mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1050 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1050 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "llama-quant.h"
 | 
						|
#include "llama-impl.h"
 | 
						|
#include "llama-model.h"
 | 
						|
#include "llama-model-loader.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
#include <cstring>
 | 
						|
#include <cinttypes>
 | 
						|
#include <fstream>
 | 
						|
#include <mutex>
 | 
						|
#include <regex>
 | 
						|
#include <thread>
 | 
						|
#include <unordered_map>
 | 
						|
 | 
						|
// Quantization types. Changes to this struct must be replicated in quantize.cpp
 | 
						|
struct tensor_quantization {
 | 
						|
    std::string name;
 | 
						|
    ggml_type quant = GGML_TYPE_COUNT;
 | 
						|
};
 | 
						|
 | 
						|
static void zeros(std::ofstream & file, size_t n) {
 | 
						|
    char zero = 0;
 | 
						|
    for (size_t i = 0; i < n; ++i) {
 | 
						|
        file.write(&zero, 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static std::string remap_layer(const std::string & orig_name, const std::vector<int> & prune, std::map<int, std::string> & mapped, int & next_id) {
 | 
						|
    if (prune.empty()) {
 | 
						|
        return orig_name;
 | 
						|
    }
 | 
						|
 | 
						|
    static const std::regex pattern(R"(blk\.(\d+)\.)");
 | 
						|
    if (std::smatch match; std::regex_search(orig_name, match, pattern)) {
 | 
						|
        const int blk = std::stoi(match[1]);
 | 
						|
        std::string new_name = orig_name;
 | 
						|
 | 
						|
        if (mapped.count(blk)) {
 | 
						|
            // Already mapped, do nothing
 | 
						|
        } else if (std::find(prune.begin(), prune.end(), blk) != prune.end()) {
 | 
						|
            mapped[blk] = "";
 | 
						|
        } else if (blk < prune.front()) {
 | 
						|
            mapped[blk] = std::to_string(blk);
 | 
						|
            next_id = blk + 1;
 | 
						|
        } else {
 | 
						|
            mapped[blk] = std::to_string(next_id);
 | 
						|
            ++next_id;
 | 
						|
        }
 | 
						|
 | 
						|
        return mapped[blk].empty() ? mapped[blk] : new_name.replace(match.position(1), match.length(1), mapped[blk]);
 | 
						|
    }
 | 
						|
 | 
						|
    return orig_name;
 | 
						|
}
 | 
						|
 | 
						|
static std::string remap_imatrix (const std::string & orig_name, const std::map<int, std::string> & mapped) {
 | 
						|
    if (mapped.empty()) {
 | 
						|
        return orig_name;
 | 
						|
    }
 | 
						|
 | 
						|
    static const std::regex pattern(R"(blk\.(\d+)\.)");
 | 
						|
    if (std::smatch match; std::regex_search(orig_name, match, pattern)) {
 | 
						|
        const std::string blk(match[1]);
 | 
						|
        std::string new_name = orig_name;
 | 
						|
 | 
						|
        for (const auto & p : mapped) {
 | 
						|
            if (p.second == blk) {
 | 
						|
                LLAMA_LOG_DEBUG("(blk.%d imatrix) ", p.first);
 | 
						|
                return new_name.replace(match.position(1), match.length(1), std::to_string(p.first));
 | 
						|
            }
 | 
						|
        }
 | 
						|
        GGML_ABORT("\n%s: imatrix mapping error for %s\n", __func__, orig_name.c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    return orig_name;
 | 
						|
}
 | 
						|
 | 
						|
struct quantize_state_impl {
 | 
						|
    const llama_model                 & model;
 | 
						|
    const llama_model_quantize_params * params;
 | 
						|
 | 
						|
    int n_attention_wv = 0;
 | 
						|
    int n_ffn_down     = 0;
 | 
						|
    int n_ffn_gate     = 0;
 | 
						|
    int n_ffn_up       = 0;
 | 
						|
    int i_attention_wv = 0;
 | 
						|
    int i_ffn_down     = 0;
 | 
						|
    int i_ffn_gate     = 0;
 | 
						|
    int i_ffn_up       = 0;
 | 
						|
 | 
						|
    int n_k_quantized = 0;
 | 
						|
    int n_fallback    = 0;
 | 
						|
 | 
						|
    bool has_imatrix = false;
 | 
						|
 | 
						|
    // used to figure out if a model shares tok_embd with the output weight
 | 
						|
    bool has_output = false;
 | 
						|
 | 
						|
    quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params)
 | 
						|
        : model(model)
 | 
						|
        , params(params)
 | 
						|
        {}
 | 
						|
};
 | 
						|
 | 
						|
static void llama_tensor_dequantize_impl(
 | 
						|
    ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
 | 
						|
    const size_t nelements, const int nthread
 | 
						|
) {
 | 
						|
    if (output.size() < nelements) {
 | 
						|
        output.resize(nelements);
 | 
						|
    }
 | 
						|
    float * f32_output = (float *) output.data();
 | 
						|
 | 
						|
    const ggml_type_traits * qtype = ggml_get_type_traits(tensor->type);
 | 
						|
    if (ggml_is_quantized(tensor->type)) {
 | 
						|
        if (qtype->to_float == NULL) {
 | 
						|
            throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
 | 
						|
        }
 | 
						|
    } else if (tensor->type != GGML_TYPE_F16 &&
 | 
						|
               tensor->type != GGML_TYPE_BF16) {
 | 
						|
        throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
 | 
						|
    }
 | 
						|
 | 
						|
    if (nthread < 2) {
 | 
						|
        if (tensor->type == GGML_TYPE_F16) {
 | 
						|
            ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
 | 
						|
        } else if (tensor->type == GGML_TYPE_BF16) {
 | 
						|
            ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
 | 
						|
        } else if (ggml_is_quantized(tensor->type)) {
 | 
						|
            qtype->to_float(tensor->data, f32_output, nelements);
 | 
						|
        } else {
 | 
						|
            GGML_ABORT("fatal error"); // unreachable
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t block_size;
 | 
						|
    if (tensor->type == GGML_TYPE_F16 ||
 | 
						|
        tensor->type == GGML_TYPE_BF16) {
 | 
						|
        block_size = 1;
 | 
						|
    } else {
 | 
						|
        block_size = (size_t)ggml_blck_size(tensor->type);
 | 
						|
    }
 | 
						|
 | 
						|
    size_t block_size_bytes = ggml_type_size(tensor->type);
 | 
						|
 | 
						|
    GGML_ASSERT(nelements % block_size == 0);
 | 
						|
    size_t nblocks = nelements / block_size;
 | 
						|
    size_t blocks_per_thread = nblocks / nthread;
 | 
						|
    size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
 | 
						|
 | 
						|
    size_t in_buff_offs = 0;
 | 
						|
    size_t out_buff_offs = 0;
 | 
						|
 | 
						|
    for (int tnum = 0; tnum < nthread; tnum++) {
 | 
						|
        size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
 | 
						|
        size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
 | 
						|
        size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
 | 
						|
 | 
						|
        auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
 | 
						|
            if (typ == GGML_TYPE_F16) {
 | 
						|
                ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
 | 
						|
            } else if (typ == GGML_TYPE_BF16) {
 | 
						|
                ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
 | 
						|
            } else {
 | 
						|
                qtype->to_float(inbuf, outbuf, nels);
 | 
						|
            }
 | 
						|
        };
 | 
						|
        workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
 | 
						|
        in_buff_offs += thr_block_bytes;
 | 
						|
        out_buff_offs += thr_elems;
 | 
						|
    }
 | 
						|
    for (auto & w : workers) { w.join(); }
 | 
						|
    workers.clear();
 | 
						|
}
 | 
						|
 | 
						|
static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
 | 
						|
    const std::string name = ggml_get_name(tensor);
 | 
						|
 | 
						|
    // TODO: avoid hardcoded tensor names - use the TN_* constants
 | 
						|
    const llm_arch arch = qs.model.arch;
 | 
						|
    const auto       tn = LLM_TN(arch);
 | 
						|
 | 
						|
    auto use_more_bits = [](int i_layer, int n_layers) -> bool {
 | 
						|
        return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
 | 
						|
    };
 | 
						|
    const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
 | 
						|
    auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
 | 
						|
        if (n_expert > 1) {
 | 
						|
            // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
 | 
						|
            // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
 | 
						|
            // for getting the current layer as I initially thought, and we need to resort to parsing the
 | 
						|
            // tensor name.
 | 
						|
            if (sscanf(name, "blk.%d.", &i_layer) != 1) {
 | 
						|
                throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
 | 
						|
            }
 | 
						|
            if (i_layer < 0 || i_layer >= n_layer) {
 | 
						|
                throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return std::make_pair(i_layer, n_layer);
 | 
						|
    };
 | 
						|
 | 
						|
    // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
 | 
						|
    // with the quantization of the output tensor
 | 
						|
    if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
 | 
						|
        if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
 | 
						|
            new_type = qs.params->output_tensor_type;
 | 
						|
        } else {
 | 
						|
            const int64_t nx = tensor->ne[0];
 | 
						|
            const int64_t qk_k = ggml_blck_size(new_type);
 | 
						|
 | 
						|
            if (arch == LLM_ARCH_FALCON || nx % qk_k != 0) {
 | 
						|
                new_type = GGML_TYPE_Q8_0;
 | 
						|
            }
 | 
						|
            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
 | 
						|
                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S  || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M   ||
 | 
						|
                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
 | 
						|
                new_type = GGML_TYPE_Q5_K;
 | 
						|
            }
 | 
						|
            else if (new_type != GGML_TYPE_Q8_0) {
 | 
						|
                new_type = GGML_TYPE_Q6_K;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (name == "token_embd.weight" || name == "per_layer_token_embd.weight") {
 | 
						|
        if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
 | 
						|
            new_type = qs.params->token_embedding_type;
 | 
						|
        } else {
 | 
						|
            if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
 | 
						|
                ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
 | 
						|
                new_type = GGML_TYPE_Q2_K;
 | 
						|
            }
 | 
						|
            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
 | 
						|
                new_type = GGML_TYPE_IQ3_S;
 | 
						|
            }
 | 
						|
            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
 | 
						|
                new_type = GGML_TYPE_IQ3_S;
 | 
						|
            }
 | 
						|
            else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) {
 | 
						|
                new_type = GGML_TYPE_Q4_K;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
 | 
						|
               ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M    || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
 | 
						|
        if (name.find("attn_v.weight") != std::string::npos) {
 | 
						|
            if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
 | 
						|
            else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
 | 
						|
            ++qs.i_attention_wv;
 | 
						|
        }
 | 
						|
        else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
 | 
						|
            new_type = GGML_TYPE_Q4_K;
 | 
						|
        }
 | 
						|
        else if (name.find("ffn_down") != std::string::npos) {
 | 
						|
            if (qs.i_ffn_down < qs.n_ffn_down/8) {
 | 
						|
                new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
 | 
						|
            }
 | 
						|
            ++qs.i_ffn_down;
 | 
						|
        }
 | 
						|
        else if (name.find("attn_output.weight") != std::string::npos) {
 | 
						|
            if (qs.model.hparams.n_expert == 8) {
 | 
						|
                new_type = GGML_TYPE_Q5_K;
 | 
						|
            } else {
 | 
						|
                if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
 | 
						|
                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (name.find("attn_v.weight") != std::string::npos) {
 | 
						|
        if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
 | 
						|
            new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
 | 
						|
            new_type = GGML_TYPE_Q4_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
 | 
						|
            new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
 | 
						|
        }
 | 
						|
        else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
 | 
						|
            new_type = GGML_TYPE_Q4_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
 | 
						|
            new_type = GGML_TYPE_Q4_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
 | 
						|
            new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
 | 
						|
        else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
 | 
						|
            new_type = GGML_TYPE_Q5_K;
 | 
						|
        }
 | 
						|
        else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
 | 
						|
                use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
 | 
						|
        if (qs.model.type == LLM_TYPE_70B) {
 | 
						|
            // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
 | 
						|
            // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
 | 
						|
            // nearly negligible increase in model size by quantizing this tensor with more bits:
 | 
						|
            if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
 | 
						|
        }
 | 
						|
        if (qs.model.hparams.n_expert == 8) {
 | 
						|
            // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
 | 
						|
            // TODO: explore better strategies
 | 
						|
            new_type = GGML_TYPE_Q8_0;
 | 
						|
        }
 | 
						|
        ++qs.i_attention_wv;
 | 
						|
    } else if (name.find("attn_k.weight") != std::string::npos) {
 | 
						|
        if (qs.model.hparams.n_expert == 8) {
 | 
						|
            // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
 | 
						|
            // TODO: explore better strategies
 | 
						|
            new_type = GGML_TYPE_Q8_0;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
 | 
						|
            new_type = GGML_TYPE_IQ3_XXS;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
 | 
						|
            new_type = GGML_TYPE_IQ2_S;
 | 
						|
        }
 | 
						|
    } else if (name.find("attn_q.weight") != std::string::npos) {
 | 
						|
        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
 | 
						|
            new_type = GGML_TYPE_IQ3_XXS;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
 | 
						|
            new_type = GGML_TYPE_IQ2_S;
 | 
						|
        }
 | 
						|
    } else if (name.find("ffn_down") != std::string::npos) {
 | 
						|
        auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
 | 
						|
        int i_layer = info.first, n_layer = info.second;
 | 
						|
        if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
 | 
						|
            if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
 | 
						|
            new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
 | 
						|
            new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
 | 
						|
                     : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
 | 
						|
                     : GGML_TYPE_Q3_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
 | 
						|
                    (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
 | 
						|
            new_type = GGML_TYPE_Q4_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
 | 
						|
            new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
 | 
						|
            if (arch == LLM_ARCH_FALCON) {
 | 
						|
                new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
 | 
						|
                           use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
 | 
						|
            } else {
 | 
						|
                if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
 | 
						|
            new_type = GGML_TYPE_Q5_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
 | 
						|
            new_type = GGML_TYPE_Q5_K;
 | 
						|
        }
 | 
						|
        else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
 | 
						|
                && qs.has_imatrix && i_layer < n_layer/8) {
 | 
						|
            // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
 | 
						|
            // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
 | 
						|
            // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
 | 
						|
            new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
 | 
						|
        }
 | 
						|
        ++qs.i_ffn_down;
 | 
						|
    } else if (name.find("attn_output.weight") != std::string::npos) {
 | 
						|
        if (arch != LLM_ARCH_FALCON) {
 | 
						|
            if (qs.model.hparams.n_expert == 8) {
 | 
						|
                if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
 | 
						|
                    ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL  ||
 | 
						|
                    ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S  ||
 | 
						|
                    ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
 | 
						|
                    new_type = GGML_TYPE_Q5_K;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   ) new_type = GGML_TYPE_Q3_K;
 | 
						|
                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
 | 
						|
                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
 | 
						|
                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
 | 
						|
                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  ) new_type = GGML_TYPE_Q4_K;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (name.find("attn_qkv.weight") != std::string::npos) {
 | 
						|
        if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
 | 
						|
            new_type = GGML_TYPE_Q4_K;
 | 
						|
        }
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
 | 
						|
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
 | 
						|
    }
 | 
						|
    else if (name.find("ffn_gate") != std::string::npos) {
 | 
						|
        auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
 | 
						|
        int i_layer = info.first, n_layer = info.second;
 | 
						|
        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
 | 
						|
            new_type = GGML_TYPE_IQ3_XXS;
 | 
						|
        }
 | 
						|
        ++qs.i_ffn_gate;
 | 
						|
    }
 | 
						|
    else if (name.find("ffn_up") != std::string::npos) {
 | 
						|
        auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
 | 
						|
        int i_layer = info.first, n_layer = info.second;
 | 
						|
        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
 | 
						|
            new_type = GGML_TYPE_IQ3_XXS;
 | 
						|
        }
 | 
						|
        ++qs.i_ffn_up;
 | 
						|
    }
 | 
						|
 | 
						|
    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
 | 
						|
    //}
 | 
						|
    // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
 | 
						|
    //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
 | 
						|
    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
 | 
						|
    //}
 | 
						|
    // This can be used to reduce the size of the Q5_K_S model.
 | 
						|
    // The associated PPL increase is fully in line with the size reduction
 | 
						|
    //else {
 | 
						|
    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
 | 
						|
    //}
 | 
						|
    bool convert_incompatible_tensor = false;
 | 
						|
    {
 | 
						|
        const int64_t nx = tensor->ne[0];
 | 
						|
        const int64_t ny = tensor->ne[1];
 | 
						|
        const int64_t qk_k = ggml_blck_size(new_type);
 | 
						|
 | 
						|
        if (nx % qk_k != 0) {
 | 
						|
            LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
 | 
						|
            convert_incompatible_tensor = true;
 | 
						|
        } else {
 | 
						|
            ++qs.n_k_quantized;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (convert_incompatible_tensor) {
 | 
						|
        switch (new_type) {
 | 
						|
            case GGML_TYPE_TQ1_0:
 | 
						|
            case GGML_TYPE_TQ2_0:  new_type = GGML_TYPE_Q4_0; break;  // TODO: use a symmetric type instead
 | 
						|
            case GGML_TYPE_IQ2_XXS:
 | 
						|
            case GGML_TYPE_IQ2_XS:
 | 
						|
            case GGML_TYPE_IQ2_S:
 | 
						|
            case GGML_TYPE_IQ3_XXS:
 | 
						|
            case GGML_TYPE_IQ3_S:
 | 
						|
            case GGML_TYPE_IQ1_S:
 | 
						|
            case GGML_TYPE_IQ1_M:
 | 
						|
            case GGML_TYPE_Q2_K:
 | 
						|
            case GGML_TYPE_Q3_K:
 | 
						|
            case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
 | 
						|
            case GGML_TYPE_Q4_K:   new_type = GGML_TYPE_Q5_0;   break;
 | 
						|
            case GGML_TYPE_Q5_K:   new_type = GGML_TYPE_Q5_1;   break;
 | 
						|
            case GGML_TYPE_Q6_K:   new_type = GGML_TYPE_Q8_0;   break;
 | 
						|
            default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
 | 
						|
        }
 | 
						|
        if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
 | 
						|
            new_type = GGML_TYPE_F16;
 | 
						|
        }
 | 
						|
        LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
 | 
						|
        ++qs.n_fallback;
 | 
						|
    }
 | 
						|
 | 
						|
    return new_type;
 | 
						|
}
 | 
						|
 | 
						|
static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
 | 
						|
    if (nthread < 2) {
 | 
						|
        // single-thread
 | 
						|
        size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
 | 
						|
        if (!ggml_validate_row_data(new_type, new_data, new_size)) {
 | 
						|
            throw std::runtime_error("quantized data validation failed");
 | 
						|
        }
 | 
						|
        return new_size;
 | 
						|
    }
 | 
						|
 | 
						|
    std::mutex mutex;
 | 
						|
    int64_t counter = 0;
 | 
						|
    size_t new_size = 0;
 | 
						|
    bool valid = true;
 | 
						|
    auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
 | 
						|
            nrows, n_per_row, imatrix]() {
 | 
						|
        const int64_t nrows_per_chunk = chunk_size / n_per_row;
 | 
						|
        size_t local_size = 0;
 | 
						|
        while (true) {
 | 
						|
            std::unique_lock<std::mutex> lock(mutex);
 | 
						|
            int64_t first_row = counter; counter += nrows_per_chunk;
 | 
						|
            if (first_row >= nrows) {
 | 
						|
                if (local_size > 0) {
 | 
						|
                    new_size += local_size;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            lock.unlock();
 | 
						|
            const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
 | 
						|
            size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
 | 
						|
            local_size += this_size;
 | 
						|
 | 
						|
            // validate the quantized data
 | 
						|
            const size_t row_size  = ggml_row_size(new_type, n_per_row);
 | 
						|
            void * this_data = (char *) new_data + first_row * row_size;
 | 
						|
            if (!ggml_validate_row_data(new_type, this_data, this_size)) {
 | 
						|
                std::unique_lock<std::mutex> lock(mutex);
 | 
						|
                valid = false;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    };
 | 
						|
    for (int it = 0; it < nthread - 1; ++it) {
 | 
						|
        workers.emplace_back(compute);
 | 
						|
    }
 | 
						|
    compute();
 | 
						|
    for (auto & w : workers) { w.join(); }
 | 
						|
    workers.clear();
 | 
						|
    if (!valid) {
 | 
						|
        throw std::runtime_error("quantized data validation failed");
 | 
						|
    }
 | 
						|
    return new_size;
 | 
						|
}
 | 
						|
 | 
						|
static void llama_model_quantize_impl(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
 | 
						|
    ggml_type default_type;
 | 
						|
    llama_ftype ftype = params->ftype;
 | 
						|
 | 
						|
    switch (params->ftype) {
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_F16:  default_type = GGML_TYPE_F16;  break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
 | 
						|
        case LLAMA_FTYPE_ALL_F32:     default_type = GGML_TYPE_F32;  break;
 | 
						|
 | 
						|
        // K-quants
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q2_K_S:
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q2_K:    default_type = GGML_TYPE_Q2_K;    break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ3_XS:  default_type = GGML_TYPE_IQ3_S;   break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q3_K_S:
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q3_K_M:
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q3_K_L:  default_type = GGML_TYPE_Q3_K;    break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q4_K_S:
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q4_K_M:  default_type = GGML_TYPE_Q4_K;    break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q5_K_S:
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q5_K_M:  default_type = GGML_TYPE_Q5_K;    break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_Q6_K:    default_type = GGML_TYPE_Q6_K;    break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_TQ1_0:   default_type = GGML_TYPE_TQ1_0;   break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_TQ2_0:   default_type = GGML_TYPE_TQ2_0;   break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ2_XS:  default_type = GGML_TYPE_IQ2_XS;  break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ2_S:   default_type = GGML_TYPE_IQ2_XS;  break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ2_M:   default_type = GGML_TYPE_IQ2_S;   break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ1_S:   default_type = GGML_TYPE_IQ1_S;   break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ1_M:   default_type = GGML_TYPE_IQ1_M;   break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ4_NL:  default_type = GGML_TYPE_IQ4_NL;  break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ4_XS:  default_type = GGML_TYPE_IQ4_XS;  break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ3_S:   default_type = GGML_TYPE_IQ3_S;   break;
 | 
						|
        case LLAMA_FTYPE_MOSTLY_IQ3_M:   default_type = GGML_TYPE_IQ3_S;   break;
 | 
						|
 | 
						|
        default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
 | 
						|
    }
 | 
						|
 | 
						|
    int nthread = params->nthread;
 | 
						|
 | 
						|
    if (nthread <= 0) {
 | 
						|
        nthread = std::thread::hardware_concurrency();
 | 
						|
    }
 | 
						|
 | 
						|
    // mmap consistently increases speed on Linux, and also increases speed on Windows with
 | 
						|
    // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
 | 
						|
#if defined(__linux__) || defined(_WIN32)
 | 
						|
    constexpr bool use_mmap = true;
 | 
						|
#else
 | 
						|
    constexpr bool use_mmap = false;
 | 
						|
#endif
 | 
						|
 | 
						|
    llama_model_kv_override * kv_overrides = nullptr;
 | 
						|
    if (params->kv_overrides) {
 | 
						|
        auto * v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
 | 
						|
        kv_overrides = v->data();
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<std::string> splits = {};
 | 
						|
    llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides, nullptr);
 | 
						|
    ml.init_mappings(false); // no prefetching
 | 
						|
 | 
						|
    llama_model model(llama_model_default_params());
 | 
						|
 | 
						|
    model.load_arch   (ml);
 | 
						|
    model.load_hparams(ml);
 | 
						|
    model.load_stats  (ml);
 | 
						|
 | 
						|
    quantize_state_impl qs(model, params);
 | 
						|
 | 
						|
    if (params->only_copy) {
 | 
						|
        ftype = ml.ftype;
 | 
						|
    }
 | 
						|
    const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
 | 
						|
    if (params->imatrix) {
 | 
						|
        imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
 | 
						|
        if (imatrix_data) {
 | 
						|
            LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
 | 
						|
            qs.has_imatrix = true;
 | 
						|
            // check imatrix for nans or infs
 | 
						|
            for (const auto & kv : *imatrix_data) {
 | 
						|
                for (float f : kv.second) {
 | 
						|
                    if (!std::isfinite(f)) {
 | 
						|
                        throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    const size_t align = GGUF_DEFAULT_ALIGNMENT;
 | 
						|
    gguf_context_ptr ctx_out { gguf_init_empty() };
 | 
						|
 | 
						|
    std::vector<int> prune_list = {};
 | 
						|
    if (params->prune_layers) {
 | 
						|
        prune_list = *static_cast<const std::vector<int> *>(params->prune_layers);
 | 
						|
    }
 | 
						|
 | 
						|
    // copy the KV pairs from the input file
 | 
						|
    gguf_set_kv     (ctx_out.get(), ml.meta.get());
 | 
						|
    gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
 | 
						|
    gguf_set_val_u32(ctx_out.get(), "general.file_type", ftype); // TODO: use LLM_KV
 | 
						|
 | 
						|
    // Remove split metadata
 | 
						|
    gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
 | 
						|
    gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
 | 
						|
    gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
 | 
						|
 | 
						|
    if (params->kv_overrides) {
 | 
						|
        const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
 | 
						|
        for (const auto & o : overrides) {
 | 
						|
            if (o.key[0] == 0) break;
 | 
						|
            if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
 | 
						|
                gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
 | 
						|
            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
 | 
						|
                // Setting type to UINT32. See https://github.com/ggml-org/llama.cpp/pull/14182 for context
 | 
						|
                gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)abs(o.val_i64));
 | 
						|
            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
 | 
						|
                gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
 | 
						|
            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
 | 
						|
                gguf_set_val_str(ctx_out.get(), o.key, o.val_str);
 | 
						|
            } else {
 | 
						|
                LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    std::map<int, std::string> mapped;
 | 
						|
    int blk_id = 0;
 | 
						|
    int pruned_attention_w = 0;
 | 
						|
 | 
						|
    // make a list of weights
 | 
						|
    std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
 | 
						|
    tensors.reserve(ml.weights_map.size());
 | 
						|
    for (const auto & it : ml.weights_map) {
 | 
						|
        const std::string remapped_name(remap_layer(it.first, prune_list, mapped, blk_id));
 | 
						|
        if (remapped_name.empty()) {
 | 
						|
            if (it.first.find("attn_v.weight") != std::string::npos ||
 | 
						|
                it.first.find("attn_qkv.weight") != std::string::npos ||
 | 
						|
                it.first.find("attn_kv_b.weight") != std::string::npos) {
 | 
						|
                    pruned_attention_w++;
 | 
						|
            }
 | 
						|
            LLAMA_LOG_DEBUG("%s: pruning tensor %s\n", __func__, it.first.c_str());
 | 
						|
            continue;
 | 
						|
        } else if (remapped_name != it.first) {
 | 
						|
            ggml_set_name(it.second.tensor, remapped_name.c_str());
 | 
						|
            LLAMA_LOG_DEBUG("%s: tensor %s remapped to %s\n", __func__, it.first.c_str(), ggml_get_name(it.second.tensor));
 | 
						|
        }
 | 
						|
        tensors.push_back(&it.second);
 | 
						|
    }
 | 
						|
    if (!prune_list.empty()) {
 | 
						|
        gguf_set_val_u32(ctx_out.get(), ml.llm_kv(LLM_KV_BLOCK_COUNT).c_str(), blk_id);
 | 
						|
    }
 | 
						|
 | 
						|
    // keep_split requires that the weights are sorted by split index
 | 
						|
    if (params->keep_split) {
 | 
						|
        std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) {
 | 
						|
            if (a->idx == b->idx) {
 | 
						|
                return a->offs < b->offs;
 | 
						|
            }
 | 
						|
            return a->idx < b->idx;
 | 
						|
        });
 | 
						|
    }
 | 
						|
 | 
						|
    for (const auto * it : tensors) {
 | 
						|
        const struct ggml_tensor * tensor = it->tensor;
 | 
						|
 | 
						|
        const std::string name = ggml_get_name(tensor);
 | 
						|
 | 
						|
        // TODO: avoid hardcoded tensor names - use the TN_* constants
 | 
						|
        if (name.find("attn_v.weight")   != std::string::npos ||
 | 
						|
            name.find("attn_qkv.weight") != std::string::npos ||
 | 
						|
            name.find("attn_kv_b.weight")!= std::string::npos) {
 | 
						|
            ++qs.n_attention_wv;
 | 
						|
        } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
 | 
						|
            qs.has_output = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
 | 
						|
 | 
						|
    // sanity checks for models that have attention layers
 | 
						|
    if (qs.n_attention_wv != 0)
 | 
						|
    {
 | 
						|
        const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
 | 
						|
        // attention layers have a non-zero number of kv heads
 | 
						|
        int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
 | 
						|
        if (llama_model_has_encoder(&model)) {
 | 
						|
            n_attn_layer *= 3;
 | 
						|
        }
 | 
						|
        GGML_ASSERT((qs.n_attention_wv == n_attn_layer - pruned_attention_w) && "n_attention_wv is unexpected");
 | 
						|
    }
 | 
						|
 | 
						|
    size_t total_size_org = 0;
 | 
						|
    size_t total_size_new = 0;
 | 
						|
 | 
						|
    std::vector<std::thread> workers;
 | 
						|
    workers.reserve(nthread);
 | 
						|
 | 
						|
    int idx = 0;
 | 
						|
 | 
						|
    std::vector<no_init<uint8_t>> read_data;
 | 
						|
    std::vector<no_init<uint8_t>> work;
 | 
						|
    std::vector<no_init<float>> f32_conv_buf;
 | 
						|
 | 
						|
    uint16_t n_split = 1;
 | 
						|
 | 
						|
    // Assume split index is continuous
 | 
						|
    if (params->keep_split) {
 | 
						|
        for (const auto * it : tensors) {
 | 
						|
            n_split = std::max(uint16_t(it->idx + 1), n_split);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    std::vector<gguf_context_ptr> ctx_outs(n_split);
 | 
						|
    ctx_outs[0] = std::move(ctx_out);
 | 
						|
 | 
						|
    // populate the original tensors so we get an initial meta data
 | 
						|
    for (const auto * it : tensors) {
 | 
						|
        uint16_t i_split = params->keep_split ? it->idx : 0;
 | 
						|
        ggml_tensor * tensor = it->tensor;
 | 
						|
        if (!ctx_outs[i_split]) {
 | 
						|
            ctx_outs[i_split].reset(gguf_init_empty());
 | 
						|
        }
 | 
						|
        gguf_add_tensor(ctx_outs[i_split].get(), tensor);
 | 
						|
    }
 | 
						|
 | 
						|
    // Set split info if needed
 | 
						|
    if (n_split > 1) {
 | 
						|
        for (size_t i = 0; i < ctx_outs.size(); ++i) {
 | 
						|
            gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
 | 
						|
            gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
 | 
						|
            gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), (int32_t)tensors.size());
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    int cur_split = -1;
 | 
						|
    std::ofstream fout;
 | 
						|
    auto close_ofstream = [&]() {
 | 
						|
        // Write metadata and close file handler
 | 
						|
        if (fout.is_open()) {
 | 
						|
            fout.seekp(0);
 | 
						|
            std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split].get()));
 | 
						|
            gguf_get_meta_data(ctx_outs[cur_split].get(), data.data());
 | 
						|
            fout.write((const char *) data.data(), data.size());
 | 
						|
            fout.close();
 | 
						|
        }
 | 
						|
    };
 | 
						|
    auto new_ofstream = [&](int index) {
 | 
						|
        cur_split = index;
 | 
						|
        GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
 | 
						|
        std::string fname = fname_out;
 | 
						|
        if (params->keep_split) {
 | 
						|
            std::vector<char> split_path(llama_path_max(), 0);
 | 
						|
            llama_split_path(split_path.data(), split_path.size(), fname_out.c_str(), cur_split, n_split);
 | 
						|
            fname = std::string(split_path.data());
 | 
						|
        }
 | 
						|
 | 
						|
        fout = std::ofstream(fname, std::ios::binary);
 | 
						|
        fout.exceptions(std::ofstream::failbit); // fail fast on write errors
 | 
						|
        const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split].get());
 | 
						|
        // placeholder for the meta data
 | 
						|
        ::zeros(fout, meta_size);
 | 
						|
    };
 | 
						|
 | 
						|
    const auto tn = LLM_TN(model.arch);
 | 
						|
    new_ofstream(0);
 | 
						|
    for (const auto * it : tensors) {
 | 
						|
        const auto & weight = *it;
 | 
						|
        ggml_tensor * tensor = weight.tensor;
 | 
						|
        if (weight.idx != cur_split && params->keep_split) {
 | 
						|
            close_ofstream();
 | 
						|
            new_ofstream(weight.idx);
 | 
						|
        }
 | 
						|
 | 
						|
        const std::string name = ggml_get_name(tensor);
 | 
						|
 | 
						|
        if (!ml.use_mmap) {
 | 
						|
            if (read_data.size() < ggml_nbytes(tensor)) {
 | 
						|
                read_data.resize(ggml_nbytes(tensor));
 | 
						|
            }
 | 
						|
            tensor->data = read_data.data();
 | 
						|
        }
 | 
						|
        ml.load_data_for(tensor);
 | 
						|
 | 
						|
        LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
 | 
						|
               ++idx, ml.n_tensors,
 | 
						|
               ggml_get_name(tensor),
 | 
						|
               llama_format_tensor_shape(tensor).c_str(),
 | 
						|
               ggml_type_name(tensor->type));
 | 
						|
 | 
						|
        // This used to be a regex, but <regex> has an extreme cost to compile times.
 | 
						|
        bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
 | 
						|
 | 
						|
        // quantize only 2D and 3D tensors (experts)
 | 
						|
        quantize &= (ggml_n_dims(tensor) >= 2);
 | 
						|
 | 
						|
        // do not quantize norm tensors
 | 
						|
        quantize &= name.find("_norm.weight") == std::string::npos;
 | 
						|
 | 
						|
        quantize &= params->quantize_output_tensor || name != "output.weight";
 | 
						|
        quantize &= !params->only_copy;
 | 
						|
 | 
						|
        // do not quantize expert gating tensors
 | 
						|
        // NOTE: can't use LLM_TN here because the layer number is not known
 | 
						|
        quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
 | 
						|
 | 
						|
        // these are very small (e.g. 4x4)
 | 
						|
        quantize &= name.find("altup")  == std::string::npos;
 | 
						|
        quantize &= name.find("laurel") == std::string::npos;
 | 
						|
 | 
						|
        // these are not too big so keep them as it is
 | 
						|
        quantize &= name.find("per_layer_model_proj") == std::string::npos;
 | 
						|
 | 
						|
        // do not quantize positional embeddings and token types (BERT)
 | 
						|
        quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD,    "weight");
 | 
						|
        quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
 | 
						|
 | 
						|
        // do not quantize Mamba's small yet 2D weights
 | 
						|
        // NOTE: can't use LLM_TN here because the layer number is not known
 | 
						|
        quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
 | 
						|
 | 
						|
        // do not quantize RWKV's small yet 2D weights
 | 
						|
        quantize &= name.find("time_mix_first.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_w0.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_w1.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_w2.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_v0.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_v1.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_v2.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_a0.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_a1.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_a2.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_g1.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_g2.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos;
 | 
						|
        quantize &= name.find("time_mix_lerp_fused.weight") == std::string::npos;
 | 
						|
 | 
						|
        // do not quantize relative position bias (T5)
 | 
						|
        quantize &= name.find("attn_rel_b.weight") == std::string::npos;
 | 
						|
 | 
						|
        ggml_type new_type;
 | 
						|
        void * new_data;
 | 
						|
        size_t new_size;
 | 
						|
 | 
						|
        if (quantize) {
 | 
						|
            new_type = default_type;
 | 
						|
 | 
						|
            // get more optimal quantization type based on the tensor shape, layer, etc.
 | 
						|
            if (!params->pure && ggml_is_quantized(default_type)) {
 | 
						|
                new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
 | 
						|
                // unless the user specifies a type
 | 
						|
                if (params->tensor_types) {
 | 
						|
                    const std::vector<tensor_quantization> & tensor_types = *static_cast<const std::vector<tensor_quantization> *>(params->tensor_types);
 | 
						|
                    const std::string tensor_name(tensor->name);
 | 
						|
                    for (const auto & [tname, qtype] : tensor_types) {
 | 
						|
                        if (std::regex pattern(tname); std::regex_search(tensor_name, pattern)) {
 | 
						|
                            if  (qtype != new_type) {
 | 
						|
                                LLAMA_LOG_DEBUG("(overriding %s) ", ggml_type_name(new_type));
 | 
						|
                                new_type = qtype;
 | 
						|
                                break; // if two or more types are specified for the tensor, first match wins
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
 | 
						|
                new_type = params->token_embedding_type;
 | 
						|
            }
 | 
						|
            if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
 | 
						|
                new_type = params->output_tensor_type;
 | 
						|
            }
 | 
						|
 | 
						|
            // If we've decided to quantize to the same type the tensor is already
 | 
						|
            // in then there's nothing to do.
 | 
						|
            quantize = tensor->type != new_type;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!quantize) {
 | 
						|
            new_type = tensor->type;
 | 
						|
            new_data = tensor->data;
 | 
						|
            new_size = ggml_nbytes(tensor);
 | 
						|
            LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
 | 
						|
        } else {
 | 
						|
            const int64_t nelements = ggml_nelements(tensor);
 | 
						|
 | 
						|
            const float * imatrix = nullptr;
 | 
						|
            if (imatrix_data) {
 | 
						|
                auto it = imatrix_data->find(remap_imatrix(tensor->name, mapped));
 | 
						|
                if (it == imatrix_data->end()) {
 | 
						|
                    LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
 | 
						|
                } else {
 | 
						|
                    if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
 | 
						|
                        imatrix = it->second.data();
 | 
						|
                    } else {
 | 
						|
                        LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
 | 
						|
                                int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
 | 
						|
 | 
						|
                        // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
 | 
						|
                        // this is a significant error and it may be good idea to abort the process if this happens,
 | 
						|
                        // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
 | 
						|
                        // tok_embd should be ignored in this case, since it always causes this warning
 | 
						|
                        if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
 | 
						|
                            throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
 | 
						|
                                    int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if ((new_type == GGML_TYPE_IQ2_XXS ||
 | 
						|
                 new_type == GGML_TYPE_IQ2_XS  ||
 | 
						|
                 new_type == GGML_TYPE_IQ2_S   ||
 | 
						|
                 new_type == GGML_TYPE_IQ1_S   ||
 | 
						|
                (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight"))  ||
 | 
						|
                (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
 | 
						|
                LLAMA_LOG_ERROR("\n\n============================================================\n");
 | 
						|
                LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
 | 
						|
                LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
 | 
						|
                LLAMA_LOG_ERROR("============================================================\n\n");
 | 
						|
                throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
 | 
						|
            }
 | 
						|
 | 
						|
            float * f32_data;
 | 
						|
 | 
						|
            if (tensor->type == GGML_TYPE_F32) {
 | 
						|
                f32_data = (float *) tensor->data;
 | 
						|
            } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
 | 
						|
                throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
 | 
						|
            } else {
 | 
						|
                llama_tensor_dequantize_impl(tensor, f32_conv_buf, workers, nelements, nthread);
 | 
						|
                f32_data = (float *) f32_conv_buf.data();
 | 
						|
            }
 | 
						|
 | 
						|
            LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
 | 
						|
            fflush(stdout);
 | 
						|
 | 
						|
            if (work.size() < (size_t)nelements * 4) {
 | 
						|
                work.resize(nelements * 4); // upper bound on size
 | 
						|
            }
 | 
						|
            new_data = work.data();
 | 
						|
 | 
						|
            const int64_t n_per_row = tensor->ne[0];
 | 
						|
            const int64_t nrows = tensor->ne[1];
 | 
						|
 | 
						|
            static const int64_t min_chunk_size = 32 * 512;
 | 
						|
            const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row));
 | 
						|
 | 
						|
            const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
 | 
						|
            const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
 | 
						|
            const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
 | 
						|
 | 
						|
            // quantize each expert separately since they have different importance matrices
 | 
						|
            new_size = 0;
 | 
						|
            for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
 | 
						|
                const float * f32_data_03 = f32_data + i03 * nelements_matrix;
 | 
						|
                void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
 | 
						|
                const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
 | 
						|
 | 
						|
                new_size += llama_tensor_quantize_impl(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
 | 
						|
            }
 | 
						|
            LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
 | 
						|
        }
 | 
						|
        total_size_org += ggml_nbytes(tensor);
 | 
						|
        total_size_new += new_size;
 | 
						|
 | 
						|
        // update the gguf meta data as we go
 | 
						|
        gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
 | 
						|
        GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size);
 | 
						|
        gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data);
 | 
						|
 | 
						|
        // write tensor data + padding
 | 
						|
        fout.write((const char *) new_data, new_size);
 | 
						|
        zeros(fout, GGML_PAD(new_size, align) - new_size);
 | 
						|
    }
 | 
						|
    close_ofstream();
 | 
						|
 | 
						|
    LLAMA_LOG_INFO("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
 | 
						|
    LLAMA_LOG_INFO("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
 | 
						|
 | 
						|
    if (qs.n_fallback > 0) {
 | 
						|
        LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
 | 
						|
                __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// interface implementation
 | 
						|
//
 | 
						|
 | 
						|
llama_model_quantize_params llama_model_quantize_default_params() {
 | 
						|
    llama_model_quantize_params result = {
 | 
						|
        /*.nthread                     =*/ 0,
 | 
						|
        /*.ftype                       =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
 | 
						|
        /*.output_tensor_type          =*/ GGML_TYPE_COUNT,
 | 
						|
        /*.token_embedding_type        =*/ GGML_TYPE_COUNT,
 | 
						|
        /*.allow_requantize            =*/ false,
 | 
						|
        /*.quantize_output_tensor      =*/ true,
 | 
						|
        /*.only_copy                   =*/ false,
 | 
						|
        /*.pure                        =*/ false,
 | 
						|
        /*.keep_split                  =*/ false,
 | 
						|
        /*.imatrix                     =*/ nullptr,
 | 
						|
        /*.kv_overrides                =*/ nullptr,
 | 
						|
        /*.tensor_type                 =*/ nullptr,
 | 
						|
        /*.prune_layers                =*/ nullptr
 | 
						|
    };
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t llama_model_quantize(
 | 
						|
        const char * fname_inp,
 | 
						|
        const char * fname_out,
 | 
						|
        const llama_model_quantize_params * params) {
 | 
						|
    try {
 | 
						|
        llama_model_quantize_impl(fname_inp, fname_out, params);
 | 
						|
    } catch (const std::exception & err) {
 | 
						|
        LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |