mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* sampling : refactor + optimize penalties sampler ggml-ci * common : apply ignore_eos as logit bias ggml-ci * batched : remove penalties sampler * params : allow penalty_last_n == -1 to be equal to context size ggml-ci * common : by default, move the penalties at the end of the sampling chain ggml-ci * common : ignore all EOG tokens Co-authored-by: Diego Devesa <slarengh@gmail.com> * common : move back the penalties at the front of the sampling chain ggml-ci * readme : restore hint about --ignore-eos flag [no ci] * llama : minor ggml-ci * webui : update --------- Co-authored-by: Diego Devesa <slarengh@gmail.com>
		
			
				
	
	
		
			501 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			501 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "sampling.h"
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <unordered_map>
 | 
						|
 | 
						|
// the ring buffer works similarly to std::deque, but with a fixed capacity
 | 
						|
// TODO: deduplicate with llama-impl.h
 | 
						|
template<typename T>
 | 
						|
struct ring_buffer {
 | 
						|
    ring_buffer(size_t cap) : capacity(cap), data(cap) {}
 | 
						|
 | 
						|
    T & front() {
 | 
						|
        if (sz == 0) {
 | 
						|
            throw std::runtime_error("ring buffer is empty");
 | 
						|
        }
 | 
						|
        return data[first];
 | 
						|
    }
 | 
						|
 | 
						|
    const T & front() const {
 | 
						|
        if (sz == 0) {
 | 
						|
            throw std::runtime_error("ring buffer is empty");
 | 
						|
        }
 | 
						|
        return data[first];
 | 
						|
    }
 | 
						|
 | 
						|
    T & back() {
 | 
						|
        if (sz == 0) {
 | 
						|
            throw std::runtime_error("ring buffer is empty");
 | 
						|
        }
 | 
						|
        return data[pos];
 | 
						|
    }
 | 
						|
 | 
						|
    const T & back() const {
 | 
						|
        if (sz == 0) {
 | 
						|
            throw std::runtime_error("ring buffer is empty");
 | 
						|
        }
 | 
						|
        return data[pos];
 | 
						|
    }
 | 
						|
 | 
						|
    void push_back(const T & value) {
 | 
						|
        if (sz == capacity) {
 | 
						|
            // advance the start when buffer is full
 | 
						|
            first = (first + 1) % capacity;
 | 
						|
        } else {
 | 
						|
            sz++;
 | 
						|
        }
 | 
						|
        data[pos] = value;
 | 
						|
        pos = (pos + 1) % capacity;
 | 
						|
    }
 | 
						|
 | 
						|
    T pop_front() {
 | 
						|
        if (sz == 0) {
 | 
						|
            throw std::runtime_error("ring buffer is empty");
 | 
						|
        }
 | 
						|
        T value = data[first];
 | 
						|
        first = (first + 1) % capacity;
 | 
						|
        sz--;
 | 
						|
        return value;
 | 
						|
    }
 | 
						|
 | 
						|
    const T & rat(size_t i) const {
 | 
						|
        if (i >= sz) {
 | 
						|
            throw std::runtime_error("ring buffer: index out of bounds");
 | 
						|
        }
 | 
						|
        return data[(first + sz - i - 1) % capacity];
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<T> to_vector() const {
 | 
						|
        std::vector<T> result;
 | 
						|
        result.reserve(sz);
 | 
						|
        for (size_t i = 0; i < sz; i++) {
 | 
						|
            result.push_back(data[(first + i) % capacity]);
 | 
						|
        }
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
 | 
						|
    void clear() {
 | 
						|
        // here only reset the status of the buffer
 | 
						|
        sz = 0;
 | 
						|
        first = 0;
 | 
						|
        pos = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    bool empty() const {
 | 
						|
        return sz == 0;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t size() const {
 | 
						|
        return sz;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t capacity = 0;
 | 
						|
    size_t sz = 0;
 | 
						|
    size_t first = 0;
 | 
						|
    size_t pos = 0;
 | 
						|
    std::vector<T> data;
 | 
						|
};
 | 
						|
 | 
						|
struct common_sampler {
 | 
						|
    common_params_sampling params;
 | 
						|
 | 
						|
    struct llama_sampler * grmr;
 | 
						|
    struct llama_sampler * chain;
 | 
						|
 | 
						|
    ring_buffer<llama_token> prev;
 | 
						|
 | 
						|
    std::vector<llama_token_data> cur;
 | 
						|
 | 
						|
    llama_token_data_array cur_p;
 | 
						|
 | 
						|
    void set_logits(struct llama_context * ctx, int idx) {
 | 
						|
        const auto * logits = llama_get_logits_ith(ctx, idx);
 | 
						|
 | 
						|
        const int n_vocab = llama_n_vocab(llama_get_model(ctx));
 | 
						|
 | 
						|
        cur.resize(n_vocab);
 | 
						|
 | 
						|
        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | 
						|
            cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
 | 
						|
        }
 | 
						|
 | 
						|
        cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
std::string common_params_sampling::print() const {
 | 
						|
    char result[1024];
 | 
						|
 | 
						|
    snprintf(result, sizeof(result),
 | 
						|
            "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
 | 
						|
            "\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
 | 
						|
            "\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
 | 
						|
            "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
 | 
						|
            penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
 | 
						|
            dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
 | 
						|
            top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
 | 
						|
            mirostat, mirostat_eta, mirostat_tau);
 | 
						|
 | 
						|
    return std::string(result);
 | 
						|
}
 | 
						|
 | 
						|
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
 | 
						|
    llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
 | 
						|
 | 
						|
    lparams.no_perf = params.no_perf;
 | 
						|
 | 
						|
    auto * result = new common_sampler {
 | 
						|
        /* .params = */ params,
 | 
						|
        /* .grmr   = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
 | 
						|
        /* .chain  = */ llama_sampler_chain_init(lparams),
 | 
						|
        /* .prev   = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
 | 
						|
        /* .cur    = */ {},
 | 
						|
        /* .cur_p  = */ {},
 | 
						|
    };
 | 
						|
 | 
						|
    llama_sampler_chain_add(result->chain,
 | 
						|
            llama_sampler_init_logit_bias(
 | 
						|
                llama_n_vocab(model),
 | 
						|
                params.logit_bias.size(),
 | 
						|
                params.logit_bias.data()));
 | 
						|
 | 
						|
    if (params.mirostat == 0) {
 | 
						|
        for (const auto & cnstr : params.samplers) {
 | 
						|
            switch (cnstr) {
 | 
						|
                case COMMON_SAMPLER_TYPE_DRY:
 | 
						|
                    {
 | 
						|
                        std::vector<const char *> c_breakers;
 | 
						|
                        c_breakers.reserve(params.dry_sequence_breakers.size());
 | 
						|
                        for (const auto & str : params.dry_sequence_breakers) {
 | 
						|
                            c_breakers.push_back(str.c_str());
 | 
						|
                        }
 | 
						|
 | 
						|
                        llama_sampler_chain_add(result->chain, llama_sampler_init_dry      (model, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
 | 
						|
                    }
 | 
						|
                    break;
 | 
						|
                case COMMON_SAMPLER_TYPE_TOP_K:
 | 
						|
                    llama_sampler_chain_add(result->chain, llama_sampler_init_top_k    (params.top_k));
 | 
						|
                    break;
 | 
						|
                case COMMON_SAMPLER_TYPE_TOP_P:
 | 
						|
                    llama_sampler_chain_add(result->chain, llama_sampler_init_top_p    (params.top_p, params.min_keep));
 | 
						|
                    break;
 | 
						|
                case COMMON_SAMPLER_TYPE_MIN_P:
 | 
						|
                    llama_sampler_chain_add(result->chain, llama_sampler_init_min_p    (params.min_p, params.min_keep));
 | 
						|
                    break;
 | 
						|
                case COMMON_SAMPLER_TYPE_XTC:
 | 
						|
                    llama_sampler_chain_add(result->chain, llama_sampler_init_xtc      (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
 | 
						|
                    break;
 | 
						|
                case COMMON_SAMPLER_TYPE_TYPICAL_P:
 | 
						|
                    llama_sampler_chain_add(result->chain, llama_sampler_init_typical  (params.typ_p, params.min_keep));
 | 
						|
                    break;
 | 
						|
                case COMMON_SAMPLER_TYPE_TEMPERATURE:
 | 
						|
                    llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
 | 
						|
                    break;
 | 
						|
                case COMMON_SAMPLER_TYPE_INFILL:
 | 
						|
                    llama_sampler_chain_add(result->chain, llama_sampler_init_infill   (model));
 | 
						|
                    break;
 | 
						|
                case COMMON_SAMPLER_TYPE_PENALTIES:
 | 
						|
                    llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    GGML_ASSERT(false && "unknown sampler type");
 | 
						|
            }
 | 
						|
        }
 | 
						|
        llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
 | 
						|
    } else if (params.mirostat == 1) {
 | 
						|
        llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
 | 
						|
        llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
 | 
						|
    } else if (params.mirostat == 2) {
 | 
						|
        llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
 | 
						|
        llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
 | 
						|
    } else {
 | 
						|
        GGML_ASSERT(false && "unknown mirostat version");
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
void common_sampler_free(struct common_sampler * gsmpl) {
 | 
						|
    if (gsmpl) {
 | 
						|
        llama_sampler_free(gsmpl->grmr);
 | 
						|
 | 
						|
        llama_sampler_free(gsmpl->chain);
 | 
						|
 | 
						|
        delete gsmpl;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
 | 
						|
    if (accept_grammar) {
 | 
						|
        llama_sampler_accept(gsmpl->grmr, token);
 | 
						|
    }
 | 
						|
 | 
						|
    llama_sampler_accept(gsmpl->chain, token);
 | 
						|
 | 
						|
    gsmpl->prev.push_back(token);
 | 
						|
}
 | 
						|
 | 
						|
void common_sampler_reset(struct common_sampler * gsmpl) {
 | 
						|
    llama_sampler_reset(gsmpl->grmr);
 | 
						|
 | 
						|
    llama_sampler_reset(gsmpl->chain);
 | 
						|
}
 | 
						|
 | 
						|
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
 | 
						|
    return new common_sampler {
 | 
						|
        /* .params = */ gsmpl->params,
 | 
						|
        /* .grmr   = */ llama_sampler_clone(gsmpl->grmr),
 | 
						|
        /* .chain  = */ llama_sampler_clone(gsmpl->chain),
 | 
						|
        /* .prev   = */ gsmpl->prev,
 | 
						|
        /* .cur    = */ gsmpl->cur,
 | 
						|
        /* .cur_p  = */ gsmpl->cur_p,
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
 | 
						|
    // TODO: measure grammar performance
 | 
						|
 | 
						|
    if (gsmpl) {
 | 
						|
        llama_perf_sampler_print(gsmpl->chain);
 | 
						|
    }
 | 
						|
    if (ctx) {
 | 
						|
        llama_perf_context_print(ctx);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
 | 
						|
    gsmpl->set_logits(ctx, idx);
 | 
						|
 | 
						|
    auto & grmr  = gsmpl->grmr;
 | 
						|
    auto & chain = gsmpl->chain;
 | 
						|
    auto & cur_p = gsmpl->cur_p; // initialized by set_logits
 | 
						|
 | 
						|
    if (grammar_first) {
 | 
						|
        llama_sampler_apply(grmr, &cur_p);
 | 
						|
    }
 | 
						|
 | 
						|
    llama_sampler_apply(chain, &cur_p);
 | 
						|
 | 
						|
    GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
 | 
						|
 | 
						|
    const llama_token id = cur_p.data[cur_p.selected].id;
 | 
						|
 | 
						|
    if (grammar_first) {
 | 
						|
        return id;
 | 
						|
    }
 | 
						|
 | 
						|
    // check if it the sampled token fits the grammar
 | 
						|
    {
 | 
						|
        llama_token_data       single_token_data       = { id, 1.0f, 0.0f };
 | 
						|
        llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
 | 
						|
 | 
						|
        llama_sampler_apply(grmr, &single_token_data_array);
 | 
						|
 | 
						|
        const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
 | 
						|
        if (is_valid) {
 | 
						|
            return id;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // resampling:
 | 
						|
    // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
 | 
						|
    gsmpl->set_logits(ctx, idx);
 | 
						|
 | 
						|
    llama_sampler_apply(grmr,  &cur_p);
 | 
						|
    llama_sampler_apply(chain, &cur_p);
 | 
						|
 | 
						|
    GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
 | 
						|
 | 
						|
    return cur_p.data[cur_p.selected].id;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
 | 
						|
    GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
 | 
						|
 | 
						|
    std::vector<llama_token> result;
 | 
						|
    result.reserve(idxs.size());
 | 
						|
 | 
						|
    size_t i = 0;
 | 
						|
    for (; i < draft.size(); i++) {
 | 
						|
        const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
 | 
						|
 | 
						|
        common_sampler_accept(gsmpl, id, true);
 | 
						|
 | 
						|
        result.push_back(id);
 | 
						|
 | 
						|
        if (draft[i] != id) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (i == draft.size()) {
 | 
						|
        const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
 | 
						|
 | 
						|
        common_sampler_accept(gsmpl, id, true);
 | 
						|
 | 
						|
        result.push_back(id);
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
 | 
						|
    std::vector<int> idxs(draft.size() + 1);
 | 
						|
    for (size_t i = 0; i < idxs.size(); ++i) {
 | 
						|
        idxs[i] = i;
 | 
						|
    }
 | 
						|
 | 
						|
    return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
 | 
						|
    return llama_sampler_get_seed(gsmpl->chain);
 | 
						|
}
 | 
						|
 | 
						|
// helpers
 | 
						|
 | 
						|
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
 | 
						|
    return &gsmpl->cur_p;
 | 
						|
}
 | 
						|
 | 
						|
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
 | 
						|
    return gsmpl->prev.rat(0);
 | 
						|
}
 | 
						|
 | 
						|
std::string common_sampler_print(const struct common_sampler * gsmpl) {
 | 
						|
    std::string result = "logits ";
 | 
						|
 | 
						|
    for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
 | 
						|
        const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
 | 
						|
        result += std::string("-> ") + llama_sampler_name(smpl) + " ";
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
 | 
						|
    n = std::min(n, (int) gsmpl->prev.size());
 | 
						|
 | 
						|
    if (n <= 0) {
 | 
						|
        return "";
 | 
						|
    }
 | 
						|
 | 
						|
    std::string result;
 | 
						|
    result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
 | 
						|
 | 
						|
    for (int i = n - 1; i >= 0; i--) {
 | 
						|
        const llama_token id = gsmpl->prev.rat(i);
 | 
						|
 | 
						|
        GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
 | 
						|
 | 
						|
        result += common_token_to_piece(ctx_main, id);
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
 | 
						|
    switch (cnstr) {
 | 
						|
        case COMMON_SAMPLER_TYPE_DRY:         return 'd';
 | 
						|
        case COMMON_SAMPLER_TYPE_TOP_K:       return 'k';
 | 
						|
        case COMMON_SAMPLER_TYPE_TYPICAL_P:   return 'y';
 | 
						|
        case COMMON_SAMPLER_TYPE_TOP_P:       return 'p';
 | 
						|
        case COMMON_SAMPLER_TYPE_MIN_P:       return 'm';
 | 
						|
        case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
 | 
						|
        case COMMON_SAMPLER_TYPE_XTC:         return 'x';
 | 
						|
        case COMMON_SAMPLER_TYPE_INFILL:      return 'i';
 | 
						|
        case COMMON_SAMPLER_TYPE_PENALTIES:   return 'e';
 | 
						|
        default : return '?';
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
 | 
						|
    switch (cnstr) {
 | 
						|
        case COMMON_SAMPLER_TYPE_DRY:         return "dry";
 | 
						|
        case COMMON_SAMPLER_TYPE_TOP_K:       return "top_k";
 | 
						|
        case COMMON_SAMPLER_TYPE_TYPICAL_P:   return "typ_p";
 | 
						|
        case COMMON_SAMPLER_TYPE_TOP_P:       return "top_p";
 | 
						|
        case COMMON_SAMPLER_TYPE_MIN_P:       return "min_p";
 | 
						|
        case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
 | 
						|
        case COMMON_SAMPLER_TYPE_XTC:         return "xtc";
 | 
						|
        case COMMON_SAMPLER_TYPE_INFILL:      return "infill";
 | 
						|
        case COMMON_SAMPLER_TYPE_PENALTIES:   return "penalties";
 | 
						|
        default : return "";
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
 | 
						|
    std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
 | 
						|
        { "dry",         COMMON_SAMPLER_TYPE_DRY },
 | 
						|
        { "top_k",       COMMON_SAMPLER_TYPE_TOP_K },
 | 
						|
        { "top_p",       COMMON_SAMPLER_TYPE_TOP_P },
 | 
						|
        { "typ_p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
 | 
						|
        { "min_p",       COMMON_SAMPLER_TYPE_MIN_P },
 | 
						|
        { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
 | 
						|
        { "xtc",         COMMON_SAMPLER_TYPE_XTC },
 | 
						|
        { "infill",      COMMON_SAMPLER_TYPE_INFILL },
 | 
						|
        { "penalties",   COMMON_SAMPLER_TYPE_PENALTIES },
 | 
						|
    };
 | 
						|
 | 
						|
    // since samplers names are written multiple ways
 | 
						|
    // make it ready for both system names and input names
 | 
						|
    std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
 | 
						|
        { "top-k",       COMMON_SAMPLER_TYPE_TOP_K },
 | 
						|
        { "top-p",       COMMON_SAMPLER_TYPE_TOP_P },
 | 
						|
        { "nucleus",     COMMON_SAMPLER_TYPE_TOP_P },
 | 
						|
        { "typical-p",   COMMON_SAMPLER_TYPE_TYPICAL_P },
 | 
						|
        { "typical",     COMMON_SAMPLER_TYPE_TYPICAL_P },
 | 
						|
        { "typ-p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
 | 
						|
        { "typ",         COMMON_SAMPLER_TYPE_TYPICAL_P },
 | 
						|
        { "min-p",       COMMON_SAMPLER_TYPE_MIN_P },
 | 
						|
        { "temp",        COMMON_SAMPLER_TYPE_TEMPERATURE },
 | 
						|
    };
 | 
						|
 | 
						|
    std::vector<common_sampler_type> samplers;
 | 
						|
    samplers.reserve(names.size());
 | 
						|
 | 
						|
    for (const auto & name : names) {
 | 
						|
        auto sampler = sampler_canonical_name_map.find(name);
 | 
						|
        if (sampler != sampler_canonical_name_map.end()) {
 | 
						|
            samplers.push_back(sampler->second);
 | 
						|
        } else {
 | 
						|
            if (allow_alt_names) {
 | 
						|
                sampler = sampler_alt_name_map.find(name);
 | 
						|
                if (sampler != sampler_alt_name_map.end()) {
 | 
						|
                    samplers.push_back(sampler->second);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return samplers;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
 | 
						|
    std::unordered_map<char, common_sampler_type> sampler_name_map = {
 | 
						|
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY),         COMMON_SAMPLER_TYPE_DRY },
 | 
						|
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K),       COMMON_SAMPLER_TYPE_TOP_K },
 | 
						|
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P),   COMMON_SAMPLER_TYPE_TYPICAL_P },
 | 
						|
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P),       COMMON_SAMPLER_TYPE_TOP_P },
 | 
						|
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P),       COMMON_SAMPLER_TYPE_MIN_P },
 | 
						|
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
 | 
						|
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC),         COMMON_SAMPLER_TYPE_XTC },
 | 
						|
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL),      COMMON_SAMPLER_TYPE_INFILL },
 | 
						|
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES),   COMMON_SAMPLER_TYPE_PENALTIES },
 | 
						|
    };
 | 
						|
 | 
						|
    std::vector<common_sampler_type> samplers;
 | 
						|
    samplers.reserve(chars.size());
 | 
						|
 | 
						|
    for (const auto & c : chars) {
 | 
						|
        const auto sampler = sampler_name_map.find(c);
 | 
						|
        if (sampler != sampler_name_map.end()) {
 | 
						|
            samplers.push_back(sampler->second);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return samplers;
 | 
						|
}
 |