mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 a113689571
			
		
	
	a113689571
	
	
	
		
			
			* ggml : add graph tensor allocator * ggml : don't calculate data pointer of unallocated tensors when creating a view with an offset * ggml : refactor ggml_view_Nd into ggml_view_tensor_offset
		
			
				
	
	
		
			1674 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1674 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| //
 | |
| // GGML Tensor Library
 | |
| //
 | |
| // This documentation is still a work in progress.
 | |
| // If you wish some specific topics to be covered, feel free to drop a comment:
 | |
| //
 | |
| //   https://github.com/ggerganov/whisper.cpp/issues/40
 | |
| //
 | |
| // ## Overview
 | |
| //
 | |
| // This library implements:
 | |
| //
 | |
| //  - a set of tensor operations
 | |
| //  - automatic differentiation
 | |
| //  - basic optimization algorithms
 | |
| //
 | |
| // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
 | |
| // but is not limited to, the following:
 | |
| //
 | |
| //  - linear regression
 | |
| //  - support vector machines
 | |
| //  - neural networks
 | |
| //
 | |
| // The library allows the user to define a certain function using the available tensor operations. This function
 | |
| // definition is represented internally via a computation graph. Each tensor operation in the function definition
 | |
| // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
 | |
| // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
 | |
| // using one of the available optimization algorithms.
 | |
| //
 | |
| // For example, here we define the function: f(x) = a*x^2 + b
 | |
| //
 | |
| //   {
 | |
| //       struct ggml_init_params params = {
 | |
| //           .mem_size   = 16*1024*1024,
 | |
| //           .mem_buffer = NULL,
 | |
| //       };
 | |
| //
 | |
| //       // memory allocation happens here
 | |
| //       struct ggml_context * ctx = ggml_init(params);
 | |
| //
 | |
| //       struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
 | |
| //
 | |
| //       ggml_set_param(ctx, x); // x is an input variable
 | |
| //
 | |
| //       struct ggml_tensor * a  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
 | |
| //       struct ggml_tensor * b  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
 | |
| //       struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
 | |
| //       struct ggml_tensor * f  = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
 | |
| //
 | |
| //       ...
 | |
| //   }
 | |
| //
 | |
| // Notice that the function definition above does not involve any actual computation. The computation is performed only
 | |
| // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
 | |
| //
 | |
| //   {
 | |
| //       ...
 | |
| //
 | |
| //       struct ggml_cgraph gf = ggml_build_forward(f);
 | |
| //
 | |
| //       // set the input variable and parameter values
 | |
| //       ggml_set_f32(x, 2.0f);
 | |
| //       ggml_set_f32(a, 3.0f);
 | |
| //       ggml_set_f32(b, 4.0f);
 | |
| //
 | |
| //       ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
 | |
| //
 | |
| //       printf("f = %f\n", ggml_get_f32_1d(f, 0));
 | |
| //
 | |
| //       ...
 | |
| //   }
 | |
| //
 | |
| // The actual computation is performed in the ggml_graph_compute() function.
 | |
| //
 | |
| // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
 | |
| // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
 | |
| // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
 | |
| // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
 | |
| // actually needed.
 | |
| //
 | |
| // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
 | |
| // differentiation and optimization algorithms.
 | |
| //
 | |
| // The described approach allows to define the function graph once and then compute its forward or backward graphs
 | |
| // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
 | |
| // the user can avoid the memory allocation overhead at runtime.
 | |
| //
 | |
| // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
 | |
| // citizens, but in theory the library can be extended to support FP8 and integer data types.
 | |
| //
 | |
| // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
 | |
| // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
 | |
| // clear that the library needs to support more complex operations. The way to support these operations is not clear
 | |
| // yet, but a few examples are demonstrated in the following operations:
 | |
| //
 | |
| //   - ggml_permute()
 | |
| //   - ggml_conv_1d_1s()
 | |
| //   - ggml_conv_1d_2s()
 | |
| //
 | |
| // For each tensor operator, the library implements a forward and backward computation function. The forward function
 | |
| // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
 | |
| // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
 | |
| // calculus class, or watch the following video:
 | |
| //
 | |
| //   What is Automatic Differentiation?
 | |
| //   https://www.youtube.com/watch?v=wG_nF1awSSY
 | |
| //
 | |
| //
 | |
| // ## Tensor data (struct ggml_tensor)
 | |
| //
 | |
| // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
 | |
| // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
 | |
| // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
 | |
| //
 | |
| //   {
 | |
| //       struct ggml_tensor * c = ggml_add(ctx, a, b);
 | |
| //
 | |
| //       assert(c->src[0] == a);
 | |
| //       assert(c->src[1] == b);
 | |
| //   }
 | |
| //
 | |
| // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
 | |
| // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
 | |
| // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
 | |
| // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
 | |
| // contiguous in memory.
 | |
| //
 | |
| // The data of the tensor is accessed via the "data" pointer. For example:
 | |
| //
 | |
| //   {
 | |
| //       struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
 | |
| //
 | |
| //       // a[2, 1] = 1.0f;
 | |
| //       *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
 | |
| //
 | |
| //       // a[0, 2] = 2.0f;
 | |
| //       *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
 | |
| //
 | |
| //       ...
 | |
| //   }
 | |
| //
 | |
| // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
 | |
| //
 | |
| // ## The matrix multiplication operator (ggml_mul_mat)
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| // ## Multi-threading
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| // ## Overview of ggml.c
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| // ## SIMD optimizations
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| // ## Debugging ggml
 | |
| //
 | |
| // TODO
 | |
| //
 | |
| //
 | |
| 
 | |
| #ifdef GGML_SHARED
 | |
| #    if defined(_WIN32) && !defined(__MINGW32__)
 | |
| #        ifdef GGML_BUILD
 | |
| #            define GGML_API __declspec(dllexport)
 | |
| #        else
 | |
| #            define GGML_API __declspec(dllimport)
 | |
| #        endif
 | |
| #    else
 | |
| #        define GGML_API __attribute__ ((visibility ("default")))
 | |
| #    endif
 | |
| #else
 | |
| #    define GGML_API
 | |
| #endif
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <stddef.h>
 | |
| #include <stdbool.h>
 | |
| 
 | |
| #define GGML_FILE_MAGIC   0x67676d6c // "ggml"
 | |
| #define GGML_FILE_VERSION 1
 | |
| 
 | |
| #define GGML_QNT_VERSION        2    // bump this on quantization format changes
 | |
| #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
 | |
| 
 | |
| #define GGML_MAX_DIMS          4
 | |
| #define GGML_MAX_NODES         4096
 | |
| #define GGML_MAX_PARAMS        256
 | |
| #define GGML_MAX_CONTEXTS      64
 | |
| #define GGML_MAX_SRC           6
 | |
| #define GGML_MAX_NAME          48
 | |
| #define GGML_MAX_OP_PARAMS     32
 | |
| #define GGML_DEFAULT_N_THREADS 4
 | |
| 
 | |
| 
 | |
| #define GGML_EXIT_SUCCESS 0
 | |
| #define GGML_EXIT_ABORTED 1
 | |
| 
 | |
| #define GGML_UNUSED(x) (void)(x)
 | |
| 
 | |
| #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
 | |
| 
 | |
| #define GGML_ASSERT(x) \
 | |
|     do { \
 | |
|         if (!(x)) { \
 | |
|             fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
 | |
|             abort(); \
 | |
|         } \
 | |
|     } while (0)
 | |
| 
 | |
| // used to copy the number of elements and stride in bytes of tensors into local variables.
 | |
| // main purpose is to reduce code duplication and improve readability.
 | |
| //
 | |
| // example:
 | |
| //
 | |
| //    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
 | |
| //    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb);
 | |
| //
 | |
| #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
 | |
|     const type prefix##0 = (pointer)->array[0]; \
 | |
|     GGML_UNUSED(prefix##0);
 | |
| #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
 | |
|     GGML_TENSOR_LOCALS_1    (type, prefix, pointer, array) \
 | |
|     const type prefix##1 = (pointer)->array[1]; \
 | |
|     GGML_UNUSED(prefix##1);
 | |
| #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
 | |
|     GGML_TENSOR_LOCALS_2    (type, prefix, pointer, array) \
 | |
|     const type prefix##2 = (pointer)->array[2]; \
 | |
|     GGML_UNUSED(prefix##2);
 | |
| #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
 | |
|     GGML_TENSOR_LOCALS_3  (type, prefix, pointer, array) \
 | |
|     const type prefix##3 = (pointer)->array[3]; \
 | |
|     GGML_UNUSED(prefix##3);
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     // we use the built-in 16-bit float type
 | |
|     typedef __fp16 ggml_fp16_t;
 | |
| #else
 | |
|     typedef uint16_t ggml_fp16_t;
 | |
| #endif
 | |
| 
 | |
|     // convert FP16 <-> FP32
 | |
|     GGML_API float       ggml_fp16_to_fp32(ggml_fp16_t x);
 | |
|     GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
 | |
| 
 | |
|     GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
 | |
|     GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
 | |
| 
 | |
|     struct ggml_object;
 | |
|     struct ggml_context;
 | |
| 
 | |
|     enum ggml_type {
 | |
|         GGML_TYPE_F32  = 0,
 | |
|         GGML_TYPE_F16  = 1,
 | |
|         GGML_TYPE_Q4_0 = 2,
 | |
|         GGML_TYPE_Q4_1 = 3,
 | |
|         // GGML_TYPE_Q4_2 = 4, support has been removed
 | |
|         // GGML_TYPE_Q4_3 (5) support has been removed
 | |
|         GGML_TYPE_Q5_0 = 6,
 | |
|         GGML_TYPE_Q5_1 = 7,
 | |
|         GGML_TYPE_Q8_0 = 8,
 | |
|         GGML_TYPE_Q8_1 = 9,
 | |
|         // k-quantizations
 | |
|         GGML_TYPE_Q2_K = 10,
 | |
|         GGML_TYPE_Q3_K = 11,
 | |
|         GGML_TYPE_Q4_K = 12,
 | |
|         GGML_TYPE_Q5_K = 13,
 | |
|         GGML_TYPE_Q6_K = 14,
 | |
|         GGML_TYPE_Q8_K = 15,
 | |
|         GGML_TYPE_I8,
 | |
|         GGML_TYPE_I16,
 | |
|         GGML_TYPE_I32,
 | |
|         GGML_TYPE_COUNT,
 | |
|     };
 | |
| 
 | |
|     enum ggml_backend {
 | |
|         GGML_BACKEND_CPU = 0,
 | |
|         GGML_BACKEND_GPU = 10,
 | |
|         GGML_BACKEND_GPU_SPLIT = 20,
 | |
|     };
 | |
| 
 | |
|     // model file types
 | |
|     enum ggml_ftype {
 | |
|         GGML_FTYPE_UNKNOWN     = -1,
 | |
|         GGML_FTYPE_ALL_F32     = 0,
 | |
|         GGML_FTYPE_MOSTLY_F16  = 1,  // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q4_0 = 2,  // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q4_1 = 3,  // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
 | |
|         GGML_FTYPE_MOSTLY_Q8_0 = 7,  // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q5_0 = 8,  // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q5_1 = 9,  // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
 | |
|         GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
 | |
|     };
 | |
| 
 | |
|     // available tensor operations:
 | |
|     enum ggml_op {
 | |
|         GGML_OP_NONE = 0,
 | |
| 
 | |
|         GGML_OP_DUP,
 | |
|         GGML_OP_ADD,
 | |
|         GGML_OP_ADD1,
 | |
|         GGML_OP_ACC,
 | |
|         GGML_OP_SUB,
 | |
|         GGML_OP_MUL,
 | |
|         GGML_OP_DIV,
 | |
|         GGML_OP_SQR,
 | |
|         GGML_OP_SQRT,
 | |
|         GGML_OP_LOG,
 | |
|         GGML_OP_SUM,
 | |
|         GGML_OP_SUM_ROWS,
 | |
|         GGML_OP_MEAN,
 | |
|         GGML_OP_ARGMAX,
 | |
|         GGML_OP_REPEAT,
 | |
|         GGML_OP_REPEAT_BACK,
 | |
|         GGML_OP_SILU_BACK,
 | |
|         GGML_OP_NORM, // normalize
 | |
|         GGML_OP_RMS_NORM,
 | |
|         GGML_OP_RMS_NORM_BACK,
 | |
| 
 | |
|         GGML_OP_MUL_MAT,
 | |
|         GGML_OP_OUT_PROD,
 | |
| 
 | |
|         GGML_OP_SCALE,
 | |
|         GGML_OP_SET,
 | |
|         GGML_OP_CPY,
 | |
|         GGML_OP_CONT,
 | |
|         GGML_OP_RESHAPE,
 | |
|         GGML_OP_VIEW,
 | |
|         GGML_OP_PERMUTE,
 | |
|         GGML_OP_TRANSPOSE,
 | |
|         GGML_OP_GET_ROWS,
 | |
|         GGML_OP_GET_ROWS_BACK,
 | |
|         GGML_OP_DIAG,
 | |
|         GGML_OP_DIAG_MASK_INF,
 | |
|         GGML_OP_DIAG_MASK_ZERO,
 | |
|         GGML_OP_SOFT_MAX,
 | |
|         GGML_OP_SOFT_MAX_BACK,
 | |
|         GGML_OP_ROPE,
 | |
|         GGML_OP_ROPE_BACK,
 | |
|         GGML_OP_ALIBI,
 | |
|         GGML_OP_CLAMP,
 | |
|         GGML_OP_CONV_1D,
 | |
|         GGML_OP_CONV_2D,
 | |
|         GGML_OP_POOL_1D,
 | |
|         GGML_OP_POOL_2D,
 | |
| 
 | |
|         GGML_OP_FLASH_ATTN,
 | |
|         GGML_OP_FLASH_FF,
 | |
|         GGML_OP_FLASH_ATTN_BACK,
 | |
|         GGML_OP_WIN_PART,
 | |
|         GGML_OP_WIN_UNPART,
 | |
| 
 | |
|         GGML_OP_UNARY,
 | |
| 
 | |
|         GGML_OP_MAP_UNARY,
 | |
|         GGML_OP_MAP_BINARY,
 | |
| 
 | |
|         GGML_OP_MAP_CUSTOM1,
 | |
|         GGML_OP_MAP_CUSTOM2,
 | |
|         GGML_OP_MAP_CUSTOM3,
 | |
| 
 | |
|         GGML_OP_CROSS_ENTROPY_LOSS,
 | |
|         GGML_OP_CROSS_ENTROPY_LOSS_BACK,
 | |
| 
 | |
|         GGML_OP_COUNT,
 | |
|     };
 | |
| 
 | |
|     enum ggml_unary_op {
 | |
|         GGML_UNARY_OP_ABS,
 | |
|         GGML_UNARY_OP_SGN,
 | |
|         GGML_UNARY_OP_NEG,
 | |
|         GGML_UNARY_OP_STEP,
 | |
|         GGML_UNARY_OP_TANH,
 | |
|         GGML_UNARY_OP_ELU,
 | |
|         GGML_UNARY_OP_RELU,
 | |
|         GGML_UNARY_OP_GELU,
 | |
|         GGML_UNARY_OP_GELU_QUICK,
 | |
|         GGML_UNARY_OP_SILU,
 | |
|     };
 | |
| 
 | |
|     enum ggml_object_type {
 | |
|         GGML_OBJECT_TENSOR,
 | |
|         GGML_OBJECT_GRAPH,
 | |
|         GGML_OBJECT_WORK_BUFFER
 | |
|     };
 | |
| 
 | |
|     // ggml object
 | |
|     struct ggml_object {
 | |
|         size_t offs;
 | |
|         size_t size;
 | |
| 
 | |
|         struct ggml_object * next;
 | |
| 
 | |
|         enum ggml_object_type type;
 | |
| 
 | |
|         char padding[4];
 | |
|     };
 | |
| 
 | |
|     static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
 | |
| 
 | |
|     // n-dimensional tensor
 | |
|     struct ggml_tensor {
 | |
|         enum ggml_type    type;
 | |
|         enum ggml_backend backend;
 | |
| 
 | |
|         int     n_dims;
 | |
|         int64_t ne[GGML_MAX_DIMS]; // number of elements
 | |
|         size_t  nb[GGML_MAX_DIMS]; // stride in bytes:
 | |
|                                    // nb[0] = sizeof(type)
 | |
|                                    // nb[1] = nb[0]   * ne[0] + padding
 | |
|                                    // nb[i] = nb[i-1] * ne[i-1]
 | |
| 
 | |
|         // compute data
 | |
|         enum ggml_op op;
 | |
| 
 | |
|         // op params - allocated as int32_t for alignment
 | |
|         int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
 | |
| 
 | |
|         bool is_param;
 | |
| 
 | |
|         struct ggml_tensor * grad;
 | |
|         struct ggml_tensor * src[GGML_MAX_SRC];
 | |
| 
 | |
|         // performance
 | |
|         int     perf_runs;
 | |
|         int64_t perf_cycles;
 | |
|         int64_t perf_time_us;
 | |
| 
 | |
|         void * data;
 | |
| 
 | |
|         char name[GGML_MAX_NAME];
 | |
| 
 | |
|         void * extra; // extra things e.g. for ggml-cuda.cu
 | |
| 
 | |
|         char padding[4];
 | |
|     };
 | |
| 
 | |
|     static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
 | |
| 
 | |
|     // the compute plan that needs to be prepared for ggml_graph_compute()
 | |
|     // since https://github.com/ggerganov/ggml/issues/287
 | |
|     struct ggml_cplan {
 | |
|         size_t    work_size; // size of work buffer, calculated by `ggml_graph_plan()`
 | |
|         uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
 | |
| 
 | |
|         int n_threads;
 | |
| 
 | |
|         // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
 | |
|         int n_tasks[GGML_MAX_NODES];
 | |
| 
 | |
|         // abort ggml_graph_compute when true
 | |
|         bool (*abort_callback)(void * data);
 | |
|         void * abort_callback_data;
 | |
|     };
 | |
| 
 | |
|     // next prime after GGML_MAX_NODES
 | |
|     // #define GGML_GRAPH_HASHTABLE_SIZE 4099
 | |
|     // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
 | |
|     #define GGML_GRAPH_HASHTABLE_SIZE 8273
 | |
| 
 | |
|     // computation graph
 | |
|     struct ggml_cgraph {
 | |
|         int n_nodes;
 | |
|         int n_leafs;
 | |
| 
 | |
|         struct ggml_tensor * nodes[GGML_MAX_NODES];
 | |
|         struct ggml_tensor * grads[GGML_MAX_NODES];
 | |
|         struct ggml_tensor * leafs[GGML_MAX_NODES];
 | |
| 
 | |
|         void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
 | |
| 
 | |
|         // performance
 | |
|         int     perf_runs;
 | |
|         int64_t perf_cycles;
 | |
|         int64_t perf_time_us;
 | |
|     };
 | |
| 
 | |
|     static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
 | |
| 
 | |
|     // scratch buffer
 | |
|     struct ggml_scratch {
 | |
|         size_t offs;
 | |
|         size_t size;
 | |
|         void * data;
 | |
|     };
 | |
| 
 | |
|     struct ggml_init_params {
 | |
|         // memory pool
 | |
|         size_t mem_size;   // bytes
 | |
|         void * mem_buffer; // if NULL, memory will be allocated internally
 | |
|         bool   no_alloc;   // don't allocate memory for the tensor data
 | |
|     };
 | |
| 
 | |
| 
 | |
|     // compute types
 | |
| 
 | |
|     // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
 | |
|     // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
 | |
|     enum ggml_task_type {
 | |
|         GGML_TASK_INIT = 0,
 | |
|         GGML_TASK_COMPUTE,
 | |
|         GGML_TASK_FINALIZE,
 | |
|     };
 | |
| 
 | |
|     struct ggml_compute_params {
 | |
|         enum ggml_task_type type;
 | |
| 
 | |
|         // ith = thread index, nth = number of threads
 | |
|         int ith, nth;
 | |
| 
 | |
|         // work buffer for all threads
 | |
|         size_t wsize;
 | |
|         void * wdata;
 | |
|     };
 | |
| 
 | |
|     // misc
 | |
| 
 | |
|     GGML_API void    ggml_time_init(void); // call this once at the beginning of the program
 | |
|     GGML_API int64_t ggml_time_ms(void);
 | |
|     GGML_API int64_t ggml_time_us(void);
 | |
|     GGML_API int64_t ggml_cycles(void);
 | |
|     GGML_API int64_t ggml_cycles_per_ms(void);
 | |
| 
 | |
|     GGML_API void    ggml_numa_init(void); // call once for better performance on NUMA systems
 | |
|     GGML_API bool    ggml_is_numa(void); // true if init detected that system has >1 NUMA node
 | |
| 
 | |
|     GGML_API void    ggml_print_object (const struct ggml_object * obj);
 | |
|     GGML_API void    ggml_print_objects(const struct ggml_context * ctx);
 | |
| 
 | |
|     GGML_API int64_t ggml_nelements   (const struct ggml_tensor * tensor);
 | |
|     GGML_API int64_t ggml_nrows       (const struct ggml_tensor * tensor);
 | |
|     GGML_API size_t  ggml_nbytes      (const struct ggml_tensor * tensor);
 | |
|     GGML_API size_t  ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
 | |
| 
 | |
|     GGML_API int     ggml_blck_size (enum ggml_type type);
 | |
|     GGML_API size_t  ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
 | |
|     GGML_API float   ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
 | |
| 
 | |
|     GGML_API const char * ggml_type_name(enum ggml_type type);
 | |
|     GGML_API const char * ggml_op_name  (enum ggml_op   op);
 | |
|     GGML_API const char * ggml_op_symbol(enum ggml_op   op);
 | |
| 
 | |
|     GGML_API size_t  ggml_element_size(const struct ggml_tensor * tensor);
 | |
| 
 | |
|     GGML_API bool    ggml_is_quantized(enum ggml_type type);
 | |
| 
 | |
|     // TODO: temporary until model loading of ggml examples is refactored
 | |
|     GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
 | |
| 
 | |
|     GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
 | |
|     GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
 | |
|     GGML_API bool ggml_is_permuted  (const struct ggml_tensor * tensor);
 | |
| 
 | |
|     // use this to compute the memory overhead of a tensor
 | |
|     GGML_API size_t ggml_tensor_overhead(void);
 | |
| 
 | |
|     // main
 | |
| 
 | |
|     GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
 | |
|     GGML_API void                  ggml_free(struct ggml_context * ctx);
 | |
| 
 | |
|     GGML_API size_t  ggml_used_mem(const struct ggml_context * ctx);
 | |
| 
 | |
|     GGML_API size_t  ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
 | |
|     GGML_API bool    ggml_get_no_alloc(struct ggml_context * ctx);
 | |
|     GGML_API void    ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
 | |
| 
 | |
|     GGML_API void *  ggml_get_mem_buffer     (const struct ggml_context * ctx);
 | |
|     GGML_API size_t  ggml_get_mem_size       (const struct ggml_context * ctx);
 | |
|     GGML_API size_t  ggml_get_max_tensor_size(const struct ggml_context * ctx);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int    n_dims,
 | |
|             const int64_t *ne);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor_1d(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int64_t ne0);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor_2d(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int64_t ne0,
 | |
|             int64_t ne1);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor_3d(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int64_t ne0,
 | |
|             int64_t ne1,
 | |
|             int64_t ne2);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_tensor_4d(
 | |
|             struct ggml_context * ctx,
 | |
|             enum   ggml_type type,
 | |
|             int64_t ne0,
 | |
|             int64_t ne1,
 | |
|             int64_t ne2,
 | |
|             int64_t ne3);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
 | |
|     GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
 | |
|     GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
 | |
|     GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
 | |
|     GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
 | |
| 
 | |
|     GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
 | |
|     GGML_API void    ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
 | |
| 
 | |
|     GGML_API float   ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
 | |
|     GGML_API void    ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
 | |
| 
 | |
|     GGML_API void *  ggml_get_data    (const struct ggml_tensor * tensor);
 | |
|     GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
 | |
| 
 | |
|     GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
 | |
| 
 | |
|     GGML_API const char *         ggml_get_name   (const struct ggml_tensor * tensor);
 | |
|     GGML_API struct ggml_tensor * ggml_set_name   (      struct ggml_tensor * tensor, const char * name);
 | |
|     GGML_API struct ggml_tensor * ggml_format_name(      struct ggml_tensor * tensor, const char * fmt, ...);
 | |
| 
 | |
|     //
 | |
|     // operations on tensors with backpropagation
 | |
|     //
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_dup(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_dup_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_add(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_add_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_add1(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_add1_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_acc(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             size_t                nb1,
 | |
|             size_t                nb2,
 | |
|             size_t                nb3,
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_acc_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             size_t                nb1,
 | |
|             size_t                nb2,
 | |
|             size_t                nb3,
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sub(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sub_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_mul(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_mul_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_div(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_div_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sqr(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sqr_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sqrt(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sqrt_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_log(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_log_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // return scalar
 | |
|     GGML_API struct ggml_tensor * ggml_sum(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
 | |
|     GGML_API struct ggml_tensor * ggml_sum_rows(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // mean along rows
 | |
|     GGML_API struct ggml_tensor * ggml_mean(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // argmax along rows
 | |
|     GGML_API struct ggml_tensor * ggml_argmax(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // if a is the same shape as b, and a is not parameter, return a
 | |
|     // otherwise, return a new tensor: repeat(a) to fit in b
 | |
|     GGML_API struct ggml_tensor * ggml_repeat(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_repeat_back(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_abs(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_abs_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sgn(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_sgn_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_neg(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_neg_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_step(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_step_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_tanh(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_tanh_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_elu(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_elu_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_relu(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_relu_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // TODO: double-check this computation is correct
 | |
|     GGML_API struct ggml_tensor * ggml_gelu(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_gelu_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_gelu_quick(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_silu(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_silu_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // a - x
 | |
|     // b - dy
 | |
|     GGML_API struct ggml_tensor * ggml_silu_back(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // normalize along rows
 | |
|     // TODO: eps is hardcoded to 1e-5 for now
 | |
|     GGML_API struct ggml_tensor * ggml_norm(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_norm_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_rms_norm(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             float                 eps);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             float                 eps);
 | |
| 
 | |
|     // a - x
 | |
|     // b - dy
 | |
|     // TODO: update with configurable eps
 | |
|     GGML_API struct ggml_tensor * ggml_rms_norm_back(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // A: n columns, m rows
 | |
|     // B: n columns, p rows  (i.e. we transpose it internally)
 | |
|     // result is m columns, p rows
 | |
|     GGML_API struct ggml_tensor * ggml_mul_mat(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // A: m columns, n rows,
 | |
|     // B: p columns, n rows,
 | |
|     // result is m columns, p rows
 | |
|     GGML_API struct ggml_tensor * ggml_out_prod(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     //
 | |
|     // operations on tensors without backpropagation
 | |
|     //
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_scale(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_scale_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // b -> view(a,offset,nb1,nb2,3), return modified a
 | |
|     GGML_API struct ggml_tensor * ggml_set(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             size_t                nb1,
 | |
|             size_t                nb2,
 | |
|             size_t                nb3,
 | |
|             size_t                offset);
 | |
| 
 | |
|     // b -> view(a,offset,nb1,nb2,3), return view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_set_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             size_t                nb1,
 | |
|             size_t                nb2,
 | |
|             size_t                nb3,
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_set_1d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_set_1d_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             size_t                offset);
 | |
| 
 | |
|     // b -> view(a,offset,nb1,nb2,3), return modified a
 | |
|     GGML_API struct ggml_tensor * ggml_set_2d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             size_t                nb1,
 | |
|             size_t                offset);
 | |
| 
 | |
|     // b -> view(a,offset,nb1,nb2,3), return view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_set_2d_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             size_t                nb1,
 | |
|             size_t                offset);
 | |
| 
 | |
| 
 | |
|     // a -> b, return view(b)
 | |
|     GGML_API struct ggml_tensor * ggml_cpy(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // a -> b, in-place, return view(b)
 | |
|     GGML_API struct ggml_tensor * ggml_cpy_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // make contiguous
 | |
|     GGML_API struct ggml_tensor * ggml_cont(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // make contiguous, in-place
 | |
|     GGML_API struct ggml_tensor * ggml_cont_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // return view(a), b specifies the new shape
 | |
|     // TODO: when we start computing gradient, make a copy instead of view
 | |
|     GGML_API struct ggml_tensor * ggml_reshape(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // return view(a)
 | |
|     // TODO: when we start computing gradient, make a copy instead of view
 | |
|     GGML_API struct ggml_tensor * ggml_reshape_1d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_reshape_2d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1);
 | |
| 
 | |
|     // return view(a)
 | |
|     // TODO: when we start computing gradient, make a copy instead of view
 | |
|     GGML_API struct ggml_tensor * ggml_reshape_3d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1,
 | |
|             int64_t               ne2);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_reshape_4d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1,
 | |
|             int64_t               ne2,
 | |
|             int64_t               ne3);
 | |
| 
 | |
|     // offset in bytes
 | |
|     GGML_API struct ggml_tensor * ggml_view_1d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_view_2d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1,
 | |
|             size_t                nb1, // row stride in bytes
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_view_3d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1,
 | |
|             int64_t               ne2,
 | |
|             size_t                nb1, // row   stride in bytes
 | |
|             size_t                nb2, // slice stride in bytes
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_view_4d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int64_t               ne0,
 | |
|             int64_t               ne1,
 | |
|             int64_t               ne2,
 | |
|             int64_t               ne3,
 | |
|             size_t                nb1, // row   stride in bytes
 | |
|             size_t                nb2, // slice stride in bytes
 | |
|             size_t                nb3,
 | |
|             size_t                offset);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_permute(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   axis0,
 | |
|             int                   axis1,
 | |
|             int                   axis2,
 | |
|             int                   axis3);
 | |
| 
 | |
|     // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
 | |
|     GGML_API struct ggml_tensor * ggml_transpose(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_get_rows(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_get_rows_back(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             struct ggml_tensor  * c);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_diag(
 | |
|         struct ggml_context     * ctx,
 | |
|         struct ggml_tensor      * a);
 | |
| 
 | |
|     // set elements above the diagonal to -INF
 | |
|     GGML_API struct ggml_tensor * ggml_diag_mask_inf(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past);
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past);
 | |
| 
 | |
|     // set elements above the diagonal to 0
 | |
|     GGML_API struct ggml_tensor * ggml_diag_mask_zero(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past);
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_soft_max(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_soft_max_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_soft_max_back(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b);
 | |
| 
 | |
|     // rotary position embedding
 | |
|     // if mode & 1 == 1, skip n_past elements
 | |
|     // if mode & 2 == 1, GPT-NeoX style
 | |
|     // if mode & 4 == 1, ChatGLM style
 | |
|     // TODO: avoid creating a new tensor every time
 | |
|     GGML_API struct ggml_tensor * ggml_rope(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past,
 | |
|             int                   n_dims,
 | |
|             int                   mode,
 | |
|             int                   n_ctx);
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_rope_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past,
 | |
|             int                   n_dims,
 | |
|             int                   mode,
 | |
|             int                   n_ctx);
 | |
| 
 | |
|     // custom RoPE
 | |
|     GGML_API struct ggml_tensor * ggml_rope_custom(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past,
 | |
|             int                   n_dims,
 | |
|             int                   mode,
 | |
|             int                   n_ctx,
 | |
|             float                 freq_base,
 | |
|             float                 freq_scale);
 | |
| 
 | |
|     // in-place, returns view(a)
 | |
|     GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past,
 | |
|             int                   n_dims,
 | |
|             int                   mode,
 | |
|             int                   n_ctx,
 | |
|             float                 freq_base,
 | |
|             float                 freq_scale);
 | |
| 
 | |
|     // rotary position embedding backward, i.e compute dx from dy
 | |
|     // a - dy
 | |
|     GGML_API struct ggml_tensor * ggml_rope_back(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past,
 | |
|             int                   n_dims,
 | |
|             int                   mode,
 | |
|             int                   n_ctx);
 | |
| 
 | |
|     // alibi position embedding
 | |
|     // in-place, returns view(a)
 | |
|     struct ggml_tensor * ggml_alibi(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   n_past,
 | |
|             int                   n_head,
 | |
|             float                 bias_max);
 | |
| 
 | |
|     // clamp
 | |
|     // in-place, returns view(a)
 | |
|     struct ggml_tensor * ggml_clamp(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             float                 min,
 | |
|             float                 max);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_conv_1d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             int                   s0,  // stride
 | |
|             int                   p0,  // padding
 | |
|             int                   d0); // dilation
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_conv_2d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             int                   s0,
 | |
|             int                   s1,
 | |
|             int                   p0,
 | |
|             int                   p1,
 | |
|             int                   d0,
 | |
|             int                   d1);
 | |
| 
 | |
|     // conv_1d with padding = half
 | |
|     // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
 | |
|     GGML_API struct ggml_tensor* ggml_conv_1d_ph(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b,
 | |
|             int                   s,
 | |
|             int                   d);
 | |
| 
 | |
|     enum ggml_op_pool {
 | |
|         GGML_OP_POOL_MAX,
 | |
|         GGML_OP_POOL_AVG,
 | |
|         GGML_OP_POOL_COUNT,
 | |
|     };
 | |
| 
 | |
|     GGML_API struct ggml_tensor* ggml_pool_1d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             enum ggml_op_pool     op,
 | |
|             int                   k0, // kernel size
 | |
|             int                   s0, // stride
 | |
|             int                   p0); // padding
 | |
| 
 | |
|     GGML_API struct ggml_tensor* ggml_pool_2d(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             enum ggml_op_pool     op,
 | |
|             int                   k0,
 | |
|             int                   k1,
 | |
|             int                   s0,
 | |
|             int                   s1,
 | |
|             int                   p0,
 | |
|             int                   p1);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_flash_attn(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * q,
 | |
|             struct ggml_tensor  * k,
 | |
|             struct ggml_tensor  * v,
 | |
|             bool                  masked);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_flash_attn_back(
 | |
|            struct ggml_context * ctx,
 | |
|            struct ggml_tensor  * q,
 | |
|            struct ggml_tensor  * k,
 | |
|            struct ggml_tensor  * v,
 | |
|            struct ggml_tensor  * d,
 | |
|            bool                  masked);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_flash_ff(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             struct ggml_tensor  * b0,
 | |
|             struct ggml_tensor  * b1,
 | |
|             struct ggml_tensor  * c0,
 | |
|             struct ggml_tensor  * c1);
 | |
| 
 | |
|     // partition into non-overlapping windows with padding if needed
 | |
|     // example:
 | |
|     // a:   768   64   64    1
 | |
|     // w:    14
 | |
|     // res: 768   14   14    25
 | |
|     // used in sam
 | |
|     GGML_API struct ggml_tensor * ggml_win_part(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   w);
 | |
| 
 | |
|     // reverse of ggml_win_part
 | |
|     // used in sam
 | |
|     GGML_API struct ggml_tensor * ggml_win_unpart(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * a,
 | |
|             int                   w0,
 | |
|             int                   h0,
 | |
|             int                   w);
 | |
| 
 | |
|     // custom operators
 | |
| 
 | |
|     typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
 | |
|     typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
 | |
| 
 | |
|     typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
 | |
|     typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
 | |
|     typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_unary(
 | |
|             struct ggml_context * ctx,
 | |
|              struct ggml_tensor * a,
 | |
|              enum ggml_unary_op op);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_unary_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         enum ggml_unary_op op);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_unary_f32(
 | |
|             struct ggml_context        * ctx,
 | |
|             struct ggml_tensor         * a,
 | |
|                    ggml_unary_op_f32_t   fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
 | |
|             struct ggml_context        * ctx,
 | |
|             struct ggml_tensor         * a,
 | |
|                    ggml_unary_op_f32_t   fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_binary_f32(
 | |
|             struct ggml_context         * ctx,
 | |
|             struct ggml_tensor          * a,
 | |
|             struct ggml_tensor          * b,
 | |
|                    ggml_binary_op_f32_t   fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
 | |
|             struct ggml_context         * ctx,
 | |
|             struct ggml_tensor          * a,
 | |
|             struct ggml_tensor          * b,
 | |
|                    ggml_binary_op_f32_t   fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_custom1_f32(
 | |
|             struct ggml_context          * ctx,
 | |
|             struct ggml_tensor           * a,
 | |
|                    ggml_custom1_op_f32_t   fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
 | |
|             struct ggml_context          * ctx,
 | |
|             struct ggml_tensor           * a,
 | |
|                    ggml_custom1_op_f32_t   fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_custom2_f32(
 | |
|             struct ggml_context          * ctx,
 | |
|             struct ggml_tensor           * a,
 | |
|             struct ggml_tensor           * b,
 | |
|                    ggml_custom2_op_f32_t   fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
 | |
|             struct ggml_context          * ctx,
 | |
|             struct ggml_tensor           * a,
 | |
|             struct ggml_tensor           * b,
 | |
|                    ggml_custom2_op_f32_t   fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_custom3_f32(
 | |
|             struct ggml_context          * ctx,
 | |
|             struct ggml_tensor           * a,
 | |
|             struct ggml_tensor           * b,
 | |
|             struct ggml_tensor           * c,
 | |
|                    ggml_custom3_op_f32_t   fun);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
 | |
|             struct ggml_context          * ctx,
 | |
|             struct ggml_tensor           * a,
 | |
|             struct ggml_tensor           * b,
 | |
|             struct ggml_tensor           * c,
 | |
|                    ggml_custom3_op_f32_t   fun);
 | |
| 
 | |
|     // loss function
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
 | |
|             struct ggml_context         * ctx,
 | |
|             struct ggml_tensor          * a,
 | |
|             struct ggml_tensor          * b);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
 | |
|             struct ggml_context         * ctx,
 | |
|             struct ggml_tensor          * a,
 | |
|             struct ggml_tensor          * b,
 | |
|             struct ggml_tensor          * c);
 | |
| 
 | |
|     //
 | |
|     // automatic differentiation
 | |
|     //
 | |
| 
 | |
|     GGML_API void ggml_set_param(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_tensor  * tensor);
 | |
| 
 | |
| 
 | |
|     GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
 | |
| 
 | |
|     GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
 | |
|     GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
 | |
| 
 | |
|     // graph allocation in a context
 | |
|     GGML_API struct ggml_cgraph * ggml_new_graph        (struct ggml_context * ctx);
 | |
|     GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
 | |
|     GGML_API size_t ggml_graph_overhead(void);
 | |
| 
 | |
|     // ggml_graph_plan() has to be called before ggml_graph_compute()
 | |
|     // when plan.work_size > 0, caller must allocate memory for plan.work_data
 | |
|     GGML_API struct ggml_cplan ggml_graph_plan   (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
 | |
|     GGML_API               int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
 | |
|     GGML_API              void ggml_graph_reset  (struct ggml_cgraph * cgraph);
 | |
| 
 | |
|     // same as ggml_graph_compute() but the work data is allocated as a part of the context
 | |
|     // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
 | |
|     GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
 | |
| 
 | |
|     GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
 | |
| 
 | |
|     GGML_API void               ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
 | |
|     GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
 | |
| 
 | |
|     // print info and performance information for the graph
 | |
|     GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
 | |
| 
 | |
|     // dump the graph into a file using the dot format
 | |
|     GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
 | |
| 
 | |
|     //
 | |
|     // optimization
 | |
|     //
 | |
| 
 | |
|     // optimization methods
 | |
|     enum ggml_opt_type {
 | |
|         GGML_OPT_ADAM,
 | |
|         GGML_OPT_LBFGS,
 | |
|     };
 | |
| 
 | |
|     // linesearch methods
 | |
|     enum ggml_linesearch {
 | |
|         GGML_LINESEARCH_DEFAULT = 1,
 | |
| 
 | |
|         GGML_LINESEARCH_BACKTRACKING_ARMIJO       = 0,
 | |
|         GGML_LINESEARCH_BACKTRACKING_WOLFE        = 1,
 | |
|         GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
 | |
|     };
 | |
| 
 | |
|     // optimization return values
 | |
|     enum ggml_opt_result {
 | |
|         GGML_OPT_OK = 0,
 | |
|         GGML_OPT_DID_NOT_CONVERGE,
 | |
|         GGML_OPT_NO_CONTEXT,
 | |
|         GGML_OPT_INVALID_WOLFE,
 | |
|         GGML_OPT_FAIL,
 | |
| 
 | |
|         GGML_LINESEARCH_FAIL = -128,
 | |
|         GGML_LINESEARCH_MINIMUM_STEP,
 | |
|         GGML_LINESEARCH_MAXIMUM_STEP,
 | |
|         GGML_LINESEARCH_MAXIMUM_ITERATIONS,
 | |
|         GGML_LINESEARCH_INVALID_PARAMETERS,
 | |
|     };
 | |
| 
 | |
|     // optimization parameters
 | |
|     //
 | |
|     //   see ggml.c (ggml_opt_default_params) for default values
 | |
|     //
 | |
|     struct ggml_opt_params {
 | |
|         enum ggml_opt_type type;
 | |
| 
 | |
|         int n_threads;
 | |
| 
 | |
|         // delta-based convergence test
 | |
|         //
 | |
|         //   if past == 0 - disabled
 | |
|         //   if past > 0:
 | |
|         //     stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
 | |
|         //
 | |
|         int past;
 | |
|         float delta;
 | |
| 
 | |
|         // maximum number of iterations without improvement
 | |
|         //
 | |
|         //   if 0 - disabled
 | |
|         //   if > 0:
 | |
|         //     assume convergence if no cost improvement in this number of iterations
 | |
|         //
 | |
|         int max_no_improvement;
 | |
| 
 | |
|         bool print_forward_graph;
 | |
|         bool print_backward_graph;
 | |
| 
 | |
|         // ADAM parameters
 | |
|         struct {
 | |
|             int n_iter;
 | |
| 
 | |
|             float sched; // schedule multiplier (fixed, decay or warmup)
 | |
|             float decay; // weight decay for AdamW, use 0.0f to disable
 | |
|             float alpha; // learning rate
 | |
|             float beta1;
 | |
|             float beta2;
 | |
|             float eps;   // epsilon for numerical stability
 | |
|             float eps_f; // epsilon for convergence test
 | |
|             float eps_g; // epsilon for convergence test
 | |
|         } adam;
 | |
| 
 | |
|         // LBFGS parameters
 | |
|         struct {
 | |
|             int m; // number of corrections to approximate the inv. Hessian
 | |
|             int n_iter;
 | |
|             int max_linesearch;
 | |
| 
 | |
|             float eps;      // convergence tolerance
 | |
|             float ftol;     // line search tolerance
 | |
|             float wolfe;
 | |
|             float min_step;
 | |
|             float max_step;
 | |
| 
 | |
|             enum ggml_linesearch linesearch;
 | |
|         } lbfgs;
 | |
|     };
 | |
| 
 | |
|     struct ggml_opt_context {
 | |
|         struct ggml_context * ctx;
 | |
|         struct ggml_opt_params params;
 | |
| 
 | |
|         int iter;
 | |
|         int64_t nx; // number of parameter elements
 | |
| 
 | |
|         bool just_initialized;
 | |
| 
 | |
|         struct {
 | |
|             struct ggml_tensor * x;  // view of the parameters
 | |
|             struct ggml_tensor * g1; // gradient
 | |
|             struct ggml_tensor * g2; // gradient squared
 | |
|             struct ggml_tensor * m;  // first moment
 | |
|             struct ggml_tensor * v;  // second moment
 | |
|             struct ggml_tensor * mh; // first moment hat
 | |
|             struct ggml_tensor * vh; // second moment hat
 | |
|             struct ggml_tensor * pf; // past function values
 | |
|             float fx_best;
 | |
|             float fx_prev;
 | |
|             int n_no_improvement;
 | |
|         } adam;
 | |
| 
 | |
|         struct {
 | |
|             struct ggml_tensor * x;    // current parameters
 | |
|             struct ggml_tensor * xp;   // previous parameters
 | |
|             struct ggml_tensor * g;    // current gradient
 | |
|             struct ggml_tensor * gp;   // previous gradient
 | |
|             struct ggml_tensor * d;    // search direction
 | |
|             struct ggml_tensor * pf;   // past function values
 | |
|             struct ggml_tensor * lmal; // the L-BFGS memory alpha
 | |
|             struct ggml_tensor * lmys; // the L-BFGS memory ys
 | |
|             struct ggml_tensor * lms;  // the L-BFGS memory s
 | |
|             struct ggml_tensor * lmy;  // the L-BFGS memory y
 | |
|             float fx_best;
 | |
|             float step;
 | |
|             int j;
 | |
|             int k;
 | |
|             int end;
 | |
|             int n_no_improvement;
 | |
|         } lbfgs;
 | |
|     };
 | |
| 
 | |
|     GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
 | |
| 
 | |
|     // optimize the function defined by the tensor f
 | |
|     GGML_API enum ggml_opt_result ggml_opt(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_opt_params params,
 | |
|             struct ggml_tensor * f);
 | |
| 
 | |
|     // initialize optimizer context
 | |
|     GGML_API void ggml_opt_init(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_opt_context * opt,
 | |
|             struct ggml_opt_params params,
 | |
|             int64_t nx);
 | |
| 
 | |
|     // continue optimizing the function defined by the tensor f
 | |
|     GGML_API enum ggml_opt_result ggml_opt_resume(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_opt_context * opt,
 | |
|             struct ggml_tensor * f);
 | |
| 
 | |
|     // continue optimizing the function defined by the tensor f
 | |
|     GGML_API enum ggml_opt_result ggml_opt_resume_g(
 | |
|             struct ggml_context * ctx,
 | |
|             struct ggml_opt_context * opt,
 | |
|             struct ggml_tensor * f,
 | |
|             struct ggml_cgraph * gf,
 | |
|             struct ggml_cgraph * gb);
 | |
| 
 | |
|     //
 | |
|     // quantization
 | |
|     //
 | |
| 
 | |
|     GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
|     GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
|     GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
|     GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
|     GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
 | |
| 
 | |
|     GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
 | |
| 
 | |
|     //
 | |
|     // system info
 | |
|     //
 | |
| 
 | |
|     GGML_API int ggml_cpu_has_avx        (void);
 | |
|     GGML_API int ggml_cpu_has_avx2       (void);
 | |
|     GGML_API int ggml_cpu_has_avx512     (void);
 | |
|     GGML_API int ggml_cpu_has_avx512_vbmi(void);
 | |
|     GGML_API int ggml_cpu_has_avx512_vnni(void);
 | |
|     GGML_API int ggml_cpu_has_fma        (void);
 | |
|     GGML_API int ggml_cpu_has_neon       (void);
 | |
|     GGML_API int ggml_cpu_has_arm_fma    (void);
 | |
|     GGML_API int ggml_cpu_has_f16c       (void);
 | |
|     GGML_API int ggml_cpu_has_fp16_va    (void);
 | |
|     GGML_API int ggml_cpu_has_wasm_simd  (void);
 | |
|     GGML_API int ggml_cpu_has_blas       (void);
 | |
|     GGML_API int ggml_cpu_has_cublas     (void);
 | |
|     GGML_API int ggml_cpu_has_clblast    (void);
 | |
|     GGML_API int ggml_cpu_has_gpublas    (void);
 | |
|     GGML_API int ggml_cpu_has_sse3       (void);
 | |
|     GGML_API int ggml_cpu_has_vsx        (void);
 | |
| 
 | |
|     //
 | |
|     // Internal types and functions exposed for tests and benchmarks
 | |
|     //
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
| // restrict not standard in C++
 | |
| #define GGML_RESTRICT
 | |
| #else
 | |
| #define GGML_RESTRICT restrict
 | |
| #endif
 | |
|     typedef void (*ggml_to_float_t)  (const void  * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
 | |
|     typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void  * GGML_RESTRICT y, int k);
 | |
|     typedef void (*ggml_vec_dot_t)   (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
 | |
| 
 | |
|     typedef struct {
 | |
|         ggml_to_float_t   to_float;
 | |
|         ggml_from_float_t from_float;
 | |
|         ggml_from_float_t from_float_reference;
 | |
|         ggml_vec_dot_t    vec_dot;
 | |
|         enum ggml_type    vec_dot_type;
 | |
|     } ggml_type_traits_t;
 | |
| 
 | |
|     ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
| }
 | |
| #endif
 |