mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 e7e4df031b
			
		
	
	e7e4df031b
	
	
	
		
			
			* llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
		
			
				
	
	
		
			117 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| // ggml-backend internal header
 | |
| 
 | |
| #include "ggml-backend.h"
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
|     //
 | |
|     // Backend buffer
 | |
|     //
 | |
| 
 | |
|     // buffer type
 | |
|     typedef void * ggml_backend_buffer_type_context_t;
 | |
| 
 | |
|     struct ggml_backend_buffer_type_i {
 | |
|         const char *          (*get_name)        (ggml_backend_buffer_type_t buft);
 | |
|         ggml_backend_buffer_t (*alloc_buffer)    (ggml_backend_buffer_type_t buft, size_t size);
 | |
|         size_t                (*get_alignment)   (ggml_backend_buffer_type_t buft); // tensor alignment
 | |
|         size_t                (*get_alloc_size)  (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
 | |
|         bool                  (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
 | |
|         // check if tensor data is in host memory
 | |
|         // should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
 | |
|         bool                  (*is_host)         (ggml_backend_buffer_type_t buft);
 | |
|     };
 | |
| 
 | |
|     struct ggml_backend_buffer_type {
 | |
|         struct ggml_backend_buffer_type_i  iface;
 | |
|         ggml_backend_buffer_type_context_t context;
 | |
|     };
 | |
| 
 | |
|     // buffer
 | |
|     typedef void * ggml_backend_buffer_context_t;
 | |
| 
 | |
|     struct ggml_backend_buffer_i {
 | |
|         const char * (*get_name)   (ggml_backend_buffer_t buffer);
 | |
|         void         (*free_buffer)(ggml_backend_buffer_t buffer);
 | |
|         void *       (*get_base)   (ggml_backend_buffer_t buffer);
 | |
|         void         (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
 | |
|         void         (*set_tensor) (ggml_backend_buffer_t buffer,       struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
 | |
|         void         (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
 | |
|         bool         (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
 | |
|         void         (*clear)      (ggml_backend_buffer_t buffer, uint8_t value);
 | |
|         void         (*reset)      (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
 | |
|     };
 | |
| 
 | |
|     struct ggml_backend_buffer {
 | |
|         struct ggml_backend_buffer_i  iface;
 | |
|         ggml_backend_buffer_type_t    buft;
 | |
|         ggml_backend_buffer_context_t context;
 | |
|         size_t size;
 | |
|         enum ggml_backend_buffer_usage usage;
 | |
|     };
 | |
| 
 | |
|     ggml_backend_buffer_t ggml_backend_buffer_init(
 | |
|                    ggml_backend_buffer_type_t      buft,
 | |
|             struct ggml_backend_buffer_i           iface,
 | |
|                    ggml_backend_buffer_context_t   context,
 | |
|                    size_t                          size);
 | |
| 
 | |
|     // do not use directly, use ggml_backend_tensor_copy instead
 | |
|     bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
 | |
| 
 | |
|     //
 | |
|     // Backend
 | |
|     //
 | |
| 
 | |
|     typedef void * ggml_backend_context_t;
 | |
| 
 | |
|     struct ggml_backend_i {
 | |
|         const char * (*get_name)(ggml_backend_t backend);
 | |
| 
 | |
|         void (*free)(ggml_backend_t backend);
 | |
| 
 | |
|         // buffer allocation
 | |
|         ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
 | |
| 
 | |
|         // (optional) asynchronous tensor data access
 | |
|         void (*set_tensor_async)(ggml_backend_t backend,       struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
 | |
|         void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor,       void * data, size_t offset, size_t size);
 | |
|         bool (*cpy_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
 | |
| 
 | |
|         // (optional) complete all pending operations
 | |
|         void (*synchronize)(ggml_backend_t backend);
 | |
| 
 | |
|         // compute graph with a plan
 | |
|         ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
 | |
|         void                      (*graph_plan_free)   (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
 | |
|         void                      (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
 | |
| 
 | |
|         // compute graph without a plan (async)
 | |
|         bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
 | |
| 
 | |
|         // check if the backend supports an operation
 | |
|         bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
 | |
|     };
 | |
| 
 | |
|     struct ggml_backend {
 | |
|         struct ggml_backend_i iface;
 | |
| 
 | |
|         ggml_backend_context_t context;
 | |
|     };
 | |
| 
 | |
|     //
 | |
|     // Backend registry
 | |
|     //
 | |
| 
 | |
|     typedef ggml_backend_t (*ggml_backend_init_fn)(const char * params, void * user_data);
 | |
| 
 | |
|     void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
| }
 | |
| #endif
 |