* ggml : fix build broken with -march=armv9-a on MacOS
Signed-off-by: Jie Fu <jiefu@tencent.com>
* Add #pragma message
Signed-off-by: Jie Fu <jiefu@tencent.com>
* Address review comment.
Signed-off-by: Jie Fu <jiefu@tencent.com>
* Update ggml/src/ggml-cpu/ggml-cpu.c
---------
Signed-off-by: Jie Fu <jiefu@tencent.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit fixes a CPU-side memory leak issue in the CANN backend,
which occurred when intermediate aclTensorList objects were not properly
released after operator execution. The leak happened during repeated
invocations of CANN ops (e.g., FlashAttention), leading to increasing
host memory usage over time.
Proper resource cleanup (aclDestroyTensorList and related release logic)
has been added to ensure that all temporary tensors are correctly freed.
* fix: add remark plugin to render raw HTML as literal text
Implemented a missing MDAST stage to neutralize raw HTML like major LLM WebUIs
do ensuring consistent and safe Markdown rendering
Introduced 'remarkLiteralHtml', a plugin that converts raw HTML nodes in the
Markdown AST into plain-text equivalents while preserving indentation and
line breaks. This ensures consistent rendering and prevents unintended HTML
execution, without altering valid Markdown structure
Kept 'remarkRehype' in the pipeline since it performs the required conversion
from MDAST to HAST for KaTeX, syntax highlighting, and HTML serialization
Refined the link-enhancement logic to skip unnecessary DOM rewrites,
fixing a subtle bug where extra paragraphs were injected after the first
line due to full innerHTML reconstruction, and ensuring links open in new
tabs only when required
Final pipeline: remarkGfm -> remarkMath -> remarkBreaks -> remarkLiteralHtml
-> remarkRehype -> rehypeKatex -> rehypeHighlight -> rehypeStringify
* fix: address review feedback from allozaur
* chore: update webui build output
Many Ascend operators internally use FP16 precision for computation.
If input data is in FP32, it must first be cast to FP16 before
computation, and then cast back to FP32 after computation, which
introduces unnecessary cast operations. Moreover, FP16 computation
requires significantly less workload compared to FP32, leading to
noticeable efficiency improvements.
In this change, `get_rows`, `rms_norm`, and `flash_attn_ext` are extended
to support multiple data types. Validation on the Qwen2 0.5b model shows
correct accuracy and about 10% performance gain in concurrent scenarios.
Co-authored-by: noemotiovon <757486878@qq.com>
* scaffold to support opt step adamw on metal (not written so far)
* add opt-step-adamw kernel for metal
* pass op->src[4] as a separate buffer to the pipeline
* add bounds check to opt-step-adamw kernel
* complete scaffold for GGML_OP_SUM
* naive GGML_OP_SUM kernel
* remove unwanted comment
* change OP_SUM capability gate
* Add has_simdgroup_reduction to both ops to pass CI
* fix: make SSE client robust to premature [DONE] in agentic proxy chains
* webui: remove client-side context pre-check and rely on backend for limits
Removed the client-side context window pre-check and now simply sends messages
while keeping the dialog imports limited to core components, eliminating the
maximum context alert path
Simplified streaming and non-streaming chat error handling to surface a generic
'No response received from server' error whenever the backend returns no content
Removed the obsolete maxContextError plumbing from the chat store so state
management now focuses on the core message flow without special context-limit cases
* webui: cosmetic rename of error messages
* Update tools/server/webui/src/lib/stores/chat.svelte.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/stores/chat.svelte.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/components/app/chat/ChatScreen/ChatScreen.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/components/app/chat/ChatScreen/ChatScreen.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* chore: update webui build output
---------
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* fix/refactor OP argsort, pad
* fix count-equal op
* update SYCL OP list
* fix format issue
---------
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
* hparams : add check for layer index in is_recurrent
This commit adds a check in the is_recurrent method to ensure that the
provided layer index is within the valid range.
The motivation for this change is to prevent potential out-of-bounds
and also be consistent with other methods in the class that perform
similar checks, like is_swa.
The previous SVE implementation for `ggml_vec_dot_f16_unroll` contained a bug due to a copy-paste error. The wrong variable was used in an FMA instruction, leading to incorrect results. This commit corrects the variable usage and improves the clarity of the code by renaming variables to avoid confusion.
Co-authored-by: Aaron <shelhamer.aaron@gmail.com>
* feat: render user content as markdown option
- Add a persisted 'renderUserContentAsMarkdown' preference to the settings defaults and info metadata so the choice survives reloads like other options
- Surface the new 'Render user content as Markdown' checkbox in the General section of the chat settings dialog, beneath the PDF toggle
- Render user chat messages with 'MarkdownContent' when the new setting is enabled, matching assistant formatting while preserving the existing card styling otherwise
- chore: update webui build output
* chore: update webui build output
* server / ranking : add sorting and management of top_n
* Make the retro compatible if no top_n will return
all results
here is a script to make some test
```script
URL=${1:-http://127.0.0.1:8181}
curl "$URL/v1/rerank" -H "Content-Type: application/json" \
-d '{ "model": "M", "query": "What is the recipe to make bread ?",
"return_text" : true,
"texts" : true,
"top_n": 6,
"documents": [
"voici la recette pour faire du pain, il faut de la farine de l eau et du levain et du sel",
"it is a bear",
"bread recipe : floor, water, yest, salt",
"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.",
"here is the ingedients to bake bread : 500g floor, 350g water, 120g fresh refresh yest, 15g salt",
"recipe to make cookies : floor, eggs, water, chocolat",
"here is the recipe to make bread : 500g floor, 350g water, 120g fresh refresh yest, 15g salt",
"il fait tres beau aujourd hui",
"je n ai pas faim, je ne veux pas manger",
"je suis a paris"
] }' | jq
```
* use resize() instead for(...)
* simplify top_n init since no need to return error
result to test :
./tests.sh unit/test_rerank.py -v -x
==================================================== test session starts =====================================================
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.6.0 -- /home/yann/dev/yann/llama.cpp/tools/server/tests/test/bin/python3
cachedir: .pytest_cache
rootdir: /home/yann/dev/yann/llama.cpp/tools/server/tests
configfile: pytest.ini
plugins: anyio-4.11.0
collected 8 items
unit/test_rerank.py::test_rerank PASSED [ 12%]
unit/test_rerank.py::test_rerank_tei_format PASSED [ 25%]
unit/test_rerank.py::test_invalid_rerank_req[documents0] PASSED [ 37%]
unit/test_rerank.py::test_invalid_rerank_req[None] PASSED [ 50%]
unit/test_rerank.py::test_invalid_rerank_req[123] PASSED [ 62%]
unit/test_rerank.py::test_invalid_rerank_req[documents3] PASSED [ 75%]
unit/test_rerank.py::test_rerank_usage[Machine learning is-A machine-Learning is-19] PASSED [ 87%]
unit/test_rerank.py::test_rerank_usage[Which city?-Machine learning is -Paris, capitale de la-26] PASSED [100%]
===================================================== 8 passed in 4.31s ======================================================
* add rerank top_n unit test
here is the result :
./tests.sh unit/test_rerank.py -v -x
=================================================================== test session starts ===================================================================
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.6.0 -- /home/yann/dev/yann/llama.cpp/tools/server/tests/test/bin/python3
cachedir: .pytest_cache
rootdir: /home/yann/dev/yann/llama.cpp/tools/server/tests
configfile: pytest.ini
plugins: anyio-4.11.0
collected 16 items
unit/test_rerank.py::test_rerank PASSED [ 6%]
unit/test_rerank.py::test_rerank_tei_format PASSED [ 12%]
unit/test_rerank.py::test_invalid_rerank_req[documents0] PASSED [ 18%]
unit/test_rerank.py::test_invalid_rerank_req[None] PASSED [ 25%]
unit/test_rerank.py::test_invalid_rerank_req[123] PASSED [ 31%]
unit/test_rerank.py::test_invalid_rerank_req[documents3] PASSED [ 37%]
unit/test_rerank.py::test_rerank_usage[Machine learning is-A machine-Learning is-19] PASSED [ 43%]
unit/test_rerank.py::test_rerank_usage[Which city?-Machine learning is -Paris, capitale de la-26] PASSED [ 50%]
unit/test_rerank.py::test_rerank_top_n[None-4] PASSED [ 56%]
unit/test_rerank.py::test_rerank_top_n[2-2] PASSED [ 62%]
unit/test_rerank.py::test_rerank_top_n[4-4] PASSED [ 68%]
unit/test_rerank.py::test_rerank_top_n[99-4] PASSED [ 75%]
unit/test_rerank.py::test_rerank_tei_top_n[None-4] PASSED [ 81%]
unit/test_rerank.py::test_rerank_tei_top_n[2-2] PASSED [ 87%]
unit/test_rerank.py::test_rerank_tei_top_n[4-4] PASSED [ 93%]
unit/test_rerank.py::test_rerank_tei_top_n[99-4] PASSED [100%]
=================================================================== 16 passed in 8.84s ===================================================================
* editor config check fix
In streaming mode when prompt exceeds context length, the server returns
HTTP 200 status code with a JSON error in the body. This is very
confusing and inconsistent with all other inference engines which return
HTTP 4xx error in this case.
This patch fixes this problem and makes the server return HTTP 400 in
such cases.
* webui: updated the chat service to only include max_tokens in the request payload when the setting is explicitly provided, while still mapping explicit zero or null values to the infinite-token sentinel
* chore: update webui build output
* minor : code style
* server : fix prompt similarity calculation
* server : initial host-memory prompt caching
* cont
* server : refactor
* cont
* cont : make the server task of the slot const
* cont : minor [no ci]
* server : cache prompts and checkpoints only for completion tasks
* server : improve prompt caching logic
* cont : fix check for number of cached prompts [no ci]
* server : improve caching logic, add -cram CLI arg
* server : print prompt mismatch info
* cont : better naming [no ci]
* server : improve prompt cache loading logic
* server : add option to debug the slot contents (#16482)
* server : add option to debug the slot contents
* Update tools/server/server.cpp
---------
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
* server : add option to disable prompt cache
---------
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
* model-conversion : add support for SentenceTransformers
This commit adds support for models that use SentenceTransformer layers.
The motivation for this is that if converted model includes any of the
numbered layers specified in the original models repository then these
changes enable these models to be used and verified. Currently the
model-conversion only support the base model output without any of
the additional transformation layers.
Usage:
Convert the model that also includes the SentenceTransformer layers:
```console
(venv) $ export EMBEDDING_MODEL_PATH="~/google/embeddinggemma-300M"
(venv) make embedding-convert-model
```
Verify the produced embeddings from the converted model against the
original model embeddings:
```console
(venv) make embedding-verify-logits-st
```
The original model can be run using SentenceTransformer:
```console
(venv) make embedding-run-original-model-st
```
Run the converted model using "SentenceTransformer" layers whic
enables pooling and normalization:
```console
(venv) make embedding-run-converted-model-st
```
* add model-conversion example requirements
* add support for -st flag in embedding model conversion
This commit add support for the -st flag in the embedding model
conversion script. This will enable models to be converted using
sentence transformers dense layers.
* CANN: improve ACL graph matching
Record `ne` and `nb` information for src tensors and include them in the
graph matching check. This enhances the robustness of ACL graph matching
by preventing incorrect matches when src tensors share the same data
address but differ in shape or stride.
* CANN: add op_params match
* refactor to support soft_max_ext
* fix error and support soft_max_back
* rm unused functions
* fix format issue
---------
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
* model: EmbeddingGemma sentence-transformers dense linear projections support
* model: add support for EmbeddingGemma SentenceTransformers dense linear projections
Adding support for the Dense modules used in EmbeddingGemma models.
EmbeddingGemma is a SentenceTransformers model with additional modules beyond the base Transformer backbone.
See: https://developers.googleblog.com/en/gemma-explained-embeddinggemma-architecture-and-recipe/
* model: add support for EmbeddingGemma SentenceTransformers dense linear projections
- converting model with dense-layers is optional
- introduced dense config params
* Update convert_hf_to_gguf.py
Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* fixed formatting issues
* Update src/llama-graph.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* - removed pooling_type_opt, always allow overriding pooling_type
- asserts checking dense features dims
* fix python lint
* fix ubuntu gcc build warning
* - fixed thread-safety test
- moved asserts to load_hparams
* - tidying up code
- simplifying graph-context expecting both dense weights
* minor : add TODO
---------
Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* refactor: unify reasoning handling via backend reasoning_content, drop frontend tag parsing
- Updated the chat message component to surface backend-supplied reasoning via message.thinking while showing the raw assistant content without inline tag scrubbing
- Simplified chat streaming to append content chunks directly, stream reasoning into the message model, and persist any partial reasoning when generation stops
- Refactored the chat service SSE handler to rely on server-provided reasoning_content, removing legacy <think> parsing logic
- Refreshed Storybook data and streaming flows to populate the thinking field explicitly for static and streaming assistant messages
* refactor: implement streaming-aware universal reasoning parser
Remove the streaming mode limitation from --reasoning-format by refactoring
try_parse_reasoning() to handle incremental parsing of <think> tags across
all formats.
- Rework try_parse_reasoning() to track whitespace, partial tags, and
multiple reasoning segments, allowing proper separation of reasoning_content
and content in streaming mode
- Parse reasoning tags before tool call handling in content-only and Llama 3.x
formats to ensure inline <think> blocks are captured correctly
- Change default reasoning_format from 'auto' to 'deepseek' for consistent
behavior
- Add 'deepseek-legacy' option to preserve old inline behavior when needed
- Update CLI help and documentation to reflect streaming support
- Add parser tests for inline <think>...</think> segments
The parser now continues processing content after </think> closes instead of
stopping, enabling proper message.reasoning_content and message.content
separation in both streaming and non-streaming modes.
Fixes the issue where streaming responses would dump everything (including
post-thinking content) into reasoning_content while leaving content empty.
* refactor: address review feedback from allozaur
- Passed the assistant message content directly to ChatMessageAssistant to drop the redundant derived state in the chat message component
- Simplified chat streaming updates by removing unused partial-thinking handling and persisting partial responses straight from currentResponse
- Refreshed the ChatMessage stories to cover standard and reasoning scenarios without the old THINK-tag parsing examples
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* refactor: restore forced reasoning prefix to pass test-chat ([chat] All tests passed)
- store the exact sequence seen on input when 'thinking_forced_open' enforces a reasoning block
- inject this prefix before the first accumulated segment in 'reasoning_content', then clear it to avoid duplication
- repeat the capture on every new 'start_think' detection to properly handle partial/streaming flows
* refactor: address review feedback from ngxson
* debug: say goodbye to curl -N, hello one-click raw stream
- adds a new checkbox in the WebUI to display raw LLM output without backend parsing or frontend Markdown rendering
* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* webui: add Storybook example for raw LLM output and scope reasoning format toggle per story
- Added a Storybook example that showcases the chat message component in raw LLM output mode with the provided trace sample
- Updated every ChatMessage story to toggle the disableReasoningFormat setting so the raw-output rendering remains scoped to its own example
* npm run format
* chat-parser: address review feedback from ngxson
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
---------
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* metal : better unroll in the FA kernels
* metal : index FA blocks
* tests : restore [no ci]
* metal : prevent division by zero in FA kernels
* metal : fix -INF detection logic
* Add profiling
* More detailed profiling
* Rework command submission to avoid global locks
* Update wait handling
* try new method of waiting on futures
* Add serializing of command submission in some cases
* Add new pool for timestamp queries and clean up logging
* Serialize command submission in CI and leave a TODO note
* Update webgpu CI
* Add myself as WebGPU codeowner
* Deadlock avoidance
* Leave WebGPU/Vulkan CI serialized
* Fix divide by 0
* Fix logic in division by inflight_threads
* Update CODEOWNERS and remove serialize submit option
Update the README file to match the newly added functionality of
exposing multiple devices from a single server.
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* metal : pad K, V and Mask when needed
* cont : simplify
* cuda : add TODO about KV padding requirement
* metal : add comments
* metal : remove mask padding requirement
* tests : add -INF blocks to the KQ mask in the FA tests
* cont : bump -INF block size to 64
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* ggml : prevent division by zero in FA CPU op
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>