mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			458 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE  100
 | |
| #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
 | |
| 
 | |
| struct seq_draft {
 | |
|     bool active   = false;
 | |
|     bool drafting = false;
 | |
|     bool skip     = false;
 | |
| 
 | |
|     int i_batch_dft = 0;
 | |
|     std::vector<int> i_batch_tgt;
 | |
| 
 | |
|     std::vector<llama_token> tokens;
 | |
| 
 | |
|     struct llama_sampling_context * ctx_sampling;
 | |
| };
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (params.model_draft.empty()) {
 | |
|         fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // max number of parallel drafting sequences (i.e. tree branches)
 | |
|     const int n_seq_dft = params.n_parallel;
 | |
| 
 | |
|     // probability threshold for accepting a token from the draft model
 | |
|     const float p_accept = params.p_accept;
 | |
| 
 | |
|     // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
 | |
|     const float p_split  = params.p_split;
 | |
| 
 | |
| #ifndef LOG_DISABLE_LOGS
 | |
|     log_set_target(log_filename_generator("speculative", "log"));
 | |
|     LOG_TEE("Log start\n");
 | |
|     log_dump_cmdline(argc, argv);
 | |
| #endif // LOG_DISABLE_LOGS
 | |
| 
 | |
|     // init llama.cpp
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     llama_model * model_tgt = NULL;
 | |
|     llama_model * model_dft = NULL;
 | |
| 
 | |
|     llama_context * ctx_tgt = NULL;
 | |
|     llama_context * ctx_dft = NULL;
 | |
| 
 | |
|     // load the target model
 | |
|     params.logits_all = true;
 | |
|     std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
 | |
| 
 | |
|     // load the draft model
 | |
|     params.model = params.model_draft;
 | |
|     params.n_gpu_layers = params.n_gpu_layers_draft;
 | |
|     std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
 | |
| 
 | |
|     {
 | |
|         const int n_vocab_tgt = llama_n_vocab(model_tgt);
 | |
|         const int n_vocab_dft = llama_n_vocab(model_dft);
 | |
|         const int vocab_diff  = n_vocab_tgt > n_vocab_dft
 | |
|             ? n_vocab_tgt - n_vocab_dft
 | |
|             : n_vocab_dft - n_vocab_tgt;
 | |
| 
 | |
|         if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
 | |
|             fprintf(stderr, "%s: error: draft model vocab must closely match target model to use speculation but ", __func__);
 | |
|             fprintf(stderr, "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
 | |
|                     n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
 | |
|             const char * token_text_tgt = llama_token_get_text(model_tgt, i);
 | |
|             const char * token_text_dft = llama_token_get_text(model_dft, i);
 | |
|             if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
 | |
|                 fprintf(stderr, "%s: error: draft model vocab must match target model to use speculation but ", __func__);
 | |
|                 fprintf(stderr, "token %d content differs - target '%s', draft '%s'\n", i,
 | |
|                         llama_token_to_piece(ctx_tgt, i).c_str(),
 | |
|                         llama_token_to_piece(ctx_dft, i).c_str());
 | |
|                 return 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     std::vector<llama_token> inp;
 | |
|     inp = ::llama_tokenize(ctx_tgt, params.prompt, true);
 | |
| 
 | |
|     const int max_context_size     = llama_n_ctx(ctx_tgt);
 | |
|     const int max_tokens_list_size = max_context_size - 4;
 | |
| 
 | |
|     if ((int) inp.size() > max_tokens_list_size) {
 | |
|         fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     for (auto id : inp) {
 | |
|         fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
 | |
|     }
 | |
| 
 | |
|     fflush(stderr);
 | |
| 
 | |
|     const int n_input = inp.size();
 | |
| 
 | |
|     const auto t_enc_start = ggml_time_us();
 | |
| 
 | |
|     // eval the prompt with both models
 | |
|     llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0,           0));
 | |
|     llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(),           1, n_input - 1, 0));
 | |
|     llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input,     0,           0));
 | |
| 
 | |
|     const auto t_enc_end = ggml_time_us();
 | |
| 
 | |
|     // the 2 models should have the same vocab
 | |
|     //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
 | |
| 
 | |
|     // how many tokens to draft each time
 | |
|     int n_draft = params.n_draft;
 | |
| 
 | |
|     int n_predict = 0;
 | |
|     int n_drafted = 0;
 | |
|     int n_accept  = 0;
 | |
| 
 | |
|     int n_past_tgt = inp.size();
 | |
|     int n_past_dft = inp.size();
 | |
| 
 | |
|     // used to determine end of generation
 | |
|     bool has_eos = false;
 | |
| 
 | |
|     // target model sampling context
 | |
|     struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
 | |
| 
 | |
|     // draft sequence data
 | |
|     std::vector<seq_draft> drafts(n_seq_dft);
 | |
| 
 | |
|     params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
 | |
|     params.sparams.temp = -1.0f;    // force greedy sampling with probs for the draft model
 | |
| 
 | |
|     for (int s = 0; s < n_seq_dft; ++s) {
 | |
|         drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
 | |
|     }
 | |
| 
 | |
|     llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
 | |
|     llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
 | |
| 
 | |
|     const auto t_dec_start = ggml_time_us();
 | |
| 
 | |
|     // sample from the last token of the prompt
 | |
|     drafts[0].i_batch_tgt.resize(1);
 | |
|     drafts[0].i_batch_tgt[0] = 0;
 | |
| 
 | |
|     while (true) {
 | |
|         // print current draft sequences
 | |
|         for (int s = 0; s < n_seq_dft; ++s) {
 | |
|             if (!drafts[s].active) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             const auto & tokens = drafts[s].tokens;
 | |
| 
 | |
|             LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
 | |
|         }
 | |
| 
 | |
|         int i_dft  = 0;
 | |
|         int s_keep = 0;
 | |
| 
 | |
|         while (true) {
 | |
|             LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
 | |
| 
 | |
|             // sample from the target model
 | |
|             llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
 | |
| 
 | |
|             llama_sampling_accept(ctx_sampling, ctx_tgt, id, true);
 | |
| 
 | |
|             //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
 | |
| 
 | |
|             const std::string token_str = llama_token_to_piece(ctx_tgt, id);
 | |
| 
 | |
|             printf("%s", token_str.c_str());
 | |
|             fflush(stdout);
 | |
| 
 | |
|             if (id == llama_token_eos(model_tgt)) {
 | |
|                 has_eos = true;
 | |
|             }
 | |
| 
 | |
|             ++n_predict;
 | |
| 
 | |
|             // check if the target token matches any of the drafts
 | |
|             {
 | |
|                 bool matches = false;
 | |
| 
 | |
|                 for (int s = 0; s < n_seq_dft; ++s) {
 | |
|                     if (!drafts[s].active) {
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                     if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
 | |
|                         LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
 | |
| 
 | |
|                         s_keep = s;
 | |
|                         matches = true;
 | |
|                     } else {
 | |
|                         drafts[s].active = false;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (matches) {
 | |
|                     ++n_accept;
 | |
|                     ++n_past_tgt;
 | |
|                     ++n_past_dft;
 | |
|                     ++i_dft;
 | |
| 
 | |
|                     continue;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
 | |
| 
 | |
|             // TODO: simplify
 | |
|             {
 | |
|                 LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
 | |
| 
 | |
|                 llama_kv_cache_seq_keep(ctx_dft, s_keep);
 | |
|                 llama_kv_cache_seq_cp  (ctx_dft, s_keep, 0, -1, -1);
 | |
|                 llama_kv_cache_seq_keep(ctx_dft, 0);
 | |
| 
 | |
|                 llama_kv_cache_seq_rm  (ctx_tgt, s_keep, n_past_tgt, -1);
 | |
|                 llama_kv_cache_seq_keep(ctx_tgt, s_keep);
 | |
|                 llama_kv_cache_seq_cp  (ctx_tgt, s_keep, 0, -1, -1);
 | |
|                 llama_kv_cache_seq_keep(ctx_tgt, 0);
 | |
|             }
 | |
| 
 | |
|             for (int s = 0; s < n_seq_dft; ++s) {
 | |
|                 drafts[s].active = false;
 | |
|                 drafts[s].tokens.clear();
 | |
|                 drafts[s].i_batch_tgt.clear();
 | |
|             }
 | |
|             // note: will be erased after the speculation phase
 | |
|             drafts[0].tokens.push_back(id);
 | |
|             drafts[0].i_batch_tgt.push_back(0);
 | |
| 
 | |
|             llama_batch_clear(batch_dft);
 | |
|             llama_batch_add  (batch_dft, id, n_past_dft, { 0 }, true);
 | |
| 
 | |
|             llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
 | |
|             // LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
 | |
|             llama_decode         (ctx_dft, batch_dft);
 | |
| 
 | |
|             ++n_past_dft;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (n_predict > params.n_predict || has_eos) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
 | |
| 
 | |
|         int n_seq_cur  = 1;
 | |
|         int n_past_cur = n_past_dft;
 | |
| 
 | |
|         for (int s = 0; s < n_seq_dft; ++s) {
 | |
|             drafts[s].active   = false;
 | |
|             drafts[s].drafting = false;
 | |
|         }
 | |
|         drafts[0].active      = true;
 | |
|         drafts[0].drafting    = true;
 | |
|         drafts[0].i_batch_dft = 0;
 | |
| 
 | |
|         llama_batch_clear(batch_tgt);
 | |
|         llama_batch_add  (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
 | |
| 
 | |
|         // sample n_draft tokens from the draft model using tree-based sampling
 | |
|         for (int i = 0; i < n_draft; ++i) {
 | |
|             batch_dft.n_tokens = 0;
 | |
| 
 | |
|             for (int s = 0; s < n_seq_dft; ++s) {
 | |
|                 drafts[s].skip = false;
 | |
|             }
 | |
| 
 | |
|             for (int s = 0; s < n_seq_dft; ++s) {
 | |
|                 if (!drafts[s].drafting || drafts[s].skip) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
 | |
| 
 | |
|                 const auto & cur_p = drafts[s].ctx_sampling->cur;
 | |
| 
 | |
|                 for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
 | |
|                     LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
 | |
|                             k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
 | |
|                 }
 | |
| 
 | |
|                 if (cur_p[0].p < p_accept) {
 | |
|                     LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
 | |
|                     drafts[s].drafting = false;
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 std::vector<int> sa(1, s);
 | |
| 
 | |
|                 // attempt to split the branch if the probability is high enough
 | |
|                 for (int f = 1; f < 8; ++f) {
 | |
|                     if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
 | |
|                         LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
 | |
| 
 | |
|                         llama_kv_cache_seq_rm(ctx_dft,    n_seq_cur, -1, -1);
 | |
|                         llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
 | |
| 
 | |
|                         // all previous tokens from this branch are now also part of the new branch
 | |
|                         for (int t = 0; t < batch_tgt.n_tokens; ++t) {
 | |
|                             for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
 | |
|                                 if (batch_tgt.seq_id[t][p] == s) {
 | |
|                                     batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
 | |
|                                     batch_tgt.n_seq_id[t]++;
 | |
|                                     break;
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         // copy the draft state
 | |
|                         drafts[n_seq_cur].active   = true;
 | |
|                         drafts[n_seq_cur].drafting = true;
 | |
|                         drafts[n_seq_cur].skip     = true;
 | |
| 
 | |
|                         drafts[n_seq_cur].tokens      = drafts[s].tokens;
 | |
|                         drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
 | |
|                         drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
 | |
| 
 | |
|                         llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
 | |
| 
 | |
|                         sa.push_back(n_seq_cur);
 | |
| 
 | |
|                         n_seq_cur++;
 | |
|                     } else {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // add drafted token for each sequence
 | |
|                 for (int is = 0; is < (int) sa.size(); ++is) {
 | |
|                     const llama_token id = cur_p[is].id;
 | |
| 
 | |
|                     const int s = sa[is];
 | |
| 
 | |
|                     llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
 | |
| 
 | |
|                     drafts[s].tokens.push_back(id);
 | |
| 
 | |
|                     // add unique drafted tokens to the target batch
 | |
|                     drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
 | |
| 
 | |
|                     llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
 | |
| 
 | |
|                     // add the token to the batch for batched decoding with the draft model
 | |
|                     drafts[s].i_batch_dft = batch_dft.n_tokens;
 | |
| 
 | |
|                     llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
 | |
| 
 | |
|                     if (batch_tgt.n_tokens > n_draft) {
 | |
|                         drafts[s].drafting = false;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // no sequence is drafting anymore
 | |
|             if (batch_dft.n_tokens == 0) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // evaluate the drafted tokens on the draft model
 | |
|             llama_decode(ctx_dft, batch_dft);
 | |
|             ++n_past_cur;
 | |
|             ++n_drafted;
 | |
| 
 | |
|             if (batch_tgt.n_tokens > n_draft) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // evaluate the target model on the drafted tokens
 | |
|         {
 | |
|             llama_kv_cache_seq_keep(ctx_tgt, 0);
 | |
|             for (int s = 1; s < n_seq_dft; ++s) {
 | |
|                 llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
 | |
|             }
 | |
| 
 | |
|             // LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
 | |
|             llama_decode(ctx_tgt, batch_tgt);
 | |
|             ++n_past_tgt;
 | |
|         }
 | |
| 
 | |
|         // the first token is always proposed by the traget model before the speculation loop so we erase it here
 | |
|         for (int s = 0; s < n_seq_dft; ++s) {
 | |
|             if (!drafts[s].active) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             drafts[s].tokens.erase(drafts[s].tokens.begin());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto t_dec_end = ggml_time_us();
 | |
| 
 | |
|     LOG_TEE("\n\n");
 | |
| 
 | |
|     LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
 | |
|     LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
|     LOG_TEE("n_draft   = %d\n", n_draft);
 | |
|     LOG_TEE("n_predict = %d\n", n_predict);
 | |
|     LOG_TEE("n_drafted = %d\n", n_drafted);
 | |
|     LOG_TEE("n_accept  = %d\n", n_accept);
 | |
|     LOG_TEE("accept    = %.3f%%\n", 100.0f * n_accept / n_drafted);
 | |
| 
 | |
|     LOG_TEE("\ndraft:\n");
 | |
|     llama_print_timings(ctx_dft);
 | |
| 
 | |
|     LOG_TEE("\ntarget:\n");
 | |
|     llama_print_timings(ctx_tgt);
 | |
| 
 | |
|     llama_sampling_free(ctx_sampling);
 | |
|     for (int s = 0; s < n_seq_dft; ++s) {
 | |
|         llama_sampling_free(drafts[s].ctx_sampling);
 | |
|     }
 | |
| 
 | |
|     llama_batch_free(batch_dft);
 | |
| 
 | |
|     llama_free(ctx_tgt);
 | |
|     llama_free_model(model_tgt);
 | |
| 
 | |
|     llama_free(ctx_dft);
 | |
|     llama_free_model(model_dft);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
