mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 cf658adc83
			
		
	
	cf658adc83
	
	
	
		
			
			* llama : refactor GGUF constants into static maps * llama : check if model architecture is known * llama : refactor llama_model_load_internal() * gguf : add KV constant maps * llm : read arch-specific KVs * convert : add dummy scores + types * falcon : load tensor data (CPU only) * llama : fix loading progress bar * llama : add arch member to llama_model * falcon : CPU inference working * falcon : support non-40B models * falcon : minor * llama : minor updates ggml-ci * convert-falcon-hf-to-gguf.py : fix special token mapping * llama.cpp : llama default UNK token = id 0 * llama.cpp : fix bpe tokenizer * llama.cpp : fix the fix of bpe tokenizer * ggml : pass eps to ggml_norm * metal : implement RoPE (mode = 2) + avoid ggml_repeat * ggml : ggml_repeat always creates new tensor * falcon : copy-paste self-attention from LLaMA * metal : print extra compute pipeline info * falcon : minor changes (still chasing the Metal problem) * llama.cpp : fix linefeed token * metal : fix GELU kernel numerical stability by using precise::tanh * metal : temporary workaround for the concurrency optimization bug * falcon : add CUDA offloading (#2739) * llama : better model naming and size reporting * llama : prep new tokenizer support * llama : advanced BPE tokenizer based on ggllm.cpp imlpementation * llama : remove oboslete comment ggml-ci * common : remove obsolete BPE API + disable test-tokenizer-1 * llama : revert BPE special-case in llama_byte_to_token() * cuda : add TODOs for RoPE NeoX implementation * llama : default special tokens based on vocab type * perplexity : add log for start of tokenization --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com>
		
			
				
	
	
		
			558 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			558 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "build-info.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <ctime>
 | |
| #include <sstream>
 | |
| #include <cstring>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| std::vector<float> softmax(const std::vector<float>& logits) {
 | |
|     std::vector<float> probs(logits.size());
 | |
|     float max_logit = logits[0];
 | |
|     for (float v : logits) max_logit = std::max(max_logit, v);
 | |
|     double sum_exp = 0.0;
 | |
|     for (size_t i = 0; i < logits.size(); i++) {
 | |
|         // Subtract the maximum logit value from the current logit value for numerical stability
 | |
|         const float logit = logits[i] - max_logit;
 | |
|         const float exp_logit = expf(logit);
 | |
|         sum_exp += exp_logit;
 | |
|         probs[i] = exp_logit;
 | |
|     }
 | |
|     for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
 | |
|     return probs;
 | |
| }
 | |
| 
 | |
| void perplexity_v2(llama_context * ctx, const gpt_params & params) {
 | |
|     // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
 | |
|     // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
 | |
|     // Output: `perplexity: 13.5106 [114/114]`
 | |
|     // BOS tokens will be added for each chunk before eval
 | |
| 
 | |
|     if (params.ppl_stride <= 0) {
 | |
|         fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
 | |
|     const bool add_bos = is_spm;
 | |
| 
 | |
|     fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
 | |
| 
 | |
|     auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
 | |
| 
 | |
|     const int calc_chunk = params.n_ctx;
 | |
| 
 | |
|     fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
 | |
| 
 | |
|     if (int(tokens.size()) <= calc_chunk) {
 | |
|         fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
 | |
|                 tokens.size(), params.n_ctx, params.ppl_stride);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1)  / params.ppl_stride;
 | |
| 
 | |
|     const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
 | |
|     const int n_vocab = llama_n_vocab(ctx);
 | |
|     const int n_batch = params.n_batch;
 | |
| 
 | |
|     int count = 0;
 | |
|     double nll = 0.0;
 | |
| 
 | |
|     fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
 | |
| 
 | |
|     for (int i = 0; i < n_chunk; ++i) {
 | |
|         const int start =     i * params.ppl_stride;
 | |
|         const int end   = start + calc_chunk;
 | |
| 
 | |
|         const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
 | |
|         //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
 | |
| 
 | |
|         std::vector<float> logits;
 | |
| 
 | |
|         const auto t_start = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
|         for (int j = 0; j < num_batches; ++j) {
 | |
|             const int batch_start = start + j * n_batch;
 | |
|             const int batch_size  = std::min(end - batch_start, n_batch);
 | |
| 
 | |
|             //fprintf(stderr, "    Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
 | |
|             if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
 | |
|                 //fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // save original token and restore it after eval
 | |
|             const auto token_org = tokens[batch_start];
 | |
| 
 | |
|             // add BOS token for the first batch of each chunk
 | |
|             if (add_bos && j == 0) {
 | |
|                 tokens[batch_start] = llama_token_bos(ctx);
 | |
|             }
 | |
| 
 | |
|             const auto batch_logits = llama_get_logits(ctx);
 | |
|             logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
 | |
| 
 | |
|             if (j == 0) {
 | |
|                 tokens[batch_start] = token_org;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const auto t_end = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
|         if (i == 0) {
 | |
|             const float t_total = std::chrono::duration<float>(t_end - t_start).count();
 | |
|             fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
 | |
|             int total_seconds = (int)(t_total * n_chunk);
 | |
|             if (total_seconds >= 60*60) {
 | |
|                 fprintf(stderr, "%d hours ", total_seconds / (60*60));
 | |
|                 total_seconds = total_seconds % (60*60);
 | |
|             }
 | |
|             fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
 | |
|         }
 | |
| 
 | |
|         //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
 | |
|         for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) {
 | |
| 
 | |
|             // Calculate probability of next token, given the previous ones.
 | |
|             const std::vector<float> tok_logits(
 | |
|                 logits.begin() + (j + 0) * n_vocab,
 | |
|                 logits.begin() + (j + 1) * n_vocab);
 | |
| 
 | |
|             const float prob = softmax(tok_logits)[tokens[start + j + 1]];
 | |
| 
 | |
|             nll += -std::log(prob);
 | |
|             ++count;
 | |
|         }
 | |
|         // perplexity is e^(average negative log-likelihood)
 | |
|         if (params.ppl_output_type == 0) {
 | |
|             printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | |
|         } else {
 | |
|             printf("%8d  %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
 | |
|         }
 | |
|         fflush(stdout);
 | |
|     }
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| void perplexity(llama_context * ctx, const gpt_params & params) {
 | |
|     if (params.ppl_stride > 0) {
 | |
|         perplexity_v2(ctx, params);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
 | |
|     // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
 | |
|     // Output: `perplexity: 13.5106 [114/114]`
 | |
|     // BOS tokens will be added for each chunk before eval
 | |
| 
 | |
|     const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
 | |
|     const bool add_bos = is_spm;
 | |
| 
 | |
|     fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
 | |
| 
 | |
|     auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
 | |
| 
 | |
|     const int n_chunk_max = tokens.size() / params.n_ctx;
 | |
| 
 | |
|     const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
 | |
|     const int n_vocab = llama_n_vocab(ctx);
 | |
|     const int n_batch = params.n_batch;
 | |
| 
 | |
|     int count = 0;
 | |
|     double nll = 0.0;
 | |
| 
 | |
|     fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
 | |
| 
 | |
|     for (int i = 0; i < n_chunk; ++i) {
 | |
|         const int start =     i * params.n_ctx;
 | |
|         const int end   = start + params.n_ctx;
 | |
| 
 | |
|         const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
 | |
| 
 | |
|         std::vector<float> logits;
 | |
| 
 | |
|         const auto t_start = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
|         for (int j = 0; j < num_batches; ++j) {
 | |
|             const int batch_start = start + j * n_batch;
 | |
|             const int batch_size  = std::min(end - batch_start, n_batch);
 | |
| 
 | |
|             // save original token and restore it after eval
 | |
|             const auto token_org = tokens[batch_start];
 | |
| 
 | |
|             // add BOS token for the first batch of each chunk
 | |
|             if (add_bos && j == 0) {
 | |
|                 tokens[batch_start] = llama_token_bos(ctx);
 | |
|             }
 | |
| 
 | |
|             if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
 | |
|                 fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // restore the original token in case it was set to BOS
 | |
|             tokens[batch_start] = token_org;
 | |
| 
 | |
|             const auto batch_logits = llama_get_logits(ctx);
 | |
|             logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
 | |
|         }
 | |
| 
 | |
|         const auto t_end = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
|         if (i == 0) {
 | |
|             const float t_total = std::chrono::duration<float>(t_end - t_start).count();
 | |
|             fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
 | |
|             int total_seconds = (int)(t_total * n_chunk);
 | |
|             if (total_seconds >= 60*60) {
 | |
|                 fprintf(stderr, "%d hours ", total_seconds / (60*60));
 | |
|                 total_seconds = total_seconds % (60*60);
 | |
|             }
 | |
|             fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
 | |
|         }
 | |
| 
 | |
|         // We get the logits for all the tokens in the context window (params.n_ctx)
 | |
|         // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
 | |
|         // calculate the perplexity over the last half of the window (so the model always has
 | |
|         // some context to predict the token).
 | |
|         //
 | |
|         // We rely on the fact that attention in the forward pass only looks at previous
 | |
|         // tokens here, so the logits returned for each token are an accurate representation
 | |
|         // of what the model would have predicted at that point.
 | |
|         //
 | |
|         // Example, we have a context window of 512, we will compute perplexity for each of the
 | |
|         // last 256 tokens.  Then, we split the input up into context window size chunks to
 | |
|         // process the entire prompt.
 | |
|         for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
 | |
|             // Calculate probability of next token, given the previous ones.
 | |
|             const std::vector<float> tok_logits(
 | |
|                 logits.begin() + (j + 0) * n_vocab,
 | |
|                 logits.begin() + (j + 1) * n_vocab);
 | |
| 
 | |
|             const float prob = softmax(tok_logits)[tokens[start + j + 1]];
 | |
| 
 | |
|             nll += -std::log(prob);
 | |
|             ++count;
 | |
|         }
 | |
|         // perplexity is e^(average negative log-likelihood)
 | |
|         if (params.ppl_output_type == 0) {
 | |
|             printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | |
|         } else {
 | |
|             printf("%8d  %.4lf\n", i*params.n_ctx, std::exp(nll / count));
 | |
|         }
 | |
|         fflush(stdout);
 | |
|     }
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,
 | |
|         int n_vocab, int n_thread) {
 | |
|     std::vector<float> result;
 | |
|     result.reserve(tokens.size() * n_vocab);
 | |
|     size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
 | |
|     for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
 | |
|         size_t n_tokens = tokens.size() - i_chunk * n_batch;
 | |
|         n_tokens = std::min(n_tokens, size_t(n_batch));
 | |
|         if (llama_eval(ctx, tokens.data() + i_chunk * n_batch, n_tokens, n_past, n_thread)) {
 | |
|             fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|             return {};
 | |
|         }
 | |
| 
 | |
|         const auto logits = llama_get_logits(ctx);
 | |
|         result.insert(result.end(), logits, logits + n_tokens * n_vocab);
 | |
| 
 | |
|         n_past += n_tokens;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void hellaswag_score(llama_context * ctx, const gpt_params & params) {
 | |
|     // Calculates hellaswag score (acc_norm) from prompt
 | |
|     //
 | |
|     // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
 | |
|     // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
 | |
|     //
 | |
|     // All 10042 tasks should be extracted to keep the results standardized like other implementations.
 | |
|     //
 | |
|     // Datafile layout:
 | |
|     // ['??'] denotes json fields
 | |
|     // 6 lines per task:
 | |
|     // ['activity_label'] + ": " +['ctx']  - The first part of the query, the context
 | |
|     // ['label'] - The index the best common sense ending aka gold ending
 | |
|     // ['endings'][0] - Endings added to the first part of the query
 | |
|     // ['endings'][1]
 | |
|     // ['endings'][2]
 | |
|     // ['endings'][3]
 | |
| 
 | |
|     std::vector<std::string> prompt_lines;
 | |
|     std::istringstream strstream(params.prompt);
 | |
|     std::string line;
 | |
| 
 | |
|     while (std::getline(strstream,line,'\n')) {
 | |
|         prompt_lines.push_back(line);
 | |
|     }
 | |
| 
 | |
|     if( prompt_lines.size() % 6 != 0) {
 | |
|         fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     size_t hs_task_count = prompt_lines.size()/6;
 | |
|     fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
 | |
| 
 | |
|     const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
 | |
| 
 | |
|     // This is needed as usual for LLaMA models
 | |
|     const bool add_bos = is_spm;
 | |
| 
 | |
|     // Number of tasks to use when computing the score
 | |
|     if ( params.hellaswag_tasks < hs_task_count  ) {
 | |
|         hs_task_count = params.hellaswag_tasks;
 | |
|     }
 | |
| 
 | |
|     // The tasks should be randomized so the score stabilizes quickly.
 | |
|     bool randomize_tasks = true;
 | |
| 
 | |
|     // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
 | |
|     std::mt19937 rng(1);
 | |
| 
 | |
|     // Dataholder for hellaswag tasks
 | |
|     struct hs_data_t {
 | |
|         std::string context;
 | |
|         size_t gold_ending_idx;
 | |
|         std::string ending[4];
 | |
|         size_t ending_logprob_count[4];
 | |
|         double ending_logprob[4];
 | |
|     };
 | |
| 
 | |
|     fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first")  );
 | |
| 
 | |
|     // Select and read data from prompt lines
 | |
|     hs_data_t *hs_data = new hs_data_t[hs_task_count];
 | |
|     for (size_t i=0; i < hs_task_count; i++) {
 | |
|         size_t idx = i;
 | |
| 
 | |
|         // Select a random example of those left in the prompt
 | |
|         if (randomize_tasks) {
 | |
|             std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
 | |
|             idx = dist(rng);
 | |
|         }
 | |
| 
 | |
|         hs_data[i].context = prompt_lines[idx*6];
 | |
|         hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
 | |
|         for (size_t j=0; j < 4; j++) {
 | |
|             hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j];
 | |
|         }
 | |
| 
 | |
|         // Delete the selected random example from the prompt
 | |
|         if (randomize_tasks) {
 | |
|             prompt_lines.erase( std::next(prompt_lines.begin(),idx*6)  , std::next(prompt_lines.begin(),idx*6+6) );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
 | |
|     printf("\ntask\tacc_norm\n");
 | |
| 
 | |
|     double acc = 0.0f;
 | |
|     const int n_vocab = llama_n_vocab(ctx);
 | |
| 
 | |
|     std::vector<float> tok_logits(n_vocab);
 | |
| 
 | |
|     for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
 | |
|         // Tokenize the context to count tokens
 | |
|         std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
 | |
|         size_t context_size = context_embd.size();
 | |
| 
 | |
|         // Do the 1st ending
 | |
|         // In this case we include the context when evaluating
 | |
|         auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
 | |
|         auto query_size = query_embd.size();
 | |
|         //printf("First query: %d\n",(int)query_size);
 | |
| 
 | |
|         // Stop if query wont fit the ctx window
 | |
|         if (query_size > (size_t)params.n_ctx) {
 | |
|             fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // Speedup small evaluations by evaluating atleast 32 tokens
 | |
|         if (query_size < 32) {
 | |
|             query_embd.resize(32);
 | |
|         }
 | |
| 
 | |
|         auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads);
 | |
|         if (logits.empty()) {
 | |
|             fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
 | |
|         const auto first_probs = softmax(tok_logits);
 | |
| 
 | |
|         hs_data[task_idx].ending_logprob_count[0] = 1;
 | |
|         hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
 | |
| 
 | |
|         // Calculate the logprobs over the ending
 | |
|         for (size_t j = context_size; j < query_size - 1; j++) {
 | |
| 
 | |
|             std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
 | |
| 
 | |
|             const float prob = softmax(tok_logits)[query_embd[j + 1]];
 | |
| 
 | |
|             hs_data[task_idx].ending_logprob[0] += std::log(prob);
 | |
|             hs_data[task_idx].ending_logprob_count[0]++;
 | |
|         }
 | |
| 
 | |
|         // Calculate the mean token logprob for acc_norm
 | |
|         hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
 | |
| 
 | |
|         // Do the remaining endings
 | |
|         // For these, we use the bare ending with n_past = context_size
 | |
|         //
 | |
|         for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
 | |
| 
 | |
|             // Tokenize the query
 | |
|             query_embd = ::llama_tokenize(ctx, hs_data[task_idx].ending[ending_idx], false);
 | |
|             query_size = query_embd.size();
 | |
| 
 | |
|             // Stop if query wont fit the ctx window
 | |
|             if (context_size + query_size > (size_t)params.n_ctx) {
 | |
|                 fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // Speedup small evaluations by evaluating atleast 32 tokens
 | |
|             // No, resizing to 32 is actually slightly slower (at least on CUDA)
 | |
|             //if (query_size < 32) {
 | |
|             //    query_embd.resize(32);
 | |
|             //}
 | |
| 
 | |
|             // Evaluate the query
 | |
|             logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads);
 | |
|             if (logits.empty()) {
 | |
|                 fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
 | |
|             hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
 | |
| 
 | |
|             // Calculate the logprobs over the ending
 | |
|             for (size_t j = 0; j < query_size - 1; j++) {
 | |
|                 std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
 | |
| 
 | |
|                 const float prob = softmax(tok_logits)[query_embd[j + 1]];
 | |
| 
 | |
|                 hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
 | |
|                 hs_data[task_idx].ending_logprob_count[ending_idx]++;
 | |
|             }
 | |
| 
 | |
|             // Calculate the mean token logprob for acc_norm
 | |
|             hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
 | |
| 
 | |
| 
 | |
| //            printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
 | |
| //                task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
 | |
|         }
 | |
| 
 | |
|         // Find the ending with maximum logprob
 | |
|         size_t ending_logprob_max_idx = 0;
 | |
|         double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
 | |
|         for (size_t j = 1; j < 4; j++) {
 | |
|             if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
 | |
|                 ending_logprob_max_idx = j;
 | |
|                 ending_logprob_max_val =  hs_data[task_idx].ending_logprob[j];
 | |
|             }
 | |
|         }
 | |
| 
 | |
| //        printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
 | |
| 
 | |
|         // If the gold ending got the maximum logprobe add one accuracy point
 | |
|         if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
 | |
|             acc += 1.0;
 | |
|         }
 | |
| 
 | |
|         // Print the accumulated accuracy mean x 100
 | |
|         printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
 | |
|         fflush(stdout);
 | |
|     }
 | |
| 
 | |
|     delete [] hs_data;
 | |
| 
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     params.n_batch = 512;
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     params.perplexity = true;
 | |
|     params.n_batch = std::min(params.n_batch, params.n_ctx);
 | |
| 
 | |
|     if (params.ppl_stride > 0) {
 | |
|         fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
 | |
|                 params.n_ctx, params.n_ctx + params.ppl_stride/2);
 | |
|         params.n_ctx += params.ppl_stride/2;
 | |
|     }
 | |
| 
 | |
|     if (params.n_ctx > 2048) {
 | |
|         fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
 | |
|                 "expect poor results\n", __func__, params.n_ctx);
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | |
| 
 | |
|     if (params.seed == LLAMA_DEFAULT_SEED) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: seed  = %u\n", __func__, params.seed);
 | |
| 
 | |
|     std::mt19937 rng(params.seed);
 | |
|     if (params.random_prompt) {
 | |
|         params.prompt = gpt_random_prompt(rng);
 | |
|     }
 | |
| 
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     // load the model and apply lora adapter, if any
 | |
|     std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         fprintf(stderr, "\n");
 | |
|         fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | |
|                 params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | |
|     }
 | |
| 
 | |
|     if (params.hellaswag) {
 | |
|         hellaswag_score(ctx, params);
 | |
|     } else {
 | |
|         perplexity(ctx, params);
 | |
|     }
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |