mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 df845cc982
			
		
	
	df845cc982
	
	
	
		
			
			* examples : save-load-state: save only required state * llama : only reserve n_vocab * n_batch at most for logits llama_decode asserts that only n_batch tokens are passed each call, and n_ctx is expected to be bigger than n_batch. * llama : always reserve n_vocab * n_batch for logits llama_context de-serialization breaks if the contexts have differing capacity for logits and llama_decode will at maximum resize to n_vocab * n_batch. * llama : only save and restore used logits for batch sizes of 512 this reduces save state in the best case by around 62 MB, which can be a lot if planning to save on each message to allow regenerating messages. * llama : use ostringstream and istringstream for save and load * llama : serialize rng into minimum amount of space required * llama : break session version due to serialization changes
		
			
				
	
	
		
			158 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			158 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <vector>
 | |
| #include <cstdio>
 | |
| #include <chrono>
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     params.prompt = "The quick brown fox";
 | |
| 
 | |
|     if (!gpt_params_parse(argc, argv, params)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     print_build_info();
 | |
| 
 | |
|     if (params.n_predict < 0) {
 | |
|         params.n_predict = 16;
 | |
|     }
 | |
| 
 | |
|     auto n_past = 0;
 | |
| 
 | |
|     std::string result0;
 | |
|     std::string result1;
 | |
| 
 | |
|     // init
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
|     if (model == nullptr || ctx == nullptr) {
 | |
|         fprintf(stderr, "%s : failed to init\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // tokenize prompt
 | |
|     auto tokens = llama_tokenize(ctx, params.prompt, true);
 | |
| 
 | |
|     // evaluate prompt
 | |
|     llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
 | |
|     n_past += tokens.size();
 | |
| 
 | |
|     // save state (rng, logits, embedding and kv_cache) to file
 | |
|     {
 | |
|         std::vector<uint8_t> state_mem(llama_get_state_size(ctx));
 | |
|         const size_t written = llama_copy_state_data(ctx, state_mem.data());
 | |
| 
 | |
|         FILE *fp_write = fopen("dump_state.bin", "wb");
 | |
|         fwrite(state_mem.data(), 1, written, fp_write);
 | |
|         fclose(fp_write);
 | |
| 
 | |
|         fprintf(stderr, "%s : serialized state into %zd out of a maximum of %zd bytes\n", __func__, written, state_mem.size());
 | |
|     }
 | |
| 
 | |
|     // save state (last tokens)
 | |
|     const auto n_past_saved = n_past;
 | |
| 
 | |
|     // first run
 | |
|     printf("\nfirst run: %s", params.prompt.c_str());
 | |
| 
 | |
|     for (auto i = 0; i < params.n_predict; i++) {
 | |
|         auto * logits = llama_get_logits(ctx);
 | |
|         auto n_vocab = llama_n_vocab(model);
 | |
| 
 | |
|         std::vector<llama_token_data> candidates;
 | |
|         candidates.reserve(n_vocab);
 | |
|         for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|             candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | |
|         }
 | |
|         llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
|         auto next_token = llama_sample_token(ctx, &candidates_p);
 | |
|         auto next_token_str = llama_token_to_piece(ctx, next_token);
 | |
| 
 | |
|         printf("%s", next_token_str.c_str());
 | |
|         result0 += next_token_str;
 | |
| 
 | |
|         if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
 | |
|             fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
 | |
|             llama_free(ctx);
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
|         n_past += 1;
 | |
|     }
 | |
| 
 | |
|     printf("\n\n");
 | |
| 
 | |
|     // free old context
 | |
|     llama_free(ctx);
 | |
| 
 | |
|     // make new context
 | |
|     auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
 | |
| 
 | |
|     printf("\nsecond run: %s", params.prompt.c_str());
 | |
| 
 | |
|     // load state (rng, logits, embedding and kv_cache) from file
 | |
|     {
 | |
|         std::vector<uint8_t> state_mem(llama_get_state_size(ctx2));
 | |
| 
 | |
|         FILE * fp_read = fopen("dump_state.bin", "rb");
 | |
|         const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
 | |
|         fclose(fp_read);
 | |
| 
 | |
|         if (read != llama_set_state_data(ctx2, state_mem.data())) {
 | |
|             fprintf(stderr, "\n%s : failed to read state\n", __func__);
 | |
|             llama_free(ctx2);
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
 | |
|     }
 | |
| 
 | |
|     // restore state (last tokens)
 | |
|     n_past = n_past_saved;
 | |
| 
 | |
|     // second run
 | |
|     for (auto i = 0; i < params.n_predict; i++) {
 | |
|         auto * logits = llama_get_logits(ctx2);
 | |
|         auto n_vocab = llama_n_vocab(model);
 | |
|         std::vector<llama_token_data> candidates;
 | |
|         candidates.reserve(n_vocab);
 | |
|         for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|             candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | |
|         }
 | |
|         llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
|         auto next_token = llama_sample_token(ctx2, &candidates_p);
 | |
|         auto next_token_str = llama_token_to_piece(ctx2, next_token);
 | |
| 
 | |
|         printf("%s", next_token_str.c_str());
 | |
|         result1 += next_token_str;
 | |
| 
 | |
|         if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
 | |
|             fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
 | |
|             llama_free(ctx2);
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
|         n_past += 1;
 | |
|     }
 | |
| 
 | |
|     printf("\n");
 | |
| 
 | |
|     llama_free(ctx2);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     if (result0 != result1) {
 | |
|         fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "\n%s : success\n", __func__);
 | |
| 
 | |
|     return 0;
 | |
| }
 |