mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* server : (refactor) no more json in server_task input * add test for slots endpoint * add tests for /props and /slots * remove task inf_type * fix CI by adding safe_json_to_str * add "model_path" to /props * update readme
		
			
				
	
	
		
			166 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from openai import OpenAI
 | 
						|
from utils import *
 | 
						|
 | 
						|
server = ServerPreset.tinyllama2()
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(scope="module", autouse=True)
 | 
						|
def create_server():
 | 
						|
    global server
 | 
						|
    server = ServerPreset.tinyllama2()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
 | 
						|
    [
 | 
						|
        (None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
 | 
						|
        ("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
 | 
						|
    ]
 | 
						|
)
 | 
						|
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
 | 
						|
    global server
 | 
						|
    server.start()
 | 
						|
    res = server.make_request("POST", "/chat/completions", data={
 | 
						|
        "model": model,
 | 
						|
        "max_tokens": max_tokens,
 | 
						|
        "messages": [
 | 
						|
            {"role": "system", "content": system_prompt},
 | 
						|
            {"role": "user", "content": user_prompt},
 | 
						|
        ],
 | 
						|
    })
 | 
						|
    assert res.status_code == 200
 | 
						|
    assert "cmpl" in res.body["id"] # make sure the completion id has the expected format
 | 
						|
    assert res.body["model"] == model if model is not None else server.model_alias
 | 
						|
    assert res.body["usage"]["prompt_tokens"] == n_prompt
 | 
						|
    assert res.body["usage"]["completion_tokens"] == n_predicted
 | 
						|
    choice = res.body["choices"][0]
 | 
						|
    assert "assistant" == choice["message"]["role"]
 | 
						|
    assert match_regex(re_content, choice["message"]["content"])
 | 
						|
    assert choice["finish_reason"] == finish_reason
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
 | 
						|
    [
 | 
						|
        ("Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
 | 
						|
        ("You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
 | 
						|
    ]
 | 
						|
)
 | 
						|
def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
 | 
						|
    global server
 | 
						|
    server.model_alias = None # try using DEFAULT_OAICOMPAT_MODEL
 | 
						|
    server.start()
 | 
						|
    res = server.make_stream_request("POST", "/chat/completions", data={
 | 
						|
        "max_tokens": max_tokens,
 | 
						|
        "messages": [
 | 
						|
            {"role": "system", "content": system_prompt},
 | 
						|
            {"role": "user", "content": user_prompt},
 | 
						|
        ],
 | 
						|
        "stream": True,
 | 
						|
    })
 | 
						|
    content = ""
 | 
						|
    last_cmpl_id = None
 | 
						|
    for data in res:
 | 
						|
        choice = data["choices"][0]
 | 
						|
        assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future
 | 
						|
        if last_cmpl_id is None:
 | 
						|
            last_cmpl_id = data["id"]
 | 
						|
        assert last_cmpl_id == data["id"] # make sure the completion id is the same for all events in the stream
 | 
						|
        if choice["finish_reason"] in ["stop", "length"]:
 | 
						|
            assert data["usage"]["prompt_tokens"] == n_prompt
 | 
						|
            assert data["usage"]["completion_tokens"] == n_predicted
 | 
						|
            assert "content" not in choice["delta"]
 | 
						|
            assert match_regex(re_content, content)
 | 
						|
            assert choice["finish_reason"] == finish_reason
 | 
						|
        else:
 | 
						|
            assert choice["finish_reason"] is None
 | 
						|
            content += choice["delta"]["content"]
 | 
						|
 | 
						|
 | 
						|
def test_chat_completion_with_openai_library():
 | 
						|
    global server
 | 
						|
    server.start()
 | 
						|
    client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
 | 
						|
    res = client.chat.completions.create(
 | 
						|
        model="gpt-3.5-turbo-instruct",
 | 
						|
        messages=[
 | 
						|
            {"role": "system", "content": "Book"},
 | 
						|
            {"role": "user", "content": "What is the best book"},
 | 
						|
        ],
 | 
						|
        max_tokens=8,
 | 
						|
        seed=42,
 | 
						|
        temperature=0.8,
 | 
						|
    )
 | 
						|
    print(res)
 | 
						|
    assert res.choices[0].finish_reason == "length"
 | 
						|
    assert res.choices[0].message.content is not None
 | 
						|
    assert match_regex("(Suddenly)+", res.choices[0].message.content)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("response_format,n_predicted,re_content", [
 | 
						|
    ({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
 | 
						|
    ({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
 | 
						|
    ({"type": "json_object"}, 10, "(\\{|John)+"),
 | 
						|
    ({"type": "sound"}, 0, None),
 | 
						|
    # invalid response format (expected to fail)
 | 
						|
    ({"type": "json_object", "schema": 123}, 0, None),
 | 
						|
    ({"type": "json_object", "schema": {"type": 123}}, 0, None),
 | 
						|
    ({"type": "json_object", "schema": {"type": "hiccup"}}, 0, None),
 | 
						|
])
 | 
						|
def test_completion_with_response_format(response_format: dict, n_predicted: int, re_content: str | None):
 | 
						|
    global server
 | 
						|
    server.start()
 | 
						|
    res = server.make_request("POST", "/chat/completions", data={
 | 
						|
        "max_tokens": n_predicted,
 | 
						|
        "messages": [
 | 
						|
            {"role": "system", "content": "You are a coding assistant."},
 | 
						|
            {"role": "user", "content": "Write an example"},
 | 
						|
        ],
 | 
						|
        "response_format": response_format,
 | 
						|
    })
 | 
						|
    if re_content is not None:
 | 
						|
        assert res.status_code == 200
 | 
						|
        choice = res.body["choices"][0]
 | 
						|
        assert match_regex(re_content, choice["message"]["content"])
 | 
						|
    else:
 | 
						|
        assert res.status_code != 200
 | 
						|
        assert "error" in res.body
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("messages", [
 | 
						|
    None,
 | 
						|
    "string",
 | 
						|
    [123],
 | 
						|
    [{}],
 | 
						|
    [{"role": 123}],
 | 
						|
    [{"role": "system", "content": 123}],
 | 
						|
    # [{"content": "hello"}], # TODO: should not be a valid case
 | 
						|
    [{"role": "system", "content": "test"}, {}],
 | 
						|
])
 | 
						|
def test_invalid_chat_completion_req(messages):
 | 
						|
    global server
 | 
						|
    server.start()
 | 
						|
    res = server.make_request("POST", "/chat/completions", data={
 | 
						|
        "messages": messages,
 | 
						|
    })
 | 
						|
    assert res.status_code == 400 or res.status_code == 500
 | 
						|
    assert "error" in res.body
 | 
						|
 | 
						|
 | 
						|
def test_chat_completion_with_timings_per_token():
 | 
						|
    global server
 | 
						|
    server.start()
 | 
						|
    res = server.make_stream_request("POST", "/chat/completions", data={
 | 
						|
        "max_tokens": 10,
 | 
						|
        "messages": [{"role": "user", "content": "test"}],
 | 
						|
        "stream": True,
 | 
						|
        "timings_per_token": True,
 | 
						|
    })
 | 
						|
    for data in res:
 | 
						|
        assert "timings" in data
 | 
						|
        assert "prompt_per_second" in data["timings"]
 | 
						|
        assert "predicted_per_second" in data["timings"]
 | 
						|
        assert "predicted_n" in data["timings"]
 | 
						|
        assert data["timings"]["predicted_n"] <= 10
 |