mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1100 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1100 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "cmpnct_gpt2bpe.hpp"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <cinttypes>
 | |
| #include <fstream>
 | |
| #include <map>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <thread>
 | |
| #include <random>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| // default hparams
 | |
| struct gpt_neox_hparams {
 | |
|     size_t n_merges = 0;
 | |
|     size_t n_vocab  = 0;
 | |
|     uint32_t n_ctx    = 0;
 | |
|     uint32_t n_embd   = 0;
 | |
|     uint32_t n_head   = 0;
 | |
|     uint32_t n_layer  = 0;
 | |
|     uint32_t n_rot    = 0; // rotary_pct * (n_embd / n_head)
 | |
|     bool par_res = true;
 | |
|     float norm_eps = 1e-5;
 | |
| };
 | |
| 
 | |
| struct gpt_neox_layer {
 | |
|     // pre normalization
 | |
|     struct ggml_tensor * ln_1_g;
 | |
|     struct ggml_tensor * ln_1_b;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * c_attn_attn_w;
 | |
|     struct ggml_tensor * c_attn_attn_b;
 | |
| 
 | |
|     struct ggml_tensor * c_attn_proj_w;
 | |
|     struct ggml_tensor * c_attn_proj_b;
 | |
| 
 | |
|     // post normalization
 | |
|     struct ggml_tensor * ln_2_g;
 | |
|     struct ggml_tensor * ln_2_b;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * c_mlp_fc_w;
 | |
|     struct ggml_tensor * c_mlp_fc_b;
 | |
| 
 | |
|     struct ggml_tensor * c_mlp_proj_w;
 | |
|     struct ggml_tensor * c_mlp_proj_b;
 | |
| };
 | |
| 
 | |
| struct gpt_neox_model {
 | |
|     gpt_neox_hparams hparams;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ln_f_g;
 | |
|     struct ggml_tensor * ln_f_b;
 | |
| 
 | |
|     struct ggml_tensor * wte; // position embedding
 | |
| 
 | |
|     struct ggml_tensor * lmh_g; // language model head
 | |
| 
 | |
|     std::vector<gpt_neox_layer> layers;
 | |
| 
 | |
|     // key + value memory
 | |
|     struct ggml_tensor * memory_k;
 | |
|     struct ggml_tensor * memory_v;
 | |
| 
 | |
|     //
 | |
|     struct gguf_context * ggufctx;
 | |
|     struct ggml_context * ctx;
 | |
|     struct ggml_context * kvctx;
 | |
| 
 | |
|     std::map<std::string, struct ggml_tensor *> tensors;
 | |
| };
 | |
| 
 | |
| struct gpt_params {
 | |
|     int32_t seed      = -1;  // RNG seed
 | |
|     int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
 | |
|     uint32_t n_predict = 200; // new tokens to predict
 | |
|     uint32_t n_batch   = 512;   // batch size for prompt processing
 | |
| 
 | |
|     // sampling parameters
 | |
|     int32_t top_k          = 40;
 | |
|     float top_p            = 1.0f;
 | |
|     float temp             = 0.8f;
 | |
|     int32_t repeat_last_n  = 64;
 | |
|     float repeat_penalty   = 1.02f;
 | |
| 
 | |
|     std::string model      = ""; // model path
 | |
|     std::string prompt     = "";
 | |
| 
 | |
|     std::string token_test = "";
 | |
|     bool    interactive      = false;
 | |
|     int32_t interactive_port = -1;
 | |
|     int32_t n_gpu_layers     = 0;
 | |
| };
 | |
| 
 | |
| void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
 | |
|     fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "options:\n");
 | |
|     fprintf(stderr, "  -h, --help            show this help message and exit\n");
 | |
|     fprintf(stderr, "  -s SEED, --seed SEED  RNG seed (default: -1)\n");
 | |
|     fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
 | |
|     fprintf(stderr, "  -ngl N, --gpu-layers N  number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
 | |
|     fprintf(stderr, "  -p PROMPT, --prompt PROMPT\n");
 | |
|     fprintf(stderr, "                        prompt to start generation with (default: random)\n");
 | |
|     fprintf(stderr, "  -f FNAME, --file FNAME\n");
 | |
|     fprintf(stderr, "                        load prompt from a file\n");
 | |
|     fprintf(stderr, "  -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
 | |
|     fprintf(stderr, "                        test tokenization\n");
 | |
|     fprintf(stderr, "  -n N, --n_predict N   number of tokens to predict (default: %d)\n", params.n_predict);
 | |
|     fprintf(stderr, "  --top_k N             top-k sampling, 0 = n_vocab (default: %d)\n", params.top_k);
 | |
|     fprintf(stderr, "  --top_p N             top-p sampling (default: %.1f)\n", params.top_p);
 | |
|     fprintf(stderr, "  --temp N              temperature (default: %.1f)\n", params.temp);
 | |
|     fprintf(stderr, "  --repeat-last-n N     last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
 | |
|     fprintf(stderr, "  --repeat-penalty N    penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
 | |
|     fprintf(stderr, "  -b N, --batch_size N  batch size for prompt processing (default: %d)\n", params.n_batch);
 | |
|     fprintf(stderr, "  -m FNAME, --model FNAME\n");
 | |
|     fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
 | |
|     fprintf(stderr, "\n");
 | |
| }
 | |
| 
 | |
| // Function to check if the next argument exists
 | |
| std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
 | |
|     if (i + 1 < argc && argv[i + 1][0] != '-') {
 | |
|         return argv[++i];
 | |
|     } else {
 | |
|         fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
 | |
|         gpt_print_usage(argc, argv, params);
 | |
|         exit(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         std::string arg = argv[i];
 | |
| 
 | |
|         if (arg == "-s" || arg == "--seed") {
 | |
|             params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "-t" || arg == "--threads") {
 | |
|             params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
 | |
|             params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "-p" || arg == "--prompt") {
 | |
|             params.prompt = get_next_arg(i, argc, argv, arg, params);
 | |
|         } else if (arg == "-n" || arg == "--n_predict") {
 | |
|             params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "--top_k") {
 | |
|             params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "--top_p") {
 | |
|             params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "--temp") {
 | |
|             params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "--repeat-last-n") {
 | |
|             params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "--repeat-penalty") {
 | |
|             params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "-b" || arg == "--batch_size") {
 | |
|             params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "-m" || arg == "--model") {
 | |
|             params.model = get_next_arg(i, argc, argv, arg, params);
 | |
|         } else if (arg == "-i" || arg == "--interactive") {
 | |
|             params.interactive = true;
 | |
|         } else if (arg == "-ip" || arg == "--interactive-port") {
 | |
|             params.interactive = true;
 | |
|             params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | |
|         } else if (arg == "-h" || arg == "--help") {
 | |
|             gpt_print_usage(argc, argv, params);
 | |
|             exit(0);
 | |
|         } else if (arg == "-f" || arg == "--file") {
 | |
|             get_next_arg(i, argc, argv, arg, params);
 | |
|             std::ifstream file(argv[i]);
 | |
|             if (!file) {
 | |
|                 fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
 | |
|                 break;
 | |
|             }
 | |
|             std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
 | |
|             if (params.prompt.back() == '\n') {
 | |
|                 params.prompt.pop_back();
 | |
|             }
 | |
|         } else if (arg == "-tt" || arg == "--token_test") {
 | |
|             params.token_test = get_next_arg(i, argc, argv, arg, params);
 | |
|         }
 | |
|         else {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             gpt_print_usage(argc, argv, params);
 | |
|             exit(0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| gpt2bpe_vocab::id sample_top_k_top_p_repeat(
 | |
|         const gpt2bpe_vocab & vocab,
 | |
|         const float * logits,
 | |
|         const int32_t * last_n_tokens_data,
 | |
|         size_t last_n_tokens_data_size,
 | |
|         int    top_k,
 | |
|         double top_p,
 | |
|         double temp,
 | |
|         int repeat_last_n,
 | |
|         float repeat_penalty,
 | |
|         std::mt19937 & rng) {
 | |
| 
 | |
|     int n_logits = vocab.id_to_token.size();
 | |
| 
 | |
|     const auto * plogits = logits;
 | |
| 
 | |
|     const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
 | |
| 
 | |
|     if (temp <= 0) {
 | |
|         // select the token with the highest logit directly
 | |
|         float max_logit = plogits[0];
 | |
|         gpt2bpe_vocab::id max_id = 0;
 | |
| 
 | |
|         for (int i = 1; i < n_logits; ++i) {
 | |
|             if (plogits[i] > max_logit) {
 | |
|                 max_logit = plogits[i];
 | |
|                 max_id = i;
 | |
|             }
 | |
|         }
 | |
|         return max_id;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     std::vector<std::pair<double, gpt2bpe_vocab::id>> logits_id;
 | |
|     logits_id.reserve(n_logits);
 | |
| 
 | |
|     {
 | |
|         const float scale = 1.0f/temp;
 | |
|         for (int i = 0; i < n_logits; ++i) {
 | |
|             // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
 | |
|             // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
 | |
|             if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
 | |
|                 // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
 | |
|                 if (plogits[i] < 0.0f) {
 | |
|                     logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
 | |
|                 } else {
 | |
|                     logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
 | |
|                 }
 | |
|             } else {
 | |
|                 logits_id.push_back(std::make_pair(plogits[i]*scale, i));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // find the top K tokens
 | |
|     std::partial_sort(
 | |
|             logits_id.begin(),
 | |
|             logits_id.begin() + top_k, logits_id.end(),
 | |
|             [](const std::pair<double, gpt2bpe_vocab::id> & a, const std::pair<double, gpt2bpe_vocab::id> & b) {
 | |
|         return a.first > b.first;
 | |
|     });
 | |
| 
 | |
|     logits_id.resize(top_k);
 | |
| 
 | |
|     double maxl = -INFINITY;
 | |
|     for (const auto & kv : logits_id) {
 | |
|         maxl = std::max(maxl, kv.first);
 | |
|     }
 | |
| 
 | |
|     // compute probs for the top K tokens
 | |
|     std::vector<double> probs;
 | |
|     probs.reserve(logits_id.size());
 | |
| 
 | |
|     double sum = 0.0;
 | |
|     for (const auto & kv : logits_id) {
 | |
|         double p = exp(kv.first - maxl);
 | |
|         probs.push_back(p);
 | |
|         sum += p;
 | |
|     }
 | |
| 
 | |
|     // normalize the probs
 | |
|     for (auto & p : probs) {
 | |
|         p /= sum;
 | |
|     }
 | |
| 
 | |
|     if (top_p < 1.0f) {
 | |
|         double cumsum = 0.0f;
 | |
|         for (int i = 0; i < top_k; i++) {
 | |
|             cumsum += probs[i];
 | |
|             if (cumsum >= top_p) {
 | |
|                 top_k = i + 1;
 | |
|                 probs.resize(top_k);
 | |
|                 logits_id.resize(top_k);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         cumsum = 1.0/cumsum;
 | |
|         for (int i = 0; i < (int) probs.size(); i++) {
 | |
|             probs[i] *= cumsum;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| //    printf("\n");
 | |
| //    for (int i = 0; i < (int) probs.size(); i++) {
 | |
| //    for (int i = 0; i < 10; i++) {
 | |
| //        printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
 | |
| //    }
 | |
| 
 | |
|     std::discrete_distribution<> dist(probs.begin(), probs.end());
 | |
|     int idx = dist(rng);
 | |
| 
 | |
|     return logits_id[idx].second;
 | |
| 
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * get_tensor_ex( struct ggml_context * ctx, std::string name){
 | |
| 
 | |
|     struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
 | |
|     if( cur == NULL ) {
 | |
|         fprintf(stdout, "%s: tensor '%s' not found!\n", __func__, name.c_str());
 | |
|     } else {
 | |
| //        fprintf(stdout, "%s: n_dims = %d, name = '%s'\n", __func__, cur->n_dims, cur->name);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| // load the model's weights from a file
 | |
| bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2bpe_vocab & vocab) {
 | |
|     printf("%s: loading model from '%s'..\n", __func__, fname.c_str());
 | |
| 
 | |
|     model.ctx = NULL;
 | |
| 
 | |
|     struct gguf_init_params ggufparams = {
 | |
|         /*.no_alloc = */ false,
 | |
|         /*.ctx      = */ &model.ctx,
 | |
|     };
 | |
| 
 | |
|     auto & ggufctx = model.ggufctx;
 | |
| 
 | |
|     ggufctx  = gguf_init_from_file(fname.c_str(), ggufparams);
 | |
| 
 | |
|     if (!ggufctx) {
 | |
|         fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     fprintf(stdout, "%s: gguf version     = %d\n", __func__, gguf_get_version(ggufctx));
 | |
|     fprintf(stdout, "%s: gguf alignment   = %zu\n", __func__, gguf_get_alignment(ggufctx));
 | |
|     fprintf(stdout, "%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx));
 | |
| 
 | |
|     // print all kv
 | |
|     #if 0
 | |
|     {
 | |
|         const int n_kv = gguf_get_n_kv(ggufctx);
 | |
| 
 | |
|         fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
 | |
| 
 | |
|         for (int i = 0; i < n_kv; ++i) {
 | |
|             const char * key = gguf_get_key(ggufctx, i);
 | |
| 
 | |
|             fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
 | |
|         }
 | |
|     }
 | |
|     #endif
 | |
| 
 | |
|     // print some standard metadata
 | |
|     {
 | |
|         int keyidx;
 | |
| 
 | |
|         keyidx = gguf_find_key(ggufctx, "general.name");
 | |
|         if (keyidx != -1) { fprintf(stdout, "%s: model name         = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
 | |
|         keyidx = gguf_find_key(ggufctx, "general.description");
 | |
|         if (keyidx != -1) { fprintf(stdout, "%s: model description  = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
 | |
|         keyidx = gguf_find_key(ggufctx, "general.author");
 | |
|         if (keyidx != -1) { fprintf(stdout, "%s: model author       = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
 | |
|         keyidx = gguf_find_key(ggufctx, "general.license");
 | |
|         if (keyidx != -1) { fprintf(stdout, "%s: model license      = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
 | |
|         keyidx = gguf_find_key(ggufctx, "general.architecture");
 | |
|         if (keyidx != -1) { fprintf(stdout, "%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
 | |
|     }
 | |
| 
 | |
|     // check required metadata
 | |
|     {
 | |
|         int keyidx;
 | |
| 
 | |
|         keyidx = gguf_find_key(ggufctx, "general.architecture");
 | |
|         if (keyidx != -1) {
 | |
|             if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gptneox") != 0) {
 | |
|                 fprintf(stdout, "%s: model architecture not supported!\n", __func__);
 | |
|                 return false;
 | |
|             }
 | |
|         } else {
 | |
|             fprintf(stdout, "%s: gguf model architecture not found!\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     // load hparams
 | |
|     {
 | |
|         auto & hparams = model.hparams;
 | |
| 
 | |
|         bool ok = true;
 | |
|         int keyidx;
 | |
| 
 | |
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.context_length");
 | |
|                   if (keyidx != -1) { hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  }
 | |
| 
 | |
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.embedding_length");
 | |
|                   if (keyidx != -1) { hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  }
 | |
| 
 | |
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.head_count");
 | |
|                   if (keyidx != -1) { hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  }
 | |
| 
 | |
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.layer_count");
 | |
|                   if (keyidx != -1) { hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  }
 | |
| 
 | |
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.rope.dimension_count");
 | |
|                   if (keyidx != -1) { hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  }
 | |
| 
 | |
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.use_parallel_residual");
 | |
|                   if (keyidx != -1) { hparams.par_res = gguf_get_val_bool(ggufctx, keyidx); } else { ok = false; }  }
 | |
| 
 | |
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.layer_norm_epsilon");
 | |
|                   if (keyidx != -1) { hparams.norm_eps= gguf_get_val_f32(ggufctx, keyidx); } else { ok = false; }  }
 | |
| 
 | |
|         if (!ok) {
 | |
|             fprintf(stderr, "%s: required hparam missing!\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         printf("%s: n_ctx    = %d\n", __func__, hparams.n_ctx);
 | |
|         printf("%s: n_embd   = %d\n", __func__, hparams.n_embd);
 | |
|         printf("%s: n_head   = %d\n", __func__, hparams.n_head);
 | |
|         printf("%s: n_layer  = %d\n", __func__, hparams.n_layer);
 | |
|         printf("%s: n_rot    = %d\n", __func__, hparams.n_rot);
 | |
|         printf("%s: par_res  = %d\n", __func__, hparams.par_res);
 | |
|         printf("%s: norm_eps = %g\n", __func__, hparams.norm_eps);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     // load vocab
 | |
|     {
 | |
|         auto & hparams = model.hparams;
 | |
| 
 | |
|         int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
 | |
| 
 | |
|         if (keyidx != -1) {
 | |
|             if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) {
 | |
|                 fprintf(stdout, "%s: tokenizer model not supported!\n", __func__);
 | |
|                 return false;
 | |
|             }
 | |
|         } else {
 | |
|             fprintf(stdout, "%s: tokenizer model not found!\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
 | |
| 
 | |
|         if (tokens_keyidx == -1) {
 | |
|             fprintf(stdout, "%s: gpt2 tokenizer vocab not found!\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         int merges_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.merges");
 | |
| 
 | |
|         if (merges_keyidx == -1) {
 | |
|             fprintf(stdout, "%s: gpt2 tokenizer merges not found!\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         hparams.n_vocab = gguf_get_arr_n(ggufctx,tokens_keyidx);
 | |
|         hparams.n_merges = gguf_get_arr_n(ggufctx,merges_keyidx);
 | |
| 
 | |
|         fprintf(stdout, "%s: gpt2 tokenizer vocab  = %zu\n", __func__, hparams.n_vocab);
 | |
|         fprintf(stdout, "%s: gpt2 tokenizer merges = %zu\n", __func__, hparams.n_merges);
 | |
| 
 | |
|         for (size_t i = 0; i < hparams.n_vocab; i++) {
 | |
|             std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
 | |
| 
 | |
| //            printf("token %d = '%s'\n",i,word.c_str() );
 | |
| 
 | |
|             vocab.token_to_id[word] = i;
 | |
|             vocab.id_to_token[i] = word;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         std::vector<std::pair<std::string, std::string>> bpe_merges;
 | |
| 
 | |
|         for (size_t i = 0; i < hparams.n_merges; i++) {
 | |
| 
 | |
|             std::string word = gguf_get_arr_str(ggufctx, merges_keyidx, i);
 | |
| 
 | |
|             // Split the merges
 | |
|             std::string first, second;
 | |
|             size_t pos = word.find(' ', 1); // Start the search from the second character
 | |
|             if (pos != std::string::npos) {
 | |
|                 first = word.substr(0, pos);
 | |
|                 second = word.substr(pos + 1);
 | |
|             }
 | |
| 
 | |
|             bpe_merges.push_back(std::make_pair(first, second));
 | |
|         }
 | |
| 
 | |
|         vocab.populate_bpe_ranks(bpe_merges);
 | |
| 
 | |
| 
 | |
|         keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.bos_token_id"); if( keyidx != -1 ) {       vocab.special_bos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); vocab.special_have_bos=true; }
 | |
|         keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.eos_token_id"); if( keyidx != -1 ) {       vocab.special_eos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); vocab.special_have_eos=true; }
 | |
|         keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.unknown_token_id"); if( keyidx != -1 ) {   vocab.special_unk_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); vocab.special_have_unk=true; }
 | |
|         keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.separator_token_id"); if( keyidx != -1 ) { vocab.special_sep_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); vocab.special_have_sep=true; }
 | |
|         keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.padding_token_id"); if( keyidx != -1 ) {   vocab.special_pad_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); vocab.special_have_pad=true; }
 | |
| 
 | |
|         if( vocab.special_have_bos ) { fprintf(stdout, "%s: bos token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].c_str() ); }
 | |
|         if( vocab.special_have_eos ) { fprintf(stdout, "%s: eos token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].c_str() ); }
 | |
|         if( vocab.special_have_unk ) { fprintf(stdout, "%s: unk token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].c_str() ); }
 | |
|         if( vocab.special_have_sep ) { fprintf(stdout, "%s: sep token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].c_str() ); }
 | |
|         if( vocab.special_have_pad ) { fprintf(stdout, "%s: pad token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].c_str() ); }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     auto & ctx = model.ctx;
 | |
|     size_t ctx_size = ggml_get_mem_size(ctx);
 | |
| 
 | |
|     printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
 | |
| 
 | |
|     // print tensor info
 | |
|     #if 0
 | |
|     {
 | |
|         const int n_tensors = gguf_get_n_tensors(ggufctx);
 | |
| 
 | |
|         fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
 | |
| 
 | |
|         for (int i = 0; i < n_tensors; ++i) {
 | |
|             const char * name   = gguf_get_tensor_name  (ggufctx, i);
 | |
|             const size_t offset = gguf_get_tensor_offset(ggufctx, i);
 | |
| 
 | |
|             fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
 | |
|         }
 | |
|     }
 | |
|     #endif
 | |
| 
 | |
|     // prepare memory for the weights
 | |
|     {
 | |
|         const int n_layer = model.hparams.n_layer;
 | |
| 
 | |
|         model.layers.resize(n_layer);
 | |
| 
 | |
|         model.wte    = ggml_get_tensor(ctx, "transformer.token_embd.weight");
 | |
|         model.ln_f_g = ggml_get_tensor(ctx, "transformer.output_norm.weight");
 | |
|         model.ln_f_b = ggml_get_tensor(ctx, "transformer.output_norm.bias");
 | |
|         model.lmh_g  = ggml_get_tensor(ctx, "transformer.output.weight");
 | |
| 
 | |
|         // map by name
 | |
|         model.tensors["transformer.token_embd.weight"] = model.wte;
 | |
|         model.tensors["transformer.output_norm.weight"] = model.ln_f_g;
 | |
|         model.tensors["transformer.output_norm.bias"]   = model.ln_f_b;
 | |
|         model.tensors["transformer.output.weight"] = model.lmh_g;
 | |
| 
 | |
|         for (int i = 0; i < n_layer; ++i) {
 | |
|             auto & layer = model.layers[i];
 | |
| 
 | |
|             std::string blocknamestart = "transformer.blocks." + std::to_string(i) + ".";
 | |
| 
 | |
|             layer.ln_1_g          = get_tensor_ex(ctx, blocknamestart + "attn_norm_1.weight" );
 | |
|             layer.ln_1_b          = get_tensor_ex(ctx, blocknamestart + "attn_norm_1.bias" );
 | |
| 
 | |
|             layer.c_attn_attn_w   = get_tensor_ex(ctx, blocknamestart + "attn_qkv.weight" );
 | |
|             layer.c_attn_attn_b   = get_tensor_ex(ctx ,blocknamestart + "attn_qkv.bias" );
 | |
| 
 | |
|             layer.c_attn_proj_w   = get_tensor_ex(ctx, blocknamestart + "attn_output.weight" );
 | |
|             layer.c_attn_proj_b   = get_tensor_ex(ctx, blocknamestart + "attn_output.bias" );
 | |
| 
 | |
|             layer.ln_2_g          = get_tensor_ex(ctx, blocknamestart + "ffn_norm.weight" );
 | |
|             layer.ln_2_b          = get_tensor_ex(ctx, blocknamestart + "ffn_norm.bias");
 | |
| 
 | |
|             layer.c_mlp_fc_w      = get_tensor_ex(ctx, blocknamestart + "ffn_up.weight" );
 | |
|             layer.c_mlp_fc_b      = get_tensor_ex(ctx, blocknamestart + "ffn_up.bias" );
 | |
| 
 | |
|             layer.c_mlp_proj_w    = get_tensor_ex(ctx, blocknamestart + "ffn_down.weight" );
 | |
|             layer.c_mlp_proj_b    = get_tensor_ex(ctx, blocknamestart + "ffn_down.bias" );
 | |
| 
 | |
|             // map by name
 | |
|             model.tensors[blocknamestart + "attn_norm_1.weight"] = layer.ln_1_g;
 | |
|             model.tensors[blocknamestart + "attn_norm_1.bias"]   = layer.ln_1_b;
 | |
| 
 | |
|             model.tensors[blocknamestart + "attn_qkv.weight"] = layer.c_attn_attn_w;
 | |
|             model.tensors[blocknamestart + "attn_qkv.bias"]   = layer.c_attn_attn_b;
 | |
| 
 | |
|             model.tensors[blocknamestart + "attn_output.weight"] = layer.c_attn_proj_w;
 | |
|             model.tensors[blocknamestart + "attn_output.bias"]   = layer.c_attn_proj_b;
 | |
| 
 | |
|             model.tensors[blocknamestart + "ffn_norm.weight"] = layer.ln_2_g;
 | |
|             model.tensors[blocknamestart + "ffn_norm.bias"]   = layer.ln_2_b;
 | |
| 
 | |
|             model.tensors[blocknamestart + "ffn_up.weight"] = layer.c_mlp_fc_w;
 | |
|             model.tensors[blocknamestart + "ffn_up.bias"]   = layer.c_mlp_fc_b;
 | |
| 
 | |
|             model.tensors[blocknamestart + "ffn_down.weight"] = layer.c_mlp_proj_w;
 | |
|             model.tensors[blocknamestart + "ffn_down.bias"]   = layer.c_mlp_proj_b;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // key + value memory
 | |
|     {
 | |
|         const auto & kvctx = model.kvctx;
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const int n_embd  = hparams.n_embd;
 | |
|         const int n_layer = hparams.n_layer;
 | |
|         const int n_ctx   = hparams.n_ctx;
 | |
| 
 | |
|         const int64_t n_mem      = n_layer*n_ctx;
 | |
|         const int64_t n_elements = n_embd*n_mem;
 | |
| 
 | |
|         // create the ggml context
 | |
|         {
 | |
|             struct ggml_init_params params = {
 | |
|                 /*.mem_size   =*/ size_t(n_elements*4+ggml_tensor_overhead()*2),
 | |
|                 /*.mem_buffer =*/ NULL,
 | |
|                 /*.no_alloc   =*/ false,
 | |
|             };
 | |
| 
 | |
|             model.kvctx = ggml_init(params);
 | |
|             if (!model.kvctx) {
 | |
|                 fprintf(stderr, "%s: kv ggml_init() failed\n", __func__);
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|         }
 | |
| 
 | |
| 
 | |
|         model.memory_k = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements);
 | |
|         model.memory_v = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements);
 | |
| 
 | |
|         const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
 | |
| 
 | |
|         printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // feed-forward network
 | |
| ggml_tensor * gpt_neox_ff(
 | |
|         const gpt_neox_layer &layer,
 | |
|         ggml_context * ctx0,
 | |
|         ggml_tensor * inp) {
 | |
|     ggml_tensor * cur = ggml_norm(ctx0, inp);
 | |
| 
 | |
|     cur = ggml_add(ctx0,
 | |
|         ggml_mul(ctx0,
 | |
|             ggml_repeat(ctx0, layer.ln_2_g, cur),
 | |
|             cur),
 | |
|         ggml_repeat(ctx0, layer.ln_2_b, cur));
 | |
| 
 | |
|     cur = ggml_mul_mat(ctx0,
 | |
|             layer.c_mlp_fc_w,
 | |
|             cur);
 | |
| 
 | |
|     cur = ggml_add(ctx0,
 | |
|             ggml_repeat(ctx0, layer.c_mlp_fc_b, cur),
 | |
|             cur);
 | |
| 
 | |
|     // GELU activation
 | |
|     cur = ggml_gelu(ctx0, cur);
 | |
| 
 | |
|     // projection
 | |
|     // cur = proj_w*cur + proj_b
 | |
|     cur = ggml_mul_mat(ctx0,
 | |
|             layer.c_mlp_proj_w,
 | |
|             cur);
 | |
| 
 | |
|     cur = ggml_add(ctx0,
 | |
|             ggml_repeat(ctx0, layer.c_mlp_proj_b, cur),
 | |
|             cur);
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| // evaluate the transformer
 | |
| //
 | |
| //   - model:     the model
 | |
| //   - n_threads: number of threads to use
 | |
| //   - n_past:    the context size so far
 | |
| //   - embd_inp:  the embeddings of the tokens in the context
 | |
| //   - embd_w:    the predicted logits for the next token
 | |
| //
 | |
| bool gpt_neox_eval(
 | |
|         const gpt_neox_model & model,
 | |
|         const int n_threads,
 | |
|         const int n_past,
 | |
|         const std::vector<gpt2bpe_vocab::id> & embd_inp,
 | |
|               std::vector<float>         & embd_w,
 | |
|               size_t                     & mem_per_token) {
 | |
|     const int N = embd_inp.size();
 | |
| 
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
|     const int n_ctx   = hparams.n_ctx;
 | |
|     const int n_head  = hparams.n_head;
 | |
|     const int n_vocab = hparams.n_vocab;
 | |
|     const int n_rot   = hparams.n_rot;
 | |
| 
 | |
|     static size_t buf_size = 256u*1024*1024;
 | |
|     static void * buf = malloc(buf_size);
 | |
| 
 | |
|     // use 2 scratch buffers
 | |
|     // TODO: very hacky solution - reimplement in a more elegant way
 | |
|     static size_t scr0_size = 256u*1024*1024;
 | |
|     static void * scr0 = malloc(scr0_size);
 | |
| 
 | |
|     static size_t scr1_size = 256u*1024*1024;
 | |
|     static void * scr1 = malloc(scr1_size);
 | |
| 
 | |
|     if (mem_per_token > 0 && mem_per_token*N > buf_size) {
 | |
|         const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
 | |
|         //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
 | |
| 
 | |
|         // reallocate
 | |
|         buf_size = buf_size_new;
 | |
|         buf = realloc(buf, buf_size);
 | |
|         if (buf == nullptr) {
 | |
|             fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ buf_size,
 | |
|         /*.mem_buffer =*/ buf,
 | |
|         /*.no_alloc   =*/ false,
 | |
|     };
 | |
| 
 | |
|     struct ggml_context * ctx0 = ggml_init(params);
 | |
|     struct ggml_cgraph gf = {};
 | |
| 
 | |
|     struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
 | |
| 
 | |
| 
 | |
|     // wte
 | |
|     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
 | |
| 
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
|         struct ggml_tensor * cur;
 | |
| 
 | |
|         ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
|             {
 | |
|                 cur = ggml_norm(ctx0, inpL);
 | |
| 
 | |
|                 cur = ggml_add(ctx0,
 | |
|                         ggml_mul(ctx0,
 | |
|                             ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
 | |
|                             cur),
 | |
|                         ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
 | |
|             }
 | |
| 
 | |
|             // compute QKV
 | |
|             {
 | |
| 
 | |
|                 cur = ggml_mul_mat(ctx0,
 | |
|                         model.layers[il].c_attn_attn_w,
 | |
|                         cur);
 | |
| 
 | |
|                 cur = ggml_add(ctx0,
 | |
|                         ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
 | |
|                         cur);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head));
 | |
|             struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head));
 | |
|             struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head));
 | |
| 
 | |
|             // using mode = 2 for GPT-NeoX mode
 | |
|             Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, 0);
 | |
|             Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, 0);
 | |
| 
 | |
|             // store key and value to memory
 | |
|             {
 | |
|                 Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N));
 | |
| 
 | |
|                 struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
 | |
|                 struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd,
 | |
|                         (   n_ctx)*ggml_element_size(model.memory_v),
 | |
|                         (il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v));
 | |
| 
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
 | |
|             }
 | |
| 
 | |
|             // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_permute(ctx0,
 | |
|                         Qcur,
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_reshape_3d(ctx0,
 | |
|                             ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
 | |
|                             n_embd/n_head, n_head, n_past + N),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K * Q
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
| 
 | |
|             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | |
|             struct ggml_tensor * KQ_scaled =
 | |
|                 ggml_scale_inplace(ctx0,
 | |
|                         KQ,
 | |
|                         ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
 | |
|                         );
 | |
| 
 | |
|             // KQ_masked = mask_past(KQ_scaled)
 | |
|             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
 | |
| 
 | |
|             // KQ = soft_max(KQ_masked)
 | |
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
 | |
| 
 | |
|             // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
 | |
|             struct ggml_tensor * V =
 | |
|                 ggml_view_3d(ctx0, model.memory_v,
 | |
|                         n_past + N, n_embd/n_head, n_head,
 | |
|                         n_ctx*ggml_element_size(model.memory_v),
 | |
|                         n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head,
 | |
|                         il*n_ctx*ggml_element_size(model.memory_v)*n_embd);
 | |
| 
 | |
|             // KQV = transpose(V) * KQ_soft_max
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
 | |
| 
 | |
|             // KQV_merged = KQV.permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
| 
 | |
|             // cur = KQV_merged.contiguous().view(n_embd, N)
 | |
|             cur = ggml_cpy(ctx0,
 | |
|                     KQV_merged,
 | |
|                     ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | |
| 
 | |
|             // projection
 | |
|             {
 | |
|                 cur = ggml_mul_mat(ctx0,
 | |
|                         model.layers[il].c_attn_proj_w,
 | |
|                         cur);
 | |
| 
 | |
|                 cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
 | |
| 
 | |
|         if (hparams.par_res == 0) {
 | |
|             struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
 | |
| 
 | |
|             cur = gpt_neox_ff(model.layers[il], ctx0, inpFF);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = ggml_add(ctx0, cur, inpFF);
 | |
|         } else {
 | |
|             struct ggml_tensor * inpFF = cur;
 | |
| 
 | |
|             // this is independent of the self-attention result, so it could be done in parallel to the self-attention
 | |
|             // note here we pass inpL instead of cur
 | |
|             cur = gpt_neox_ff(model.layers[il], ctx0, inpL);
 | |
| 
 | |
|             // layer input + FF
 | |
|             cur  = ggml_add(ctx0, cur, inpFF);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = ggml_add(ctx0, cur, inpL);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
 | |
| 
 | |
|     // norm
 | |
|     {
 | |
|         inpL = ggml_norm(ctx0, inpL);
 | |
| 
 | |
|         // inpL = ln_f_g*inpL + ln_f_b
 | |
|         inpL = ggml_add(ctx0,
 | |
|                 ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model.ln_f_g, inpL),
 | |
|                     inpL),
 | |
|                 ggml_repeat(ctx0, model.ln_f_b, inpL));
 | |
|     }
 | |
| 
 | |
|     ggml_set_scratch(ctx0, { 0, 0, nullptr, });
 | |
| 
 | |
|     // lm_head
 | |
|     {
 | |
|         inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
 | |
| 
 | |
|         //inpL = ggml_add(ctx0,
 | |
|         //        ggml_repeat(ctx0, model.lmh_b, inpL),
 | |
|         //        inpL);
 | |
|     }
 | |
| 
 | |
|     // logits -> probs
 | |
|     //inpL = ggml_soft_max_inplace(ctx0, inpL);
 | |
| 
 | |
|     // run the computation
 | |
|     ggml_build_forward_expand(&gf, inpL);
 | |
|     ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
 | |
| 
 | |
|     //if (n_past%100 == 0) {
 | |
|     //    ggml_graph_print   (&gf);
 | |
|     //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
 | |
|     //}
 | |
| 
 | |
|     //embd_w.resize(n_vocab*N);
 | |
|     //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
 | |
| 
 | |
|     // return result for just the last token
 | |
|     embd_w.resize(n_vocab);
 | |
|     memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
 | |
| 
 | |
|     if (mem_per_token == 0) {
 | |
|         mem_per_token = ggml_used_mem(ctx0)/N;
 | |
|     }
 | |
|     //printf("used_mem = %zu\n", ggml_used_mem(ctx0));
 | |
| 
 | |
|     ggml_free(ctx0);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     const int64_t t_main_start_us = ggml_time_us();
 | |
| 
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     int64_t t_load_us = 0;
 | |
| 
 | |
|     gpt2bpe_vocab vocab;
 | |
|     gpt_neox_model model;
 | |
| 
 | |
|     // load the model
 | |
|     {
 | |
|         const int64_t t_start_us = ggml_time_us();
 | |
| 
 | |
|         if (!gpt_neox_model_load(params.model, model, vocab)) {
 | |
|             fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         t_load_us = ggml_time_us() - t_start_us;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if (params.seed < 0) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     if (params.top_k == 0) {
 | |
|         params.top_k = model.hparams.n_vocab;
 | |
|     }
 | |
| 
 | |
|     printf("%s: seed           = %d\n",   __func__, params.seed);
 | |
|     printf("%s: temp           = %.3f\n", __func__, params.temp);
 | |
|     printf("%s: top_k          = %d\n",   __func__, params.top_k);
 | |
|     printf("%s: top_p          = %.3f\n", __func__, params.top_p);
 | |
|     printf("%s: repeat_last_n  = %d\n",   __func__, params.repeat_last_n);
 | |
|     printf("%s: repeat_penalty = %.3f\n", __func__, params.repeat_penalty);
 | |
| 
 | |
|     std::mt19937 rng(params.seed);
 | |
| 
 | |
|     if (params.prompt.empty()) {
 | |
|         params.prompt = "Once upon";
 | |
|     }
 | |
| 
 | |
|     std::vector<int32_t> last_n_tokens(model.hparams.n_ctx);
 | |
|     std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 | |
| 
 | |
|     int n_past = 0;
 | |
| 
 | |
|     int64_t t_sample_us  = 0;
 | |
|     int64_t t_predict_us = 0;
 | |
| 
 | |
|     std::vector<float> logits;
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     std::vector<gpt2bpe_vocab::id> embd_inp = gpt2bpe_tokenize(vocab, params.prompt,false, false);
 | |
| 
 | |
|     params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
 | |
| 
 | |
|     printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | |
| //    for (size_t i = 0; i < embd_inp.size(); i++) {
 | |
| //        printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token[embd_inp[i]].c_str());
 | |
| //    }
 | |
| 
 | |
|     if( model.hparams.n_ctx < params.n_predict+embd_inp.size() ) {
 | |
|         params.n_predict = model.hparams.n_ctx-embd_inp.size();
 | |
|     }
 | |
| 
 | |
|     printf("%s: n_predict = %d\n", __func__, params.n_predict);
 | |
|     printf("\n");
 | |
| 
 | |
|     std::vector<gpt2bpe_vocab::id> embd;
 | |
| 
 | |
|     // determine the required inference memory per token:
 | |
|     size_t mem_per_token = 0;
 | |
|     gpt_neox_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
 | |
| 
 | |
|     for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
 | |
|         // predict
 | |
|         if (embd.size() > 0) {
 | |
|             const int64_t t_start_us = ggml_time_us();
 | |
| 
 | |
|             if (!gpt_neox_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
 | |
|                 printf("Failed to predict\n");
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             t_predict_us += ggml_time_us() - t_start_us;
 | |
|         }
 | |
| 
 | |
|         n_past += embd.size();
 | |
|         embd.clear();
 | |
| 
 | |
|         if (i >= embd_inp.size()) {
 | |
|             // sample next token
 | |
|             const int   top_k = params.top_k;
 | |
|             const float top_p = params.top_p;
 | |
|             const float temp  = params.temp;
 | |
|             const int repeat_last_n = params.repeat_last_n;
 | |
|             const float repeat_penalty = params.repeat_penalty;
 | |
| 
 | |
|             const int n_vocab = model.hparams.n_vocab;
 | |
| 
 | |
|             gpt2bpe_vocab::id id = 0;
 | |
| 
 | |
|             {
 | |
|                 const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|                 id = sample_top_k_top_p_repeat(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_last_n, repeat_penalty, rng);
 | |
| 
 | |
|                 last_n_tokens.erase(last_n_tokens.begin());
 | |
|                 last_n_tokens.push_back(id);
 | |
| 
 | |
|                 t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|             }
 | |
| 
 | |
|             // add it to the context
 | |
|             embd.push_back(id);
 | |
|         } else {
 | |
|             // if here, it means we are still processing the input prompt
 | |
|             for (size_t k = i; k < embd_inp.size(); k++) {
 | |
|                 embd.push_back(embd_inp[k]);
 | |
|                 if (embd.size() > params.n_batch) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             i += embd.size() - 1;
 | |
|         }
 | |
| 
 | |
|         // display text
 | |
|         for (auto id : embd) {
 | |
|             printf("%s", vocab.id_to_token[id].c_str()  );
 | |
|         }
 | |
|         fflush(stdout);
 | |
| 
 | |
|         // end of text token
 | |
|         if (vocab.special_have_eos && embd.back() == vocab.special_eos_id) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // report timing
 | |
|     {
 | |
|         const int64_t t_main_end_us = ggml_time_us();
 | |
| 
 | |
|         printf("\n\n");
 | |
|         printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
 | |
|         printf("%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
 | |
|         printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
 | |
|         printf("%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
 | |
|         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
 | |
|     }
 | |
| 
 | |
|     ggml_free(model.ctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
