mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 5ed087573e
			
		
	
	5ed087573e
	
	
	
		
			
			* add LLMUnity to UI projects * add newline to examples/rpc/README.md to fix editorconfig-checker unit test
		
			
				
	
	
		
			75 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ## Overview
 | |
| 
 | |
| > [!IMPORTANT]
 | |
| > This example and the RPC backend are currently in a proof-of-concept development stage. As such, the functionality is fragile and
 | |
| > insecure. **Never run the RPC server on an open network or in a sensitive environment!**
 | |
| 
 | |
| The `rpc-server` allows  running `ggml` backend on a remote host.
 | |
| The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them.
 | |
| This can be used for distributed LLM inference with `llama.cpp` in the following way:
 | |
| 
 | |
| ```mermaid
 | |
| flowchart TD
 | |
|     rpcb<-->|TCP|srva
 | |
|     rpcb<-->|TCP|srvb
 | |
|     rpcb<-.->|TCP|srvn
 | |
|     subgraph hostn[Host N]
 | |
|     srvn[rpc-server]<-.->backend3["Backend (CUDA,Metal,etc.)"]
 | |
|     end
 | |
|     subgraph hostb[Host B]
 | |
|     srvb[rpc-server]<-->backend2["Backend (CUDA,Metal,etc.)"]
 | |
|     end
 | |
|     subgraph hosta[Host A]
 | |
|     srva[rpc-server]<-->backend["Backend (CUDA,Metal,etc.)"]
 | |
|     end
 | |
|     subgraph host[Main Host]
 | |
|     local["Backend (CUDA,Metal,etc.)"]<-->ggml[llama-cli]
 | |
|     ggml[llama-cli]<-->rpcb[RPC backend]
 | |
|     end
 | |
|     style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5
 | |
| ```
 | |
| 
 | |
| Each host can run a different backend, e.g. one with CUDA and another with Metal.
 | |
| You can also run multiple `rpc-server` instances on the same host, each with a different backend.
 | |
| 
 | |
| ## Usage
 | |
| 
 | |
| On each host, build the corresponding backend with `cmake` and add `-DGGML_RPC=ON` to the build options.
 | |
| For example, to build the CUDA backend with RPC support:
 | |
| 
 | |
| ```bash
 | |
| mkdir build-rpc-cuda
 | |
| cd build-rpc-cuda
 | |
| cmake .. -DGGML_CUDA=ON -DGGML_RPC=ON
 | |
| cmake --build . --config Release
 | |
| ```
 | |
| 
 | |
| Then, start the `rpc-server` with the backend:
 | |
| 
 | |
| ```bash
 | |
| $ bin/rpc-server -p 50052
 | |
| create_backend: using CUDA backend
 | |
| ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
 | |
| ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
 | |
| ggml_cuda_init: found 1 CUDA devices:
 | |
|   Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes
 | |
| Starting RPC server on 0.0.0.0:50052
 | |
| ```
 | |
| 
 | |
| When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.:
 | |
| ```bash
 | |
| $ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052
 | |
| ```
 | |
| This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device.
 | |
| 
 | |
| 
 | |
| On the main host build `llama.cpp` for the local backend and add `-DGGML_RPC=ON` to the build options.
 | |
| Finally, when running `llama-cli`, use the `--rpc` option to specify the host and port of each `rpc-server`:
 | |
| 
 | |
| ```bash
 | |
| $ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99
 | |
| ```
 | |
| 
 | |
| This way you can offload model layers to both local and remote devices.
 | |
| 
 |