |
| 
 | |
|             fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
 | |
|         }
 | |
| 
 | |
|         fin.close();
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // evaluate the transformer
 | |
| //
 | |
| //   - model:     the model
 | |
| //   - n_threads: number of threads to use
 | |
| //   - n_past:    the context size so far
 | |
| //   - embd_inp:  the embeddings of the tokens in the context
 | |
| //   - embd_w:    the predicted logits for the next token
 | |
| //
 | |
| // The GPT-J model requires about 16MB of memory per input token.
 | |
| //
 | |
| bool llama_eval(
 | |
|         const llama_model & model,
 | |
|         const int n_threads,
 | |
|         const int n_past,
 | |
|         const std::vector<gpt_vocab::id> & embd_inp,
 | |
|               std::vector<float>         & embd_w,
 | |
|               size_t                     & mem_per_token) {
 | |
|     const int N = embd_inp.size();
 | |
| 
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
|     const int n_ctx   = hparams.n_ctx;
 | |
|     const int n_head  = hparams.n_head;
 | |
|     const int n_vocab = hparams.n_vocab;
 | |
|     const int n_rot   = hparams.n_embd/hparams.n_head;
 | |
| 
 | |
|     const int d_key = n_embd/n_head;
 | |
| 
 | |
|      // TODO: check if this size scales with n_ctx linearly and remove constant. somehow I feel it wasn't the case
 | |
|     // static size_t buf_size = hparams.n_ctx*1024*1024;
 | |
|     static size_t buf_size = 512u*1024*1024;
 | |
|     static void * buf = malloc(buf_size);
 | |
| 
 | |
|     if (mem_per_token > 0 && mem_per_token*N > buf_size) {
 | |
|         const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
 | |
|         //fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
 | |
| 
 | |
|         // reallocate
 | |
|         buf_size = buf_size_new;
 | |
|         buf = realloc(buf, buf_size);
 | |
|         if (buf == nullptr) {
 | |
|             fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ buf_size,
 | |
|         /*.mem_buffer =*/ buf,
 | |
|     };
 | |
| 
 | |
|     struct ggml_context * ctx0 = ggml_init(params);
 | |
|     ggml_cgraph gf = {};
 | |
|     gf.n_threads = n_threads;
 | |
| 
 | |
|     struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
 | |
| 
 | |
|     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
 | |
| 
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
|         struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
| 
 | |
|         // norm
 | |
|         {
 | |
|             cur = ggml_rms_norm(ctx0, inpL);
 | |
| 
 | |
|             // cur = attention_norm*cur
 | |
|             cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
 | |
|                         cur);
 | |
|         }
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
|             struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|             struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|             struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
| 
 | |
|             // store key and value to memory
 | |
|             if (N >= 1) {
 | |
|                 struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
 | |
|                 struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
 | |
| 
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
 | |
|             }
 | |
| 
 | |
|             // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_rope(ctx0,
 | |
|                             ggml_cpy(ctx0,
 | |
|                                 Qcur,
 | |
|                                 ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
 | |
|                             n_past, n_rot, 0),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_rope(ctx0,
 | |
|                             ggml_reshape_3d(ctx0,
 | |
|                                 ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
 | |
|                                 n_embd/n_head, n_head, n_past + N),
 | |
|                             n_past, n_rot, 1),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K * Q
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
| 
 | |
|             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | |
|             struct ggml_tensor * KQ_scaled =
 | |
|                 ggml_scale(ctx0,
 | |
|                         KQ,
 | |
|                         ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
 | |
|                         );
 | |
| 
 | |
|             // KQ_masked = mask_past(KQ_scaled)
 | |
|             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
 | |
| 
 | |
|             // KQ = soft_max(KQ_masked)
 | |
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | |
| 
 | |
|             // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
 | |
|             struct ggml_tensor * V_trans =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_reshape_3d(ctx0,
 | |
|                             ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
 | |
|                             n_embd/n_head, n_head, n_past + N),
 | |
|                         1, 2, 0, 3);
 | |
| 
 | |
|             // KQV = transpose(V) * KQ_soft_max
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
 | |
| 
 | |
|             // KQV_merged = KQV.permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
| 
 | |
|             // cur = KQV_merged.contiguous().view(n_embd, N)
 | |
|             cur = ggml_cpy(ctx0,
 | |
|                     KQV_merged,
 | |
|                     ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | |
| 
 | |
|             // projection (no bias)
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].wo,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
|         struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
 | |
| 
 | |
|         // feed-forward network
 | |
|         {
 | |
|             // norm
 | |
|             {
 | |
|                 cur = ggml_rms_norm(ctx0, inpFF);
 | |
| 
 | |
|                 // cur = ffn_norm*cur
 | |
|                 cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
 | |
|                         cur);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].w3,
 | |
|                     cur);
 | |
| 
 | |
| 
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].w1,
 | |
|                     cur);
 | |
| 
 | |
|             // SILU activation
 | |
|             cur = ggml_silu(ctx0, cur);
 | |
| 
 | |
|             cur = ggml_mul(ctx0, cur, tmp);
 | |
| 
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].w2,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
|         cur  = ggml_add(ctx0, cur, inpFF);
 | |
| 
 | |
|         // input for next layer
 | |
|         inpL = cur;
 | |
|     }
 | |
| 
 | |
|     // norm
 | |
|     {
 | |
|         inpL = ggml_rms_norm(ctx0, inpL);
 | |
| 
 | |
|         // inpL = norm*inpL
 | |
|         inpL = ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model.norm, inpL),
 | |
|                     inpL);
 | |
|     }
 | |
| 
 | |
|     // lm_head
 | |
|     {
 | |
|         inpL = ggml_mul_mat(ctx0, model.output, inpL);
 | |
|     }
 | |
| 
 | |
|     // logits -> probs
 | |
|     //inpL = ggml_soft_max(ctx0, inpL);
 | |
| 
 | |
|     // run the computation
 | |
|     ggml_build_forward_expand(&gf, inpL);
 | |
|     ggml_graph_compute       (ctx0, &gf);
 | |
| 
 | |
|     //if (n_past%100 == 0) {
 | |
|     //    ggml_graph_print   (&gf);
 | |
|     //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
 | |
|     //}
 | |
| 
 | |
|     //embd_w.resize(n_vocab*N);
 | |
|     //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
 | |
| 
 | |
|     // return result for just the last token
 | |
|     embd_w.resize(n_vocab);
 | |
|     memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
 | |
| 
 | |
|     if (mem_per_token == 0) {
 | |
|         mem_per_token = ggml_used_mem(ctx0)/N;
 | |
|     }
 | |
|     //fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0));
 | |
| 
 | |
|     ggml_free(ctx0);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool is_interacting = false;
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
| void sigint_handler(int signo) {
 | |
|     printf(ANSI_COLOR_RESET);
 | |
|     if (signo == SIGINT) {
 | |
|         if (!is_interacting) {
 | |
|             is_interacting=true;
 | |
|         } else {
 | |
|             _exit(130);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| const char * llama_print_system_info(void) {
 | |
|     static std::string s;
 | |
| 
 | |
|     s  = "";
 | |
|     s += "AVX = "       + std::to_string(ggml_cpu_has_avx())       + " | ";
 | |
|     s += "AVX2 = "      + std::to_string(ggml_cpu_has_avx2())      + " | ";
 | |
|     s += "AVX512 = "    + std::to_string(ggml_cpu_has_avx512())    + " | ";
 | |
|     s += "FMA = "       + std::to_string(ggml_cpu_has_fma())       + " | ";
 | |
|     s += "NEON = "      + std::to_string(ggml_cpu_has_neon())      + " | ";
 | |
|     s += "ARM_FMA = "   + std::to_string(ggml_cpu_has_arm_fma())   + " | ";
 | |
|     s += "F16C = "      + std::to_string(ggml_cpu_has_f16c())      + " | ";
 | |
|     s += "FP16_VA = "   + std::to_string(ggml_cpu_has_fp16_va())   + " | ";
 | |
|     s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
 | |
|     s += "BLAS = "      + std::to_string(ggml_cpu_has_blas())      + " | ";
 | |
|     s += "SSE3 = "      + std::to_string(ggml_cpu_has_sse3())      + " | ";
 | |
|     s += "VSX = "       + std::to_string(ggml_cpu_has_vsx())       + " | ";
 | |
| 
 | |
|     return s.c_str();
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     ggml_time_init();
 | |
|     const int64_t t_main_start_us = ggml_time_us();
 | |
| 
 | |
|     gpt_params params;
 | |
|     params.model = "models/llama-7B/ggml-model.bin";
 | |
| 
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (params.seed < 0) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
 | |
| 
 | |
|     std::mt19937 rng(params.seed);
 | |
|     if (params.prompt.empty()) {
 | |
|         params.prompt = gpt_random_prompt(rng);
 | |
|     }
 | |
| 
 | |
| //    params.prompt = R"(// this function checks if the number n is prime
 | |
| //bool is_prime(int n) {)";
 | |
| 
 | |
|     int64_t t_load_us = 0;
 | |
| 
 | |
|     gpt_vocab vocab;
 | |
|     llama_model model;
 | |
| 
 | |
|     // load the model
 | |
|     {
 | |
|         const int64_t t_start_us = ggml_time_us();
 | |
|         if (!llama_model_load(params.model, model, vocab, params.n_ctx)) {  
 | |
|             fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         t_load_us = ggml_time_us() - t_start_us;
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         fprintf(stderr, "\n");
 | |
|         fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | |
|                 params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | |
|     }
 | |
| 
 | |
|     int n_past = 0;
 | |
| 
 | |
|     int64_t t_sample_us  = 0;
 | |
|     int64_t t_predict_us = 0;
 | |
| 
 | |
|     std::vector<float> logits;
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
 | |
| 
 | |
|     params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
 | |
| 
 | |
|     // tokenize the reverse prompt
 | |
|     std::vector<gpt_vocab::id> antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false);
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | |
|     fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | |
|     for (int i = 0; i < (int) embd_inp.size(); i++) {
 | |
|         fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
 | |
|     }
 | |
|     fprintf(stderr, "\n");
 | |
|     if (params.interactive) {
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
|         struct sigaction sigint_action;
 | |
|         sigint_action.sa_handler = sigint_handler;
 | |
|         sigemptyset (&sigint_action.sa_mask);
 | |
|         sigint_action.sa_flags = 0;
 | |
|         sigaction(SIGINT, &sigint_action, NULL);
 | |
| #elif defined (_WIN32)
 | |
|         signal(SIGINT, sigint_handler);
 | |
| #endif
 | |
| 
 | |
|         fprintf(stderr, "%s: interactive mode on.\n", __func__);
 | |
| 
 | |
|         if(antiprompt_inp.size()) {
 | |
|             fprintf(stderr, "%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str());
 | |
|             fprintf(stderr, "%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size());
 | |
|             for (int i = 0; i < (int) antiprompt_inp.size(); i++) {
 | |
|                 fprintf(stderr, "%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str());
 | |
|             }
 | |
|             fprintf(stderr, "\n");
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     std::vector<gpt_vocab::id> embd;
 | |
| 
 | |
|     // determine the required inference memory per token:
 | |
|     size_t mem_per_token = 0;
 | |
|     llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
 | |
| 
 | |
|     int last_n_size = params.repeat_last_n;
 | |
|     std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
 | |
|     std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 | |
| 
 | |
| 
 | |
|     if (params.interactive) {
 | |
|         fprintf(stderr, "== Running in interactive mode. ==\n"
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
|                " - Press Ctrl+C to interject at any time.\n"
 | |
| #endif
 | |
|                " - Press Return to return control to LLaMa.\n"
 | |
|                " - If you want to submit another line, end your input in '\\'.\n");
 | |
|     }
 | |
| 
 | |
|     int remaining_tokens = params.n_predict;
 | |
|     int input_consumed = 0;
 | |
|     bool input_noecho = false;
 | |
| 
 | |
|     // prompt user immediately after the starting prompt has been loaded
 | |
|     if (params.interactive_start) {
 | |
|         is_interacting = true;
 | |
|     }
 | |
| 
 | |
|     // set the color for the prompt which will be output initially
 | |
|     if (params.use_color) {
 | |
|         printf(ANSI_COLOR_YELLOW);
 | |
|     }
 | |
| 
 | |
|     while (remaining_tokens > 0) {
 | |
|         // predict
 | |
|         if (embd.size() > 0) {
 | |
|             const int64_t t_start_us = ggml_time_us();
 | |
| 
 | |
|             if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
 | |
|                 fprintf(stderr, "Failed to predict\n");
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             t_predict_us += ggml_time_us() - t_start_us;
 | |
|         }
 | |
| 
 | |
|         n_past += embd.size();
 | |
|         embd.clear();
 | |
| 
 | |
|         if (embd_inp.size() <= input_consumed) {
 | |
|             // out of user input, sample next token
 | |
|             const float top_k = params.top_k;
 | |
|             const float top_p = params.top_p;
 | |
|             const float temp  = params.temp;
 | |
|             const float repeat_penalty = params.repeat_penalty;
 | |
| 
 | |
|             const int n_vocab = model.hparams.n_vocab;
 | |
| 
 | |
|             gpt_vocab::id id = 0;
 | |
| 
 | |
|             {
 | |
|                 const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|                 id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
 | |
| 
 | |
|                 last_n_tokens.erase(last_n_tokens.begin());
 | |
|                 last_n_tokens.push_back(id);
 | |
| 
 | |
|                 t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|             }
 | |
| 
 | |
|             // add it to the context
 | |
|             embd.push_back(id);
 | |
| 
 | |
|             // echo this to console
 | |
|             input_noecho = false;
 | |
| 
 | |
|             // decrement remaining sampling budget
 | |
|             --remaining_tokens;
 | |
|         } else {
 | |
|             // some user input remains from prompt or interaction, forward it to processing
 | |
|             while (embd_inp.size() > input_consumed) {
 | |
|                 embd.push_back(embd_inp[input_consumed]);
 | |
|                 last_n_tokens.erase(last_n_tokens.begin());
 | |
|                 last_n_tokens.push_back(embd_inp[input_consumed]);
 | |
|                 ++input_consumed;
 | |
|                 if (embd.size() > params.n_batch) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // reset color to default if we there is no pending user input
 | |
|             if (!input_noecho && params.use_color && embd_inp.size() == input_consumed) {
 | |
|                 printf(ANSI_COLOR_RESET);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // display text
 | |
|         if (!input_noecho) {
 | |
|             for (auto id : embd) {
 | |
|                 printf("%s", vocab.id_to_token[id].c_str());
 | |
|             }
 | |
|             fflush(stdout);
 | |
|         }
 | |
| 
 | |
|         // in interactive mode, and not currently processing queued inputs;
 | |
|         // check if we should prompt the user for more
 | |
|         if (params.interactive && embd_inp.size() <= input_consumed) {
 | |
|             // check for reverse prompt
 | |
|             if (antiprompt_inp.size() && std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(), last_n_tokens.rbegin())) {
 | |
|                 // reverse prompt found
 | |
|                 is_interacting = true;
 | |
|             }
 | |
|             if (is_interacting) {
 | |
|                 // currently being interactive
 | |
|                 bool another_line=true;
 | |
|                 while (another_line) {
 | |
|                     fflush(stdout);
 | |
|                     char buf[256] = {0};
 | |
|                     int n_read;
 | |
|                     if(params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN);
 | |
|                     if (scanf("%255[^\n]%n%*c", buf, &n_read) <= 0) {
 | |
|                         // presumable empty line, consume the newline
 | |
|                         scanf("%*c");
 | |
|                         n_read=0;
 | |
|                     }
 | |
|                     if(params.use_color) printf(ANSI_COLOR_RESET);
 | |
| 
 | |
|                     if (n_read > 0 && buf[n_read-1]=='\\') {
 | |
|                         another_line = true;
 | |
|                         buf[n_read-1] = '\n';
 | |
|                         buf[n_read] = 0;
 | |
|                     } else {
 | |
|                         another_line = false;
 | |
|                         buf[n_read] = '\n';
 | |
|                         buf[n_read+1] = 0;
 | |
|                     }
 | |
| 
 | |
|                     std::vector<gpt_vocab::id> line_inp = ::llama_tokenize(vocab, buf, false);
 | |
|                     embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
 | |
| 
 | |
|                     remaining_tokens -= line_inp.size();
 | |
| 
 | |
|                     input_noecho = true; // do not echo this again
 | |
|                 }
 | |
| 
 | |
|                 is_interacting = false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // end of text token
 | |
|         if (embd.back() == 2) {
 | |
|             fprintf(stderr, " [end of text]\n");
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if defined (_WIN32)
 | |
|     signal(SIGINT, SIG_DFL);
 | |
| #endif
 | |
| 
 | |
|     // report timing
 | |
|     {
 | |
|         const int64_t t_main_end_us = ggml_time_us();
 | |
| 
 | |
|         fprintf(stderr, "\n\n");
 | |
|         fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
 | |
|         fprintf(stderr, "%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
 | |
|         fprintf(stderr, "%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
 | |
|         fprintf(stderr, "%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
 | |
|         fprintf(stderr, "%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
 | |
|     }
 | |
| 
 | |
|     ggml_free(model.ctx);
 | |
| 
 | |
|     if (params.use_color) {
 | |
|         printf(ANSI_COLOR_RESET);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
