mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			64 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ### Examples for input embedding directly
 | |
| 
 | |
| ## Requirement
 | |
| build  `libembdinput.so`
 | |
| run the following comman in main dir (../../).
 | |
| ```
 | |
| make
 | |
| ```
 | |
| 
 | |
| ## [LLaVA](https://github.com/haotian-liu/LLaVA/) example  (llava.py)
 | |
| 
 | |
| 1. Obtian LLaVA model (following https://github.com/haotian-liu/LLaVA/ , use https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/).
 | |
| 2. Convert it to ggml format.
 | |
| 3. `llava_projection.pth` is [pytorch_model-00003-of-00003.bin](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin).
 | |
| 
 | |
| ```
 | |
| import torch
 | |
| 
 | |
| bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
 | |
| pth_path = "./examples/embd-input/llava_projection.pth"
 | |
| 
 | |
| dic = torch.load(bin_path)
 | |
| used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
 | |
| torch.save({k: dic[k] for k in used_key}, pth_path)
 | |
| ```
 | |
| 4. Check the path of LLaVA model and `llava_projection.pth` in `llava.py`.
 | |
| 
 | |
| 
 | |
| ## [PandaGPT](https://github.com/yxuansu/PandaGPT) example (panda_gpt.py)
 | |
| 
 | |
| 1. Obtian PandaGPT lora model from https://github.com/yxuansu/PandaGPT. Rename the file to `adapter_model.bin`. Use [convert-lora-to-ggml.py](../../convert-lora-to-ggml.py) to convert it to ggml format.
 | |
| The `adapter_config.json` is
 | |
| ```
 | |
| {
 | |
|   "peft_type": "LORA",
 | |
|   "fan_in_fan_out": false,
 | |
|   "bias": null,
 | |
|   "modules_to_save": null,
 | |
|   "r": 32,
 | |
|   "lora_alpha": 32,
 | |
|   "lora_dropout": 0.1,
 | |
|   "target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"]
 | |
| }
 | |
| ```
 | |
| 2. Papare the `vicuna` v0 model.
 | |
| 3. Obtain the [ImageBind](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) model.
 | |
| 4. Clone the PandaGPT source.
 | |
| ```
 | |
| git clone https://github.com/yxuansu/PandaGPT
 | |
| ```
 | |
| 5. Install the requirement of PandaGPT.
 | |
| 6. Check the path of PandaGPT source, ImageBind model, lora model and vicuna model in panda_gpt.py.
 | |
| 
 | |
| ## [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4/) example (minigpt4.py)
 | |
| 
 | |
| 1. Obtain MiniGPT-4 model from https://github.com/Vision-CAIR/MiniGPT-4/ and put it in `embd-input`.
 | |
| 2. Clone the MiniGPT-4 source.
 | |
| ```
 | |
| git clone https://github.com/Vision-CAIR/MiniGPT-4/
 | |
| ```
 | |
| 3. Install the requirement of PandaGPT.
 | |
| 4. Papare the `vicuna` v0 model.
 | |
| 5. Check the path of MiniGPT-4 source, MiniGPT-4 model and vicuna model in `minigpt4.py`.
 | 
