mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 3e3357fd77
			
		
	
	3e3357fd77
	
	
	
		
			
			* init * add readme * update readme * no use make * update readme * update fix code * fix editorconfig-checker * no change convert py * use clip_image_u8_free
		
			
				
	
	
		
			816 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			816 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding=utf-8
 | |
| # Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """ PyTorch Siglip model. """
 | |
| # Copied from  HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
 | |
| 
 | |
| 
 | |
| import os
 | |
| import math
 | |
| import warnings
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| import torch.nn.functional as F
 | |
| import torch.utils.checkpoint
 | |
| from torch import nn
 | |
| from torch.nn.init import _calculate_fan_in_and_fan_out
 | |
| 
 | |
| from transformers.activations import ACT2FN
 | |
| from transformers.modeling_utils import PreTrainedModel
 | |
| from transformers.configuration_utils import PretrainedConfig
 | |
| from transformers.utils import (
 | |
|     logging,
 | |
| )
 | |
| from transformers.utils import logging
 | |
| 
 | |
| logger = logging.get_logger(__name__)
 | |
| 
 | |
| class SiglipVisionConfig(PretrainedConfig):
 | |
|     r"""
 | |
|     This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
 | |
|     Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
 | |
|     configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
 | |
|     [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
 | |
|     Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
 | |
|     documentation from [`PretrainedConfig`] for more information.
 | |
|     Args:
 | |
|         hidden_size (`int`, *optional*, defaults to 768):
 | |
|             Dimensionality of the encoder layers and the pooler layer.
 | |
|         intermediate_size (`int`, *optional*, defaults to 3072):
 | |
|             Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
 | |
|         num_hidden_layers (`int`, *optional*, defaults to 12):
 | |
|             Number of hidden layers in the Transformer encoder.
 | |
|         num_attention_heads (`int`, *optional*, defaults to 12):
 | |
|             Number of attention heads for each attention layer in the Transformer encoder.
 | |
|         num_channels (`int`, *optional*, defaults to 3):
 | |
|             Number of channels in the input images.
 | |
|         image_size (`int`, *optional*, defaults to 224):
 | |
|             The size (resolution) of each image.
 | |
|         patch_size (`int`, *optional*, defaults to 16):
 | |
|             The size (resolution) of each patch.
 | |
|         hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
 | |
|             The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
 | |
|             `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
 | |
|         layer_norm_eps (`float`, *optional*, defaults to 1e-06):
 | |
|             The epsilon used by the layer normalization layers.
 | |
|         attention_dropout (`float`, *optional*, defaults to 0.0):
 | |
|             The dropout ratio for the attention probabilities.
 | |
|     Example:
 | |
|     ```python
 | |
|     >>> from transformers import SiglipVisionConfig, SiglipVisionModel
 | |
|     >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
 | |
|     >>> configuration = SiglipVisionConfig()
 | |
|     >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
 | |
|     >>> model = SiglipVisionModel(configuration)
 | |
|     >>> # Accessing the model configuration
 | |
|     >>> configuration = model.config
 | |
|     ```"""
 | |
| 
 | |
|     model_type = "siglip_vision_model"
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         hidden_size=768,
 | |
|         intermediate_size=3072,
 | |
|         num_hidden_layers=12,
 | |
|         num_attention_heads=12,
 | |
|         num_channels=3,
 | |
|         image_size=224,
 | |
|         patch_size=16,
 | |
|         hidden_act="gelu_pytorch_tanh",
 | |
|         layer_norm_eps=1e-6,
 | |
|         attention_dropout=0.0,
 | |
|         **kwargs,
 | |
|     ):
 | |
|         super().__init__(**kwargs)
 | |
| 
 | |
|         self.hidden_size = hidden_size
 | |
|         self.intermediate_size = intermediate_size
 | |
|         self.num_hidden_layers = num_hidden_layers
 | |
|         self.num_attention_heads = num_attention_heads
 | |
|         self.num_channels = num_channels
 | |
|         self.patch_size = patch_size
 | |
|         self.image_size = image_size
 | |
|         self.attention_dropout = attention_dropout
 | |
|         self.layer_norm_eps = layer_norm_eps
 | |
|         self.hidden_act = hidden_act
 | |
| 
 | |
| _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
 | |
| 
 | |
| SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
 | |
|     "google/siglip-base-patch16-224",
 | |
|     # See all SigLIP models at https://huggingface.co/models?filter=siglip
 | |
| ]
 | |
| 
 | |
| # Copied from transformers.models.llama.modeling_llama._get_unpad_data
 | |
| def _get_unpad_data(attention_mask):
 | |
|     seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
 | |
|     indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
 | |
|     max_seqlen_in_batch = seqlens_in_batch.max().item()
 | |
|     cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
 | |
|     return (
 | |
|         indices,
 | |
|         cu_seqlens,
 | |
|         max_seqlen_in_batch,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def _trunc_normal_(tensor, mean, std, a, b):
 | |
|     # Cut & paste from PyTorch official master until it's in a few official releases - RW
 | |
|     # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
 | |
|     def norm_cdf(x):
 | |
|         # Computes standard normal cumulative distribution function
 | |
|         return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
 | |
| 
 | |
|     if (mean < a - 2 * std) or (mean > b + 2 * std):
 | |
|         warnings.warn(
 | |
|             "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
 | |
|             "The distribution of values may be incorrect.",
 | |
|             stacklevel=2,
 | |
|         )
 | |
| 
 | |
|     # Values are generated by using a truncated uniform distribution and
 | |
|     # then using the inverse CDF for the normal distribution.
 | |
|     # Get upper and lower cdf values
 | |
|     l = norm_cdf((a - mean) / std)
 | |
|     u = norm_cdf((b - mean) / std)
 | |
| 
 | |
|     # Uniformly fill tensor with values from [l, u], then translate to
 | |
|     # [2l-1, 2u-1].
 | |
|     tensor.uniform_(2 * l - 1, 2 * u - 1)
 | |
| 
 | |
|     # Use inverse cdf transform for normal distribution to get truncated
 | |
|     # standard normal
 | |
|     if tensor.dtype in [torch.float16, torch.bfloat16]:
 | |
|         # The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
 | |
|         og_dtype = tensor.dtype
 | |
|         tensor = tensor.to(torch.float32)
 | |
|         tensor.erfinv_()
 | |
|         tensor = tensor.to(og_dtype)
 | |
|     else:
 | |
|         tensor.erfinv_()
 | |
| 
 | |
|     # Transform to proper mean, std
 | |
|     tensor.mul_(std * math.sqrt(2.0))
 | |
|     tensor.add_(mean)
 | |
| 
 | |
|     # Clamp to ensure it's in the proper range
 | |
|     if tensor.dtype == torch.float16:
 | |
|         # The `clamp_` op is not (yet?) defined in float16+cpu
 | |
|         tensor = tensor.to(torch.float32)
 | |
|         tensor.clamp_(min=a, max=b)
 | |
|         tensor = tensor.to(torch.float16)
 | |
|     else:
 | |
|         tensor.clamp_(min=a, max=b)
 | |
| 
 | |
| 
 | |
| def trunc_normal_tf_(
 | |
|     tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
 | |
| ):
 | |
|     """Fills the input Tensor with values drawn from a truncated
 | |
|     normal distribution. The values are effectively drawn from the
 | |
|     normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
 | |
|     with values outside :math:`[a, b]` redrawn until they are within
 | |
|     the bounds. The method used for generating the random values works
 | |
|     best when :math:`a \\leq \text{mean} \\leq b`.
 | |
|     NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
 | |
|     bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
 | |
|     and the result is subsquently scaled and shifted by the mean and std args.
 | |
|     Args:
 | |
|         tensor: an n-dimensional `torch.Tensor`
 | |
|         mean: the mean of the normal distribution
 | |
|         std: the standard deviation of the normal distribution
 | |
|         a: the minimum cutoff value
 | |
|         b: the maximum cutoff value
 | |
|     """
 | |
|     with torch.no_grad():
 | |
|         _trunc_normal_(tensor, 0, 1.0, a, b)
 | |
|         tensor.mul_(std).add_(mean)
 | |
| 
 | |
| 
 | |
| def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
 | |
|     fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
 | |
|     denom = fan_in
 | |
|     if mode == "fan_in":
 | |
|         denom = fan_in
 | |
|     elif mode == "fan_out":
 | |
|         denom = fan_out
 | |
|     elif mode == "fan_avg":
 | |
|         denom = (fan_in + fan_out) / 2
 | |
| 
 | |
|     variance = scale / denom
 | |
| 
 | |
|     if distribution == "truncated_normal":
 | |
|         # constant is stddev of standard normal truncated to (-2, 2)
 | |
|         trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
 | |
|     elif distribution == "normal":
 | |
|         with torch.no_grad():
 | |
|             tensor.normal_(std=math.sqrt(variance))
 | |
|     elif distribution == "uniform":
 | |
|         bound = math.sqrt(3 * variance)
 | |
|         with torch.no_grad():
 | |
|             tensor.uniform_(-bound, bound)
 | |
|     else:
 | |
|         raise ValueError(f"invalid distribution {distribution}")
 | |
| 
 | |
| 
 | |
| def lecun_normal_(tensor):
 | |
|     variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
 | |
| 
 | |
| 
 | |
| def default_flax_embed_init(tensor):
 | |
|     variance_scaling_(tensor, mode="fan_in", distribution="normal")
 | |
| 
 | |
| class SiglipVisionEmbeddings(nn.Module):
 | |
|     def __init__(self, config: SiglipVisionConfig):
 | |
|         super().__init__()
 | |
|         self.config = config
 | |
|         self.embed_dim = config.hidden_size
 | |
|         self.image_size = config.image_size
 | |
|         self.patch_size = config.patch_size
 | |
| 
 | |
|         self.patch_embedding = nn.Conv2d(
 | |
|             in_channels=config.num_channels,
 | |
|             out_channels=self.embed_dim,
 | |
|             kernel_size=self.patch_size,
 | |
|             stride=self.patch_size,
 | |
|             padding="valid",
 | |
|         )
 | |
| 
 | |
|         self.num_patches_per_side = self.image_size // self.patch_size
 | |
|         self.num_patches = self.num_patches_per_side**2
 | |
|         self.num_positions = self.num_patches
 | |
|         self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
 | |
| 
 | |
| class SiglipAttention(nn.Module):
 | |
|     """Multi-headed attention from 'Attention Is All You Need' paper"""
 | |
| 
 | |
|     # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
 | |
|     def __init__(self, config):
 | |
|         super().__init__()
 | |
|         self.config = config
 | |
|         self.embed_dim = config.hidden_size
 | |
|         self.num_heads = config.num_attention_heads
 | |
|         self.head_dim = self.embed_dim // self.num_heads
 | |
|         if self.head_dim * self.num_heads != self.embed_dim:
 | |
|             raise ValueError(
 | |
|                 f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
 | |
|                 f" {self.num_heads})."
 | |
|             )
 | |
|         self.scale = self.head_dim**-0.5
 | |
|         self.dropout = config.attention_dropout
 | |
| 
 | |
|         self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
 | |
|         self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
 | |
|         self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
 | |
|         self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
 | |
| 
 | |
| # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
 | |
| class SiglipMLP(nn.Module):
 | |
|     def __init__(self, config):
 | |
|         super().__init__()
 | |
|         self.config = config
 | |
|         self.activation_fn = ACT2FN[config.hidden_act]
 | |
|         self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
 | |
|         self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
 | |
| 
 | |
| 
 | |
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
 | |
| class SiglipEncoderLayer(nn.Module):
 | |
|     def __init__(self, config: SiglipVisionConfig):
 | |
|         super().__init__()
 | |
|         self.embed_dim = config.hidden_size
 | |
|         self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
 | |
|         self.self_attn = (
 | |
|             SiglipAttention(config)
 | |
|         )
 | |
|         self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
 | |
|         self.mlp = SiglipMLP(config)
 | |
|         self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
 | |
| 
 | |
| class SiglipPreTrainedModel(PreTrainedModel):
 | |
|     """
 | |
|     An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
 | |
|     models.
 | |
|     """
 | |
| 
 | |
|     config_class = SiglipVisionConfig
 | |
|     base_model_prefix = "siglip"
 | |
|     supports_gradient_checkpointing = True
 | |
| 
 | |
|     def _init_weights(self, module):
 | |
|         """Initialize the weights"""
 | |
| 
 | |
|         if isinstance(module, SiglipVisionEmbeddings):
 | |
|             width = self.config.hidden_size
 | |
|             nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
 | |
|         elif isinstance(module, nn.Embedding):
 | |
|             default_flax_embed_init(module.weight)
 | |
|         elif isinstance(module, SiglipAttention):
 | |
|             nn.init.normal_(module.q_proj.weight)
 | |
|             nn.init.normal_(module.k_proj.weight)
 | |
|             nn.init.normal_(module.v_proj.weight)
 | |
|             nn.init.normal_(module.out_proj.weight)
 | |
|             nn.init.zeros_(module.q_proj.bias)
 | |
|             nn.init.zeros_(module.k_proj.bias)
 | |
|             nn.init.zeros_(module.v_proj.bias)
 | |
|             nn.init.zeros_(module.out_proj.bias)
 | |
|         elif isinstance(module, SiglipMLP):
 | |
|             nn.init.normal_(module.fc1.weight)
 | |
|             nn.init.normal_(module.fc2.weight)
 | |
|             nn.init.normal_(module.fc1.bias, std=1e-6)
 | |
|             nn.init.normal_(module.fc2.bias, std=1e-6)
 | |
|         elif isinstance(module, (nn.Linear, nn.Conv2d)):
 | |
|             lecun_normal_(module.weight)
 | |
|             if module.bias is not None:
 | |
|                 nn.init.zeros_(module.bias)
 | |
|         elif isinstance(module, nn.LayerNorm):
 | |
|             module.bias.data.zero_()
 | |
|             module.weight.data.fill_(1.0)
 | |
| 
 | |
| 
 | |
| SIGLIP_START_DOCSTRING = r"""
 | |
|     This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
 | |
|     library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
 | |
|     etc.)
 | |
|     This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
 | |
|     Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
 | |
|     and behavior.
 | |
|     Parameters:
 | |
|         config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
 | |
|             Initializing with a config file does not load the weights associated with the model, only the
 | |
|             configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
 | |
| """
 | |
| 
 | |
| 
 | |
| SIGLIP_VISION_INPUTS_DOCSTRING = r"""
 | |
|     Args:
 | |
|         pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
 | |
|             Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
 | |
|             [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
 | |
|         output_attentions (`bool`, *optional*):
 | |
|             Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
 | |
|             tensors for more detail.
 | |
|         output_hidden_states (`bool`, *optional*):
 | |
|             Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
 | |
|             more detail.
 | |
|         return_dict (`bool`, *optional*):
 | |
|             Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
 | |
| """
 | |
| 
 | |
| 
 | |
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
 | |
| class SiglipEncoder(nn.Module):
 | |
|     """
 | |
|     Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
 | |
|     [`SiglipEncoderLayer`].
 | |
|     Args:
 | |
|         config: SiglipConfig
 | |
|     """
 | |
| 
 | |
|     def __init__(self, config: SiglipVisionConfig):
 | |
|         super().__init__()
 | |
|         self.config = config
 | |
|         self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
 | |
|         self.gradient_checkpointing = False
 | |
| 
 | |
| class SiglipVisionTransformer(SiglipPreTrainedModel):
 | |
|     config_class = SiglipVisionConfig
 | |
|     main_input_name = "pixel_values"
 | |
|     _supports_flash_attn_2 = True
 | |
| 
 | |
|     def __init__(self, config: SiglipVisionConfig):
 | |
|         super().__init__(config)
 | |
|         self.config = config
 | |
|         embed_dim = config.hidden_size
 | |
| 
 | |
|         self.embeddings = SiglipVisionEmbeddings(config)
 | |
|         self.encoder = SiglipEncoder(config)
 | |
|         self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
 | |
|         self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
 | |
| 
 | |
|         # Initialize weights and apply final processing
 | |
|         self.post_init()
 | |
| 
 | |
|     def get_input_embeddings(self) -> nn.Module:
 | |
|         return self.embeddings.patch_embedding
 | |
| 
 | |
| import argparse
 | |
| import json
 | |
| import re
 | |
| 
 | |
| import numpy as np
 | |
| from gguf import *
 | |
| from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
 | |
| 
 | |
| TEXT = "clip.text"
 | |
| VISION = "clip.vision"
 | |
| 
 | |
| 
 | |
| def add_key_str(raw_key: str, arch: str) -> str:
 | |
|     return raw_key.format(arch=arch)
 | |
| 
 | |
| 
 | |
| def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool:
 | |
|     if name in (
 | |
|         "logit_scale",
 | |
|         "text_model.embeddings.position_ids",
 | |
|         "vision_model.embeddings.position_ids",
 | |
|     ):
 | |
|         return True
 | |
| 
 | |
|     if has_minicpmv and name in ["visual_projection.weight"]:
 | |
|         return True
 | |
| 
 | |
|     if name.startswith("v") and not has_vision:
 | |
|         return True
 | |
| 
 | |
|     if name.startswith("t") and not has_text:
 | |
|         return True
 | |
| 
 | |
|     return False
 | |
| 
 | |
| 
 | |
| def get_tensor_name(name: str) -> str:
 | |
|     if "projection" in name:
 | |
|         return name
 | |
|     if "mm_projector" in name:
 | |
|         name = name.replace("model.mm_projector", "mm")
 | |
|         name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
 | |
|         name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
 | |
|         return name
 | |
| 
 | |
|     return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
 | |
| 
 | |
| 
 | |
| def bytes_to_unicode():
 | |
|     """
 | |
|     Returns list of utf-8 byte and a corresponding list of unicode strings.
 | |
|     The reversible bpe codes work on unicode strings.
 | |
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | |
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | |
|     This is a significant percentage of your normal, say, 32K bpe vocab.
 | |
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | |
|     And avoids mapping to whitespace/control characters the bpe code barfs on.
 | |
|     """
 | |
|     bs = (
 | |
|         list(range(ord("!"), ord("~") + 1))
 | |
|         + list(range(ord("¡"), ord("¬") + 1))
 | |
|         + list(range(ord("®"), ord("ÿ") + 1))
 | |
|     )
 | |
|     cs = bs[:]
 | |
|     n = 0
 | |
|     for b in range(2**8):
 | |
|         if b not in bs:
 | |
|             bs.append(b)
 | |
|             cs.append(2**8 + n)
 | |
|             n += 1
 | |
|     cs = [chr(n) for n in cs]
 | |
|     return dict(zip(bs, cs))
 | |
| 
 | |
| 
 | |
| ap = argparse.ArgumentParser()
 | |
| ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
 | |
| ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
 | |
| ap.add_argument("--text-only", action="store_true", required=False,
 | |
|                 help="Save a text-only model. It can't be used to encode images")
 | |
| ap.add_argument("--vision-only", action="store_true", required=False,
 | |
|                 help="Save a vision-only model. It can't be used to encode texts")
 | |
| ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
 | |
|                 help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
 | |
| ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
 | |
|                 help="The clip model is from openclip (for ViT-SO400M type))")
 | |
| ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.")
 | |
| ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
 | |
| ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
 | |
| # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
 | |
| # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
 | |
| default_image_mean = [0.48145466, 0.4578275, 0.40821073]
 | |
| default_image_std = [0.26862954, 0.26130258, 0.27577711]
 | |
| ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
 | |
| ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
 | |
| ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4', default=2)
 | |
| 
 | |
| # with proper
 | |
| args = ap.parse_args()
 | |
| 
 | |
| 
 | |
| if args.text_only and args.vision_only:
 | |
|     print("--text-only and --image-only arguments cannot be specified at the same time.")
 | |
|     exit(1)
 | |
| 
 | |
| if args.use_f32:
 | |
|     print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
 | |
| 
 | |
| # output in the same directory as the model if output_dir is None
 | |
| dir_model = args.model_dir
 | |
| 
 | |
| if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
 | |
|     vocab = None
 | |
|     tokens = None
 | |
| else:
 | |
|     with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
 | |
|         vocab = json.load(f)
 | |
|         tokens = [key for key in vocab]
 | |
| 
 | |
| # possible data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| #
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| ftype = 1
 | |
| if args.use_f32:
 | |
|     ftype = 0
 | |
| 
 | |
| # if args.clip_model_is_vision or args.clip_model_is_openclip:
 | |
| #     model = CLIPVisionModel.from_pretrained(dir_model)
 | |
| #     processor = None
 | |
| # else:
 | |
| #     model = CLIPModel.from_pretrained(dir_model)
 | |
| #     processor = CLIPProcessor.from_pretrained(dir_model)
 | |
| 
 | |
| minicpmv_version = args.minicpmv_version
 | |
| emb_dim = 4096
 | |
| block_count = 26
 | |
| if minicpmv_version == 1:
 | |
|     emb_dim = 2304
 | |
|     block_count = 26
 | |
| elif minicpmv_version == 2:
 | |
|     emb_dim = 4096
 | |
|     block_count = 27
 | |
| elif minicpmv_version == 3:
 | |
|     emb_dim = 3584
 | |
|     block_count = 27
 | |
| elif minicpmv_version == 4:
 | |
|     emb_dim = 3584
 | |
|     block_count = 27
 | |
| 
 | |
| default_vision_config = {
 | |
|         "hidden_size": 1152,
 | |
|         "image_size": 980,
 | |
|         "intermediate_size": 4304,
 | |
|         "model_type": "idefics2",
 | |
|         "num_attention_heads": 16,
 | |
|         "num_hidden_layers": 27,
 | |
|         "patch_size": 14,
 | |
|     }
 | |
| 
 | |
| vision_config = Idefics2VisionConfig(**default_vision_config)
 | |
| model = Idefics2VisionTransformer(vision_config)
 | |
| if minicpmv_version == 3:
 | |
|     vision_config = SiglipVisionConfig(**default_vision_config)
 | |
|     model = SiglipVisionTransformer(vision_config)
 | |
| elif minicpmv_version == 4:
 | |
|     vision_config = SiglipVisionConfig(**default_vision_config)
 | |
|     model = SiglipVisionTransformer(vision_config)
 | |
| 
 | |
| processor = None
 | |
| # if model.attn_pool is not None:
 | |
| #     model.attn_pool = torch.nn.Identity()
 | |
| 
 | |
| # model.blocks = model.blocks[:-1]
 | |
| model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip")))
 | |
| 
 | |
| fname_middle = None
 | |
| has_text_encoder = True
 | |
| has_vision_encoder = True
 | |
| has_minicpmv_projector = False
 | |
| 
 | |
| if args.text_only:
 | |
|     fname_middle = "text-"
 | |
|     has_vision_encoder = False
 | |
| elif args.minicpmv_projector is not None:
 | |
|     fname_middle = "mmproj-"
 | |
|     has_text_encoder = False
 | |
|     has_minicpmv_projector = True
 | |
|     minicpmv_version = 4
 | |
| elif args.vision_only:
 | |
|     fname_middle = "vision-"
 | |
|     has_text_encoder = False
 | |
| else:
 | |
|     fname_middle = ""
 | |
| 
 | |
| output_dir = args.output_dir if args.output_dir is not None else dir_model
 | |
| os.makedirs(output_dir, exist_ok=True)
 | |
| output_prefix = os.path.basename(output_dir).replace("ggml_", "")
 | |
| fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
 | |
| fout = GGUFWriter(path=fname_out, arch="clip")
 | |
| 
 | |
| fout.add_bool("clip.has_text_encoder", has_text_encoder)
 | |
| fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
 | |
| fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector)
 | |
| fout.add_file_type(ftype)
 | |
| if args.text_only:
 | |
|     fout.add_description("text-only CLIP model")
 | |
| elif args.vision_only and not has_minicpmv_projector:
 | |
|     fout.add_description("vision-only CLIP model")
 | |
| elif has_minicpmv_projector:
 | |
|     fout.add_description("image encoder for MiniCPM-V")
 | |
|     # add projector type
 | |
|     fout.add_string("clip.projector_type", "resampler")
 | |
|     fout.add_int32("clip.minicpmv_version", minicpmv_version)
 | |
| else:
 | |
|     fout.add_description("two-tower CLIP model")
 | |
| 
 | |
| if has_vision_encoder:
 | |
|     # vision_model hparams
 | |
|     fout.add_uint32("clip.vision.image_size", 448)
 | |
|     fout.add_uint32("clip.vision.patch_size", 14)
 | |
|     fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152)
 | |
|     fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
 | |
|     fout.add_uint32("clip.vision.projection_dim", 0)
 | |
|     fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
 | |
|     fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
 | |
|     fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
 | |
| 
 | |
|     if processor is not None:
 | |
|         image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
 | |
|         image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
 | |
|     else:
 | |
|         image_mean = args.image_mean if args.image_mean is not None else default_image_mean
 | |
|         image_std = args.image_std if args.image_std is not None else default_image_std
 | |
|     fout.add_array("clip.vision.image_mean", image_mean)
 | |
|     fout.add_array("clip.vision.image_std", image_std)
 | |
| 
 | |
| use_gelu = True
 | |
| fout.add_bool("clip.use_gelu", use_gelu)
 | |
| 
 | |
| def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
 | |
|     """
 | |
|     embed_dim: output dimension for each position
 | |
|     pos: a list of positions to be encoded: size (M,)
 | |
|     out: (M, D)
 | |
|     """
 | |
|     assert embed_dim % 2 == 0
 | |
|     omega = np.arange(embed_dim // 2, dtype=np.float32)
 | |
|     omega /= embed_dim / 2.
 | |
|     omega = 1. / 10000 ** omega  # (D/2,)
 | |
| 
 | |
|     pos = pos.reshape(-1)  # (M,)
 | |
|     out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product
 | |
| 
 | |
|     emb_sin = np.sin(out)  # (M, D/2)
 | |
|     emb_cos = np.cos(out)  # (M, D/2)
 | |
| 
 | |
|     emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
 | |
|     return emb
 | |
| 
 | |
| def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
 | |
|     assert embed_dim % 2 == 0
 | |
| 
 | |
|     # use half of dimensions to encode grid_h
 | |
|     emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
 | |
|     emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)
 | |
| 
 | |
|     emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
 | |
|     return emb
 | |
| 
 | |
| 
 | |
| # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
 | |
| def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
 | |
|     """
 | |
|     grid_size: int of the grid height and width
 | |
|     return:
 | |
|     pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
 | |
|     """
 | |
|     if isinstance(grid_size, int):
 | |
|         grid_h_size, grid_w_size = grid_size, grid_size
 | |
|     else:
 | |
|         grid_h_size, grid_w_size = grid_size[0], grid_size[1]
 | |
| 
 | |
|     grid_h = np.arange(grid_h_size, dtype=np.float32)
 | |
|     grid_w = np.arange(grid_w_size, dtype=np.float32)
 | |
|     grid = np.meshgrid(grid_w, grid_h)  # here w goes first
 | |
|     grid = np.stack(grid, axis=0)
 | |
| 
 | |
|     grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
 | |
|     pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
 | |
|     if cls_token:
 | |
|         pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
 | |
|     return pos_embed
 | |
| 
 | |
| def _replace_name_resampler(s, v):
 | |
|     if re.match("resampler.pos_embed", s):
 | |
|         return {
 | |
|             s: v,
 | |
|             re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
 | |
|         }
 | |
|     if re.match("resampler.proj", s):
 | |
|         return {
 | |
|             re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
 | |
|             re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
 | |
|         }
 | |
|     if re.match("resampler.attn.in_proj_.*", s):
 | |
|         return {
 | |
|             re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0],
 | |
|             re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1],
 | |
|             re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2],
 | |
|         }
 | |
|     return {s: v}
 | |
| 
 | |
| if has_minicpmv_projector:
 | |
|     projector = torch.load(args.minicpmv_projector)
 | |
|     new_state_dict = {}
 | |
|     for k, v in projector.items():
 | |
|         kvs = _replace_name_resampler(k, v)
 | |
|         for nk, nv in kvs.items():
 | |
|             new_state_dict[nk] = nv
 | |
|     projector = new_state_dict
 | |
|     ftype_cur = 0
 | |
|     for name, data in projector.items():
 | |
|         name = get_tensor_name(name)
 | |
|         data = data.squeeze().numpy()
 | |
| 
 | |
|         n_dims = len(data.shape)
 | |
|         if ftype == 1:
 | |
|             if name[-7:] == ".weight" and n_dims == 2:
 | |
|                 print("  Converting to float16")
 | |
|                 data = data.astype(np.float16)
 | |
|                 ftype_cur = 1
 | |
|             else:
 | |
|                 print("  Converting to float32")
 | |
|                 data = data.astype(np.float32)
 | |
|                 ftype_cur = 0
 | |
|         else:
 | |
|             if data.dtype != np.float32:
 | |
|                 print("  Converting to float32")
 | |
|                 data = data.astype(np.float32)
 | |
|                 ftype_cur = 0
 | |
| 
 | |
|         fout.add_tensor(name, data)
 | |
|         print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
 | |
| 
 | |
|     print("Projector tensors added\n")
 | |
| 
 | |
| def _replace_name(s, v):
 | |
|     s = "vision_model." + s
 | |
|     if re.match("vision_model.embeddings.position_embedding", s):
 | |
|         v = v.unsqueeze(0)
 | |
|         return {s: v}
 | |
| 
 | |
|     return {s: v}
 | |
| 
 | |
| state_dict = model.state_dict()
 | |
| new_state_dict = {}
 | |
| for k, v in state_dict.items():
 | |
|     kvs = _replace_name(k, v)
 | |
|     for nk, nv in kvs.items():
 | |
|         new_state_dict[nk] = nv
 | |
| state_dict = new_state_dict
 | |
| for name, data in state_dict.items():
 | |
|     if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector):
 | |
|         # we don't need this
 | |
|         print(f"skipping parameter: {name}")
 | |
|         continue
 | |
| 
 | |
|     name = get_tensor_name(name)
 | |
|     data = data.squeeze().numpy()
 | |
| 
 | |
|     n_dims = len(data.shape)
 | |
| 
 | |
|     # ftype == 0 -> float32, ftype == 1 -> float16
 | |
|     ftype_cur = 0
 | |
|     if n_dims == 4:
 | |
|         print(f"tensor {name} is always saved in f16")
 | |
|         data = data.astype(np.float16)
 | |
|         ftype_cur = 1
 | |
|     elif ftype == 1:
 | |
|         if name[-7:] == ".weight" and n_dims == 2:
 | |
|             print("  Converting to float16")
 | |
|             data = data.astype(np.float16)
 | |
|             ftype_cur = 1
 | |
|         else:
 | |
|             print("  Converting to float32")
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
|     else:
 | |
|         if data.dtype != np.float32:
 | |
|             print("  Converting to float32")
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
| 
 | |
|     print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
 | |
|     fout.add_tensor(name, data)
 | |
| 
 | |
| 
 | |
| fout.write_header_to_file()
 | |
| fout.write_kv_data_to_file()
 | |
| fout.write_tensors_to_file()
 | |
| fout.close()
 | |
| 
 | |
| print("Done. Output file: " + fname_out)
 |