mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			239 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			239 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <stdio.h>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| 
 | |
| void generate_sequence(llama_context * ctx, int n_ctx, const std::vector<llama_token>& prompt_tokens, float temperature) {
 | |
|     // print the tokens from the prompt
 | |
|     for (llama_token id : prompt_tokens) {
 | |
|         printf("%s", llama_token_to_str(ctx, id));
 | |
|     }
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Load parameters :
 | |
|     //---------------------------------
 | |
| 
 | |
|     if ( argc >= 2 )
 | |
|     {
 | |
|         params.model = argv[1];
 | |
|     }
 | |
| 
 | |
|     if ( argc >= 3 )
 | |
|     {
 | |
|         params.prompt = argv[2];
 | |
|     }
 | |
| 
 | |
|     if ( params.prompt.empty() )
 | |
|     {
 | |
|         params.prompt = "Hello my name is";
 | |
|     }
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Init LLM :
 | |
|     //---------------------------------
 | |
| 
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     std::tie(model, ctx) = llama_init_from_gpt_params( params );
 | |
| 
 | |
|     if ( model == NULL )
 | |
|     {
 | |
|         fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Tokenize the prompt :
 | |
|     //---------------------------------
 | |
| 
 | |
|     std::vector<llama_token> tokens_list;
 | |
|     tokens_list = ::llama_tokenize( ctx , params.prompt , true );
 | |
| 
 | |
|     const int max_context_size     = llama_n_ctx( ctx );
 | |
|     const int max_tokens_list_size = max_context_size - 4 ;
 | |
| 
 | |
|     if ( (int)tokens_list.size() > max_tokens_list_size )
 | |
|     {
 | |
|         fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
 | |
|              __func__ , (int)tokens_list.size() , max_tokens_list_size );
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf( stderr, "\n\n" );
 | |
| 
 | |
|     // Print the tokens from the prompt :
 | |
| 
 | |
|     for( auto id : tokens_list )
 | |
|     {
 | |
|         printf( "%s" , llama_token_to_str( ctx , id ) );
 | |
|     }
 | |
| 
 | |
|     fflush(stdout);
 | |
| 
 | |
|     // the maximum number of tokens to generate at a time
 | |
|     // TODO: not supported, remove
 | |
|     const int CUDA_MAX_TOKENS = 1;
 | |
|     llama_token tokens_out[CUDA_MAX_TOKENS];
 | |
| 
 | |
|     // current position in the context window
 | |
|     int n_past = 0;
 | |
| 
 | |
|     // number of tokens to generate
 | |
|     int n_tokens_out;
 | |
| 
 | |
|     // list of tokens to evaluate
 | |
|     // note that at most llama_context_params::n_batch tokens can be evaluated at a time
 | |
|     std::vector<llama_token> token_list = prompt_tokens;
 | |
| 
 | |
|     while (n_past < n_ctx) {
 | |
|         // evaluate the tokens
 | |
| 
 | |
|         // llama_eval generates one token at a time
 | |
|         n_tokens_out = 1;
 | |
| 
 | |
|         // number of threads to use for CPU evaluation - ignored if compiled with CUDA support
 | |
|         const int n_threads = 4;
 | |
|         // note: llama_eval is not compatible with GPU sampling
 | |
|         if (llama_eval(ctx, token_list.data(), token_list.size(), n_past, n_threads)) {
 | |
|             fprintf(stderr, "%s : failed to eval\n", __func__ );
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         // perform sampling on the CPU
 | |
|         float * logits  = llama_get_logits(ctx);
 | |
|         auto n_vocab = llama_n_vocab(ctx);
 | |
| 
 | |
|         // initialize candidate array from logits
 | |
|         std::vector<llama_token_data> candidates;
 | |
|         candidates.reserve(n_vocab);
 | |
|         for(llama_token token_id = 0 ; token_id < n_vocab ; token_id++) {
 | |
|             candidates.push_back(llama_token_data{ token_id, logits[token_id], 0.0f});
 | |
|         }
 | |
| 
 | |
|         llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
| 
 | |
|         // sample token
 | |
|         llama_sample_temperature(ctx, &candidates_p, temperature);
 | |
|         tokens_out[0] = llama_sample_token(ctx, &candidates_p);
 | |
| 
 | |
|         // increment the position in the context window
 | |
|         n_past += token_list.size() + n_tokens_out - 1;
 | |
| 
 | |
|         token_list.clear();
 | |
| 
 | |
|         // print the new tokens
 | |
|         for (int i = 0; i < n_tokens_out; i++) {
 | |
|             llama_token new_token_id = tokens_out[i];
 | |
| 
 | |
|             // is it an end of stream ?
 | |
|             if (new_token_id == llama_token_eos()) {
 | |
|                 fprintf(stderr, " [end of text]\n");
 | |
|                 //return;
 | |
|             }
 | |
| 
 | |
|             // print the new token :
 | |
|             printf("%s", llama_token_to_str(ctx, new_token_id));
 | |
|         }
 | |
|         fflush(stdout);
 | |
| 
 | |
|         // push the last new token for the next evaluation
 | |
|         token_list.push_back(tokens_out[n_tokens_out - 1]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     if (argc < 2 || argv[1][0] == '-') {
 | |
|         printf("usage: %s <model> <n_ctx> <n_gens> <temp> [prompt]\n", argv[0]);
 | |
|         printf(" note: passing a temp parameter will enable GPU sampling\n");
 | |
|         return 1 ;
 | |
|     }
 | |
| 
 | |
|     std::string model = argv[1];
 | |
|     struct llama_context_params lparams = llama_context_default_params();
 | |
| 
 | |
|     if (argc >= 3) {
 | |
|         lparams.n_ctx = std::stoi(argv[2]);
 | |
|     } else {
 | |
|         lparams.n_ctx = 512;
 | |
|     }
 | |
| 
 | |
|     int n_gens;
 | |
|     if (argc >= 4) {
 | |
|         n_gens = std::stoi(argv[3]);
 | |
|     } else {
 | |
|         n_gens = 1;
 | |
|     }
 | |
| 
 | |
|     float temperature;
 | |
| 
 | |
|     if (argc >= 5) {
 | |
|         temperature = std::stof(argv[4]);
 | |
|     } else {
 | |
|         temperature = 0.8f;
 | |
|     }
 | |
| 
 | |
|     std::string prompt;
 | |
|     if (argc >= 6) {
 | |
|         prompt = argv[5];
 | |
|     } else {
 | |
|         prompt = "Hello my name is";
 | |
|     }
 | |
| 
 | |
|     // initialize llama.cpp
 | |
|     bool numa = false;
 | |
|     llama_init_backend(numa);
 | |
| 
 | |
|     llama_model * lmodel  = llama_load_model_from_file(model.c_str(), lparams);
 | |
|     if (lmodel == NULL) {
 | |
|         fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, model.c_str());
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, model.c_str());
 | |
|         llama_free_model(lmodel);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     std::vector<llama_token> token_list(lparams.n_ctx);
 | |
|     int prompt_tokens = llama_tokenize(ctx, prompt.c_str(), token_list.data(), token_list.size(), true);
 | |
|     if (prompt_tokens <= 0) {
 | |
|         fprintf(stderr, "%s: error: unable to tokenize prompt\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     token_list.resize(prompt_tokens);
 | |
| 
 | |
|     const int max_context_size     = llama_n_ctx(ctx);
 | |
|     const int max_tokens_list_size = max_context_size - 4 ;
 | |
| 
 | |
|     if ((int)token_list.size() > max_tokens_list_size) {
 | |
|         fprintf( stderr, "%s: error: prompt too long (%d tokens, max %d)\n" ,
 | |
|              __func__, (int)token_list.size(), max_tokens_list_size );
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     // generate the sequences
 | |
|     for (int i = 0; i < n_gens; i++) {
 | |
|         printf("==== GENERATION %d ====\n", i + 1);
 | |
|         generate_sequence(ctx, max_context_size, token_list, temperature);
 | |
|         printf("\n\n");
 | |
|     }
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
|     llama_free(ctx);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
