6604 Commits

Author SHA1 Message Date
Jeff Bolz
267e99867f vulkan: Use larger loads in scalar/coopmat1 matmul (#15729)
I think glslang will translate an access like x[i][1].z to
OpAccessChain ... x, i, 1, 2
OpLoad float16_t ...

rather than loading all of x[i] in a single OpLoad. Change the
code to explicitly load the vector/matrix.
b6404
2025-09-07 18:53:07 +02:00
Daniel Bevenius
3b15924d71 ggml WebGPU: remove userdata from request adapter callback (#15527)
* ggml WebGPU: remove userdata from request adapter callback

This commit removes the `userdata` parameter from the WebGPU request
adapter callback in `ggml-webgpu.cpp`. Instead, the lambda function
captures the `webgpu_context` directly.

The motivation for this change is to simplify the code and improve
readability.

* inline the callback lambda into the RequestAdapter call

This commit removes the callback lambda variable and inlines it directly
into the RequestAdapter call.
b6403
2025-09-07 11:19:45 +03:00
Johannes Gäßler
79bc429262 CUDA: faster tile FA (Pascal/AMD), headsize 256 (#15769) b6402 2025-09-07 00:26:28 +02:00
Charles Xu
c4df49a42d kleidiai: generalize compute_forward_kv_cache to compute_forward_fp16 (#15817) b6401 2025-09-06 22:08:43 +08:00
Xuan-Son Nguyen
3c3635d2f2 server : speed up tests (#15836)
* server : speed up tests

* clean up

* restore timeout_seconds in some places

* flake8

* explicit offline
2025-09-06 14:45:24 +02:00
Xuan-Son Nguyen
61bdfd5298 server : implement prompt processing progress report in stream mode (#15827)
* server : implement `return_progress`

* add timings.cache_n

* add progress.time_ms

* add test

* fix test for chat/completions

* readme: add docs on timings

* use ggml_time_us

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
b6399
2025-09-06 13:35:04 +02:00
Johannes Gäßler
01806e7771 ggml-cpu: document use of "free" memory [no ci] (#15834) 2025-09-06 13:28:44 +02:00
Aaron Teo
186415d595 ggml-cpu: drop support for nnpa intrinsics (#15821) b6397 2025-09-06 11:27:28 +08:00
Gabe Goodhart
fd621880f3 aLoRA Support (#15327)
* feat: Add python-side constants and conversion for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add c++ side constants for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse invocation string for adapters from GGUF

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(python): Update conversion to alora_invocation_tokens

This is the preferred method in PEFT which is the source of ground truth

https://github.com/huggingface/peft/pull/2609/files#diff-13380145401d203d5935c5189dd09879f990b81aa63e8e3aaff8ce9110333f0e

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(cpp): Update to alora_invocation_tokens on c++ side

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add C APIs to get alora invocation token array from lora

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Initial implementation of alora cache logic in server

This does not yet do the part to identify the invocation tokens and only
apply the lora adapter afterwards, but it does seem to produce correct
results if the invocation tokens are the beginning of the uncached input.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Identify alora invocation sequences

This currently limits to a single enabled alora per slot. Multiple aloras
with different invocation sequences would be possible, but it would require
a more complex integration of the adapter toggling and is not really a well
studied case for alora since it's unclear if one alora can reuse cache from
previous prefill computed with a different alora.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Only reuse cache for tokens before the alora invocation start

This is a bit of an edge case, but theoretically a user could try the same
query with the alora disabled (just using the base model), then retry with
the alora. The cached tokens from the first pass should be invalid.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Handle un-cached tokens that come before the alora activation

The solution is to only fill up to the token before the invocation start in
the batch if there are any tokens to be prefilled between those pulled from
cache and the invocation start. When this is detected, the alora is
temporarily disabled with a scale of 0.0, then immediately re-enabled after
it has been initialized for the internal graph. Since the batch does not
complete the prompt tokens, the remaining prompt tokens are handled in the
next task, pulling all of the non-alora tokens from cache and proceeding
with prefill for the alora tokens.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use || instead of 'or'

Too much python 🤦

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix off-by-one for limiting cached tokens to before alora start

This was the cause of the inconsistent results from the dummy test script
with and without the turn that runs the prompt without the adapter before
running it with the adapter.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Support backwards-compatibility for "invocation_string" in adapter_config.json

While this has been replaced in the PEFT PR in favor of
alora_invocation_tokens, the existing adapters in the ibm-granite org on HF
use "invocation_string," so this will enable backwards compatibility and
enable testing now (before PEFT PR changes have percolated everywhere).

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove duplicate logging

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: Report alora_invocation_string and alora_invocation_tokens from /lora-adapters

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
b6396
2025-09-05 17:32:39 -06:00
Sigbjørn Skjæret
4281c7b315 ci : exempt correct research label (#15825) 2025-09-06 01:21:15 +02:00
Gabe Goodhart
5fac79cbc7 Thinking model disabled assistant prefill (#15404)
* feat: Set enable_thinking IFF not disabled and supported

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix inverted logic condition for prefill error

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Always parse the enable_thinking kwarg to overwrite the default value

From what I can tell, this started as a Qwen3-specific keyword, but from
the use in `chat.cpp` translates this inputs.enable_thinking to the right
thinking kwarg for the given model, this is now more of a standardized
kwarg, so it should always override the default value when sent as part of
the chat_template_kwargs field in the API.

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Don't limit tempalte expansion check to jinja

With the use_jinja check, non-jinja models would enable thinking and always
fail assistant prefill

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add the error text to json type errors in json_value

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Explicitly reject string values for "enable_thinking"

There are too many possible "truthy" / "falsy" strings and too many
ambiguous strings that don't have a clear truthy/falsy value, so the
simplest thing to do here is to reject the request. Ideally, this would be
a 422 (Unprocessable Entity), but right now it's coming back as a 500.

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Move logic for detecting template enable_thinking support to common

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use raw pointer for common chat template function

Branch: gabe-l-hart/thinking-model-disabled-agent-prefill

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
b6394
2025-09-05 14:31:24 -06:00
Eric Curtin
408ff524b4 Implement --log-colors with always/never/auto (#15792)
With auto by default

Signed-off-by: Eric Curtin <ericcurtin17@gmail.com>
b6393
2025-09-05 19:43:59 +01:00
Johannes Gäßler
5143fa895e CUDA: fastdiv, launch bounds for mmvq + q8_1 quant (#15802)
* CUDA: fastdiv, launch bounds for mmvq + q8_1 quant
b6392
2025-09-05 16:07:02 +02:00
Daniel Bevenius
3a550b5ca4 tests : add --list-ops and --show-coverage options (#15745)
This commit adds two new command-line options to the
test-backend-ops.cpp that allow users to list all available GGML
operations and to show test coverage of these operations.

The motivation for this is that it can be useful to quickly see which
operations are currently covered by tests and which are not. Also it
migth be useful when using the `support` mode.
b6391
2025-09-05 13:49:21 +01:00
Erik Scholz
a81283820a gguf: gguf_writer refactor (#15691)
* gguf: split gguf writer into base and buf impl
* gguf: templated gguf write out
* gguf: file based writer (avoid writing everything to memory first!)
* examples(llama2c): fix log not being the same level and compiler nits
b6390
2025-09-05 11:34:28 +02:00
Georgi Gerganov
c610b6c11b kv-cache : fix SWA checks + disable cacheless iSWA (#15811)
ggml-ci
b6389
2025-09-05 10:39:22 +03:00
Daniel Bevenius
5d6688de08 model-conversion : add --embeddings flag to modelcard.template [no ci] (#15801)
This commit updates the modelcard.template file used in the model
conversion scripts for embedding models to include the llama-server
--embeddings flag in the recommended command to run the model.

The motivation for this change was that when using the model-conversion
"tool" to upload the EmbeddingGemma models to Hugging Face this flag was
missing and the embedding endpoint was there for not available when
copy&pasting the command.
2025-09-05 04:36:23 +02:00
ExtReMLapin
4fd1242bef chat : fixed crash when Hermes 2 <tool_call> had a newline before it (#15639)
Co-authored-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
b6387
2025-09-05 01:24:08 +02:00
Piotr Wilkin (ilintar)
b2426e469e chat : nemotron thinking & toolcalling support (#15676)
* feat: nemotron thinking & toolcalling support

* Trailing whitespaces

* Corrected template for Nemotron

* Template and parser fixes

* Final template and grammar changes

* Whitespace

* Always do lazy grammar processing since </think> tag will always be there.

* Allow extra content after toolcall

* Whitespace

* New tests: thinking + tools, tools + content, thinking + tools + content (new!)

* Whitespace

* Remove cURL test script
b6386
2025-09-05 01:22:22 +02:00
Piotr Wilkin (ilintar)
9e2b1e83c6 scripts : add Jinja tester PySide6 simple app (#15756)
* feat: add Jinja tester PySide6 simple app

* Linter fixes

* Pylint fixes

* Whitespace

* Add commandline support; add formatter; add extensions

* Remove testing actions

* Silence flake8 warnings for commandline mode

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix trailing whitespace/newline logic

* Update scripts/jinja/jinja-tester.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update scripts/jinja/jinja-tester.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-05 01:05:12 +02:00
Daniel Bevenius
fb15d649ed llama : add support for EmbeddingGemma 300m (#15798)
This commit add support for the EmbeddingGemma 300m. This model supports
sliding window attention (SWA) and a new swq_type is introduced to
support symmetric SWA masking.

This commit also extracts the code from the function
llama_is_masked_swa in llama-impl.h, so that the logic can be shared
by both llm_graph_input_attn_no_cache::set_input and
llama_kv_cache::set_input_kq_mask.

With this commit the EmbeddingGemma 300m model can be converted to
to GGUF and used with llama.cpp.

Once the model has been uploaded to HuggingFace it can be used like
this:
```console
./build/bin/llama-cli -hf ggml-org/embeddinggemma-300m-GGUF:Q8_0
```
b6384
2025-09-04 18:10:29 +02:00
Gabe Goodhart
856ed0947f metal : Add template specialization for mul_mm_id w/ ne20 == 10 (#15799)
Branch: GGMLMetalNE20

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
b6383
2025-09-04 18:53:22 +03:00
Daniel Bevenius
d1e2adba65 llama : set n_outputs to 1 to avoid 0 outputs mean-pooling (#15791)
* llama : set n_outputs to 1 to avoid 0 outputs mean-pooling

This commit modifies the llama_context constructor to set n_outputs to
1.

The motivation for this is that when using pooling, and specifically
mean pooling, for embeddings having n_outputs set to 0 can lead to the
following error:
```console
$ build/bin/llama-embedding -m models/nomic-embed-text-1.5-Q4_K_M.gguf \
   --pooling mean -p "Hello, how are you?"
...
llama_context:        CPU  output buffer size =     0.12 MiB
/home/danbev/work/ai/llama.cpp/ggml/src/ggml.c:3023: GGML_ASSERT(ggml_can_mul_mat(a, b)) failed
0x0000743c96d107e3 in __GI___wait4 (pid=292978, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
warning: 30	../sysdeps/unix/sysv/linux/wait4.c: No such file or directory
30	in ../sysdeps/unix/sysv/linux/wait4.c
196	        waitpid(child_pid, NULL, 0);
230	        ggml_print_backtrace();
3023	    GGML_ASSERT(ggml_can_mul_mat(a, b));
1823	                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
18983	    llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
1399	    auto * gf = model.build_graph(gparams);
292	            auto * gf = graph_reserve(1, n_seqs, n_outputs, mctx.get(), true);
2329	        auto * ctx = new llama_context(*model, params);
913	    llama_context * lctx = llama_init_from_model(model, cparams);
105	    common_init_result llama_init = common_init_from_params(params);
[Inferior 1 (process 292976) detached]
Aborted (core dumped)
```

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add comment about not reserving graphs with zero outputs

* add assert in graph_reserve to ensure n_outputs >= 1

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
b6382
2025-09-04 15:40:44 +02:00
Chenguang Li
c1c354e44c CANN: Refactor ND to NZ workspace to be per-device (#15763)
* CANN:Refactor ND to NZ workspace to be per-device in Ascend backend

- Replaced the previous single global ND→NZ workspace with a per-device
  cache using unordered_map keyed by device ID.
- Functions `release_nz_workspace`, `relloc_nz_workspace`, and
  `get_nz_workspace` now manage workspace independently for each device,
  preventing memory conflicts in multi-device / pipeline parallel scenarios.
- This change fixes potential precision issues caused by workspace
  overwrites when multiple devices perform ND→NZ conversions concurrently.

Co-authored-by: hipudding <huafengchun@gmail.com>

* refactor

Signed-off-by: noemotiovon <757486878@qq.com>

* rename

Signed-off-by: noemotiovon <757486878@qq.com>

* fix review comments

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
b6381
2025-09-04 20:20:14 +08:00
Xuan-Son Nguyen
a68d914426 server: add exceed_context_size_error type (#15780)
* server: add exceed_context_size_error type

* change error code to 400
b6380
2025-09-04 11:50:23 +02:00
Eric Curtin
badb80cadb Document the new max GPU layers default in help (#15771)
This is a key change, just letting users know.

Signed-off-by: Eric Curtin <ericcurtin17@gmail.com>
b6379
2025-09-04 10:49:44 +01:00
leejet
0a1b3982cd ggml: add ops for WAN video model (cuda && cpu) (#15669)
* add conv3d support

* add ggml_pad_ext for cpu & cuda backend

* cuda/cpu: add im2col_3d support

* cuda: make im2col a little faster

* fix cuda pad/scale/im2col3d

* make im2col_3d faster

* gguf: support loading tensors which n_dims > GGML_MAX_DIMS

* fix cuda get_rows

* avoid ggml_conv_3d conflict

* correct GGML_OP_COUNT assertion

* avoid build failure

* avoid build failure on MacOS

* cuda: remove unnecessary MIN define

* fix cpu im2col_3d

* adjust the code style

* cuda: use simpler loop in get_rows

* add test_im2col_3d to test-backend-ops

* test-backend-ops.cpp: remove trailing whitespace

* cpu: im2col_3d support non continuous src

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* fix test_im2col_3d

* remove unused variables

* cuda: get_rows: dfloat2 -> float2

* add test_pad_ext to test-backend-ops.cpp

* add gguf_init_from_file_ext impl

* Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS"

This reverts commit d8377a0a37.

* Revert "add gguf_init_from_file_ext impl"

This reverts commit d9f1d13208.

* update ggml_backend_vk_device_supports_op

* fix ggml_backend_vk_device_supports_op

* update other backend supports op for ggml_pad_ext

* metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-04 10:38:49 +02:00
hipudding
5421f63ab0 CANN: Fix precision issue on 310I DUO multi-devices (#15784) b6377 2025-09-04 15:12:30 +08:00
rmatif
820bc98531 opencl: add hs=40 to FA (#15758) b6376 2025-09-03 23:30:28 -07:00
Chenguang Li
239b60e898 CANN: fix acl_rstd allocation size in ggml_cann_rms_norm (#15760)
Fixes #15330

Adjust the allocation size of acl_rstd. The parameter `dims` is set to 3 according to the CANN documentation.

Co-authored-by: Yuchuan <yuchuan-cao@users.noreply.github.com>
2025-09-04 11:03:02 +08:00
Ruben Ortlam
dff7551bfd vulkan: fix mmv subgroup16 selection (#15775) b6374 2025-09-03 21:55:10 +01:00
Jeff Bolz
0fce7a1248 vulkan: don't use std::string in load_shaders, to improve compile time (#15724)
* vulkan: don't use std::string in load_shaders, to improve compile time

* keep the string version for those calls that use it
b6373
2025-09-03 20:33:15 +02:00
Daniel Bevenius
8227695d7a vulkan : update ggml_vk_instance_validation_ext_available (#15666)
* vulkan : update ggml_vk_instance_validation_ext_available

This commit updates ggml_vk_instance_validation_ext_available() to
check for VK_EXT_validation_features instead of
VK_KHR_portability_enumeration.

Based on how the returned boolean is used later in the code (to enable
both the validation layer and the VK_EXT_validation_features extension),
it appears the function may have been intended to check for the
validation layer features extension.

* remove try/catch

This was a left over from a previous iteration where I was explicitly
quering for a specific validation layer first, which would throw.

* update warning message about validation layers
b6372
2025-09-03 20:24:50 +02:00
Shin-myoung-serp
0014fb4add ggml vulkan: add hardsigmoid and hardswish operations (#15762) b6371 2025-09-03 20:22:55 +02:00
Oliver Simons
661ae31c9c CUDA: Optimize rms_norm_f32 kernel and its fused variants, giving 1-6% perf E2E (#15715)
* Add fastdiv, use it in modulo and use modulo in rms_norm_f32

Fastdiv is much faster way to do integer division, which was identified
as bottleneck in rms_norm_f32

* Support more `block_size` values in `rms_norm_f32`

This makes us more flexible in selecting the optimal threads w.r.t
paralellizing across a col vs. launch-overheads of threads and mio
throttles

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Replace modulo with fastmodulo in `rms_norm_f32`

* Use `BinPackArguments=true` for formating function calls

Will file a separate PR to adjust .clang-format file

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Use uint3 for both `fastdiv` and `fastmodulo`

The compiler seems to reliably optimize away the unused .z component in
the fastdiv use-case, see https://godbolt.org/z/rx8KPrKr3

* More constrained type declarations

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Rename fastdiv and fastmodulo variables to shared variable name

As suggest by JohannesGaessler, this increases clarity of the intended
use

* Pack fastdiv/fastmodulo constants into uint2/uint3 objects

By packing constants to be used together into a struct, we are less
likely to make errors.

* Rename function parameter of fastmodulo

`modulo_consts` is more fitting/descriptive

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
b6370
2025-09-03 19:59:16 +02:00
Daniel Bevenius
407c23786d model-conversion : fix pyright errors (#15770)
This commit addresses type errors reported by pyright in the model
conversion scripts.
2025-09-03 18:28:36 +02:00
Georgi Gerganov
cdedb70a99 sampling : optimize dist sampler (#15704)
ggml-ci
b6368
2025-09-03 18:16:26 +03:00
Daniel Bevenius
2c8dac72eb llama : fix incorrect model type for Gemma 270M (#15764)
This commit fixes the model type for the Gemma 270M model in
llama_model.cpp which should be LLM_TYPE_270M. I incorrectly added this
previously as LLM_TYPE_537M which was wrong.

The motivation for this is that it causes the model to not be identified
properly when using tools like llama-bench. For example:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
```

With the changes in this commit the output will be:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
```
b6367
2025-09-03 13:35:49 +02:00
Daniel Bevenius
40a751ea9a model-conversion : remove hardcoded /bin/bash shebangs [no ci] (#15765)
* model-conversion : remove hardcoded /bin/bash shebangs [no ci]

This commit updates the bash scripts to use env instead of using
hardcoded /bin/bash in the shebang line.

The motivation for this is that some systems may have bash installed
in a different location, and using /usr/bin/env bash ensures that
the script will use the first bash interpreter found in the user's
PATH, making the scripts more portable across different environments.

* model-conversion : rename script to .py [no ci]

This commit renames run-casual-gen-embeddings-org.sh to
run-casual-gen-embeddings-org.py to reflect its Python nature.
2025-09-03 12:50:47 +02:00
hipudding
5eae934883 CANN: Add RoPE contiguous check for 310I DUP device (#15735) b6365 2025-09-03 16:46:01 +08:00
xctan
05c0380f2a ggml-cpu : optimize RVV kernels (#15720)
* ggml-cpu : optimize rvv ggml_vec_dot_f32

* ggml-cpu : optimize 128-bit rvv ggml_vec_dot_q4_K_q8_K

* ggml-cpu : fix riscv arch flags

* ggml-cpu : add more rvv ops

* ggml-cpu : optimize rvv ggml_vec_dot_q4_K_q8_K

* ggml-cpu : optimize rvv ggml_vec_dot_q6_K_q8_K

* ggml-cpu : minor rvv adjustments

* ggml-cpu : fix riscv include
b6364
2025-09-03 16:16:21 +08:00
Daniel Bevenius
8c3fdf44ec model-conversion : add missing curl script [no ci] (#15761)
This commit adds a curl script to the model-conversion examples
which is currently missing. This script is required for the running the
embedding server targets to test llama-server embeddings functionality.
2025-09-03 09:48:35 +02:00
hipudding
f6da8cb86a CANN: Mask unsupported TRANSPOSE_1D operator (#15733)
CANN currently does not support kernels larger than 255.
This change disables such cases.
b6362
2025-09-03 14:08:22 +08:00
Chenguang Li
8a2234ea0c CANN: Fix type float_t to float (#15736)
Signed-off-by: noemotiovon <757486878@qq.com>
b6361
2025-09-03 10:43:53 +08:00
SnA1lGo
3de008208b fix: resolve unsigned int initialization warning for n_dims/size in gguf.cpp (#15754) b6360 2025-09-02 21:27:30 +02:00
Oliver Simons
69db8a52e6 chore: Update .clang-format to use BinPackArguments=true (#15744)
This seems to correspond with what we want to do, see
[here](https://github.com/ggml-org/llama.cpp/pull/15715#discussion_r2315613796)
and [clang-format docs](https://clang.llvm.org/docs/ClangFormatStyleOptions.html#binpackarguments)
2025-09-03 01:40:37 +08:00
Johannes Gäßler
c466abe158 llama: -fa 1/0/-1 aliases for -fa on/off/auto (#15746) b6358 2025-09-02 18:17:26 +02:00
Ruben Ortlam
0a2a3841e8 vulkan: fix shaders gen when no integer dot is available (#15740) b6357 2025-09-02 16:02:26 +02:00
hipudding
9961d244f2 CANN: Resolve soft_max precision issue (#15730)
Previously, the slope tensor was set to fp16 to improve efficiency.
While this worked correctly in FA, it caused precision issues in soft_max.
This change applies different data types for different operators
to balance both accuracy and performance.
b6356
2025-09-02 17:12:37 +08:00
Jeff Bolz
25f1045f07 vulkan: Fix macro parameter order for f32 matmul shaders (#15716) b6355 2025-09-02 14:37:01 +08:00