mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			326 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "arg.h"
 | 
						|
#include "common.h"
 | 
						|
#include "log.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <ctime>
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4244 4267) // possible loss of data
 | 
						|
#endif
 | 
						|
 | 
						|
static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n") {
 | 
						|
    std::vector<std::string> lines;
 | 
						|
    size_t start = 0;
 | 
						|
    size_t end = s.find(separator);
 | 
						|
 | 
						|
    while (end != std::string::npos) {
 | 
						|
        lines.push_back(s.substr(start, end - start));
 | 
						|
        start = end + separator.length();
 | 
						|
        end = s.find(separator, start);
 | 
						|
    }
 | 
						|
 | 
						|
    lines.push_back(s.substr(start)); // Add the last part
 | 
						|
 | 
						|
    return lines;
 | 
						|
}
 | 
						|
 | 
						|
static void batch_add_seq(common_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
 | 
						|
    size_t n_tokens = tokens.size();
 | 
						|
    for (size_t i = 0; i < n_tokens; i++) {
 | 
						|
        batch.add_text(tokens[i], i, seq_id, true);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void batch_decode(llama_context * ctx, common_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
 | 
						|
    const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
 | 
						|
    const struct llama_model * model = llama_get_model(ctx);
 | 
						|
 | 
						|
    // clear previous kv_cache values (irrelevant for embeddings)
 | 
						|
    llama_kv_self_clear(ctx);
 | 
						|
 | 
						|
    // run model
 | 
						|
    LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, llama_batch_ext_get_n_tokens(batch.get()), n_seq);
 | 
						|
    if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
 | 
						|
        // encoder-only model
 | 
						|
        if (llama_encode_ext(ctx, batch.get()) < 0) {
 | 
						|
            LOG_ERR("%s : failed to encode\n", __func__);
 | 
						|
        }
 | 
						|
    } else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
 | 
						|
        // decoder-only model
 | 
						|
        if (llama_decode_ext(ctx, batch.get()) < 0) {
 | 
						|
            LOG_ERR("%s : failed to decode\n", __func__);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = 0; i < llama_batch_ext_get_n_tokens(batch.get()); i++) {
 | 
						|
        if (!batch.tokens[i].logits) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        const float * embd = nullptr;
 | 
						|
        int embd_pos = 0;
 | 
						|
 | 
						|
        if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
 | 
						|
            // try to get token embeddings
 | 
						|
            embd = llama_get_embeddings_ith(ctx, i);
 | 
						|
            embd_pos = i;
 | 
						|
            GGML_ASSERT(embd != NULL && "failed to get token embeddings");
 | 
						|
        } else {
 | 
						|
            // try to get sequence embeddings - supported only when pooling_type is not NONE
 | 
						|
            embd = llama_get_embeddings_seq(ctx, batch.tokens[i].seq_id);
 | 
						|
            embd_pos = batch.tokens[i].seq_id;
 | 
						|
            GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
 | 
						|
        }
 | 
						|
 | 
						|
        float * out = output + embd_pos * n_embd;
 | 
						|
        common_embd_normalize(embd, out, n_embd, embd_norm);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    common_params params;
 | 
						|
 | 
						|
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    common_init();
 | 
						|
 | 
						|
    params.embedding = true;
 | 
						|
    // For non-causal models, batch size must be equal to ubatch size
 | 
						|
    params.n_ubatch = params.n_batch;
 | 
						|
 | 
						|
    llama_backend_init();
 | 
						|
    llama_numa_init(params.numa);
 | 
						|
 | 
						|
    // load the model
 | 
						|
    common_init_result llama_init = common_init_from_params(params);
 | 
						|
 | 
						|
    llama_model * model = llama_init.model.get();
 | 
						|
    llama_context * ctx = llama_init.context.get();
 | 
						|
 | 
						|
    if (model == NULL) {
 | 
						|
        LOG_ERR("%s: unable to load model\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    const llama_vocab * vocab = llama_model_get_vocab(model);
 | 
						|
 | 
						|
    const int n_ctx_train = llama_model_n_ctx_train(model);
 | 
						|
    const int n_ctx = llama_n_ctx(ctx);
 | 
						|
 | 
						|
    const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
 | 
						|
 | 
						|
    if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
 | 
						|
        LOG_ERR("%s: computing embeddings in encoder-decoder models is not supported\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (n_ctx > n_ctx_train) {
 | 
						|
        LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n",
 | 
						|
                __func__, n_ctx_train, n_ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    // print system information
 | 
						|
    {
 | 
						|
        LOG_INF("\n");
 | 
						|
        LOG_INF("%s\n", common_params_get_system_info(params).c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    // split the prompt into lines
 | 
						|
    std::vector<std::string> prompts = split_lines(params.prompt, params.embd_sep);
 | 
						|
 | 
						|
    // max batch size
 | 
						|
    const uint64_t n_batch = params.n_batch;
 | 
						|
    GGML_ASSERT(params.n_batch >= params.n_ctx);
 | 
						|
 | 
						|
    // tokenize the prompts and trim
 | 
						|
    std::vector<std::vector<int32_t>> inputs;
 | 
						|
    for (const auto & prompt : prompts) {
 | 
						|
        auto inp = common_tokenize(ctx, prompt, true, true);
 | 
						|
        if (inp.size() > n_batch) {
 | 
						|
            LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
 | 
						|
                    __func__, (long long int) inp.size(), (long long int) n_batch);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        inputs.push_back(inp);
 | 
						|
    }
 | 
						|
 | 
						|
    // check if the last token is SEP
 | 
						|
    // it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
 | 
						|
    for (auto & inp : inputs) {
 | 
						|
        if (inp.empty() || inp.back() != llama_vocab_sep(vocab)) {
 | 
						|
            LOG_WRN("%s: last token in the prompt is not SEP\n", __func__);
 | 
						|
            LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // tokenization stats
 | 
						|
    if (params.verbose_prompt) {
 | 
						|
        for (int i = 0; i < (int) inputs.size(); i++) {
 | 
						|
            LOG_INF("%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
 | 
						|
            LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
 | 
						|
            for (int j = 0; j < (int) inputs[i].size(); j++) {
 | 
						|
                LOG("%6d -> '%s'\n", inputs[i][j], common_token_to_piece(ctx, inputs[i][j]).c_str());
 | 
						|
            }
 | 
						|
            LOG("\n\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // initialize batch
 | 
						|
    const int n_prompts = prompts.size();
 | 
						|
    struct common_batch batch = common_batch(n_batch, 1);
 | 
						|
 | 
						|
    // count number of embeddings
 | 
						|
    int n_embd_count = 0;
 | 
						|
    if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
 | 
						|
        for (int k = 0; k < n_prompts; k++) {
 | 
						|
            n_embd_count += inputs[k].size();
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        n_embd_count = n_prompts;
 | 
						|
    }
 | 
						|
 | 
						|
    // allocate output
 | 
						|
    const int n_embd = llama_model_n_embd(model);
 | 
						|
    std::vector<float> embeddings(n_embd_count * n_embd, 0);
 | 
						|
    float * emb = embeddings.data();
 | 
						|
 | 
						|
    // break into batches
 | 
						|
    int e = 0; // number of embeddings already stored
 | 
						|
    int s = 0; // number of prompts in current batch
 | 
						|
    for (int k = 0; k < n_prompts; k++) {
 | 
						|
        // clamp to n_batch tokens
 | 
						|
        auto & inp = inputs[k];
 | 
						|
 | 
						|
        const uint64_t n_toks = inp.size();
 | 
						|
 | 
						|
        // encode if at capacity
 | 
						|
        if (batch.get_n_tokens() + n_toks > n_batch) {
 | 
						|
            float * out = emb + e * n_embd;
 | 
						|
            batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
 | 
						|
            e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.get_n_tokens() : s;
 | 
						|
            s = 0;
 | 
						|
            batch.clear();
 | 
						|
        }
 | 
						|
 | 
						|
        // add to batch
 | 
						|
        batch_add_seq(batch, inp, s);
 | 
						|
        s += 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // final batch
 | 
						|
    float * out = emb + e * n_embd;
 | 
						|
    batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
 | 
						|
 | 
						|
    if (params.embd_out.empty()) {
 | 
						|
        LOG("\n");
 | 
						|
 | 
						|
        if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
 | 
						|
            for (int j = 0; j < n_embd_count; j++) {
 | 
						|
                LOG("embedding %d: ", j);
 | 
						|
                for (int i = 0; i < std::min(3, n_embd); i++) {
 | 
						|
                    if (params.embd_normalize == 0) {
 | 
						|
                        LOG("%6.0f ", emb[j * n_embd + i]);
 | 
						|
                    } else {
 | 
						|
                        LOG("%9.6f ", emb[j * n_embd + i]);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                LOG(" ... ");
 | 
						|
                for (int i = n_embd - 3; i < n_embd; i++) {
 | 
						|
                    if (params.embd_normalize == 0) {
 | 
						|
                        LOG("%6.0f ", emb[j * n_embd + i]);
 | 
						|
                    } else {
 | 
						|
                        LOG("%9.6f ", emb[j * n_embd + i]);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                LOG("\n");
 | 
						|
            }
 | 
						|
        } else if (pooling_type == LLAMA_POOLING_TYPE_RANK) {
 | 
						|
            for (int j = 0; j < n_embd_count; j++) {
 | 
						|
                // NOTE: if you change this log - update the tests in ci/run.sh
 | 
						|
                LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            // print the first part of the embeddings or for a single prompt, the full embedding
 | 
						|
            for (int j = 0; j < n_prompts; j++) {
 | 
						|
                LOG("embedding %d: ", j);
 | 
						|
                for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
 | 
						|
                    if (params.embd_normalize == 0) {
 | 
						|
                        LOG("%6.0f ", emb[j * n_embd + i]);
 | 
						|
                    } else {
 | 
						|
                        LOG("%9.6f ", emb[j * n_embd + i]);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                LOG("\n");
 | 
						|
            }
 | 
						|
 | 
						|
            // print cosine similarity matrix
 | 
						|
            if (n_prompts > 1) {
 | 
						|
                LOG("\n");
 | 
						|
                LOG("cosine similarity matrix:\n\n");
 | 
						|
                for (int i = 0; i < n_prompts; i++) {
 | 
						|
                    LOG("%6.6s ", prompts[i].c_str());
 | 
						|
                }
 | 
						|
                LOG("\n");
 | 
						|
                for (int i = 0; i < n_prompts; i++) {
 | 
						|
                    for (int j = 0; j < n_prompts; j++) {
 | 
						|
                        float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
 | 
						|
                        LOG("%6.2f ", sim);
 | 
						|
                    }
 | 
						|
                    LOG("%1.10s", prompts[i].c_str());
 | 
						|
                    LOG("\n");
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") {
 | 
						|
        const bool notArray = params.embd_out != "array";
 | 
						|
 | 
						|
        LOG(notArray ? "{\n  \"object\": \"list\",\n  \"data\": [\n" : "[");
 | 
						|
        for (int j = 0;;) { // at least one iteration (one prompt)
 | 
						|
            if (notArray) LOG("    {\n      \"object\": \"embedding\",\n      \"index\": %d,\n      \"embedding\": ",j);
 | 
						|
            LOG("[");
 | 
						|
            for (int i = 0;;) { // at least one iteration (n_embd > 0)
 | 
						|
                LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
 | 
						|
                i++;
 | 
						|
                if (i < n_embd) LOG(","); else break;
 | 
						|
            }
 | 
						|
            LOG(notArray ? "]\n    }" : "]");
 | 
						|
            j++;
 | 
						|
            if (j < n_embd_count) LOG(notArray ? ",\n" : ","); else break;
 | 
						|
        }
 | 
						|
        LOG(notArray ? "\n  ]" : "]\n");
 | 
						|
 | 
						|
        if (params.embd_out == "json+" && n_prompts > 1) {
 | 
						|
            LOG(",\n  \"cosineSimilarity\": [\n");
 | 
						|
            for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
 | 
						|
                LOG("    [");
 | 
						|
                for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
 | 
						|
                    float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
 | 
						|
                    LOG("%6.2f", sim);
 | 
						|
                    j++;
 | 
						|
                    if (j < n_embd_count) LOG(", "); else break;
 | 
						|
                }
 | 
						|
                LOG(" ]");
 | 
						|
                i++;
 | 
						|
                if (i < n_embd_count) LOG(",\n"); else break;
 | 
						|
            }
 | 
						|
            LOG("\n  ]");
 | 
						|
        }
 | 
						|
 | 
						|
        if (notArray) LOG("\n}\n");
 | 
						|
    }
 | 
						|
 | 
						|
    LOG("\n");
 | 
						|
    llama_perf_context_print(ctx);
 | 
						|
 | 
						|
    // clean up
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |