ggml-cpu: drop support for nnpa intrinsics (#15821)

This commit is contained in:
Aaron Teo
2025-09-06 11:27:28 +08:00
committed by GitHub
parent fd621880f3
commit 186415d595
8 changed files with 32 additions and 144 deletions

View File

@@ -42,18 +42,6 @@ cmake --build build --config Release -j $(nproc)
cmake --build build --config Release -j $(nproc)
```
- By default, NNPA is disabled by default. To enable it:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DGGML_NNPA=ON
cmake --build build --config Release -j $(nproc)
```
- For debug builds:
```bash
@@ -164,15 +152,11 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
### 2. NNPA Vector Intrinsics Acceleration
Only available in IBM z16/LinuxONE 4 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
### 3. zDNN Accelerator (WIP)
### 2. zDNN Accelerator (WIP)
Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines.
### 4. Spyre Accelerator
### 3. Spyre Accelerator
_Only available with IBM z17 / LinuxONE 5 or later system. No support currently available._
@@ -230,10 +214,6 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
CXXFLAGS="-include cstdint" pip3 install -r requirements.txt
```
5. `-DGGML_NNPA=ON` generates gibberish output
Answer: We are aware of this as detailed in [this issue](https://github.com/ggml-org/llama.cpp/issues/14877). Please either try reducing the number of threads, or disable the compile option using `-DGGML_NNPA=OFF`.
## Getting Help on IBM Z & LinuxONE
1. **Bugs, Feature Requests**
@@ -258,38 +238,38 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
## Appendix B: SIMD Support Matrix
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
| ---------- | ----------- | ---- | ---- | ----- |
| FP32 | ✅ | ✅ | ✅ | ❓ |
| FP16 | ✅ | ✅ | ❓ | ❓ |
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ✅ | ❓ | ❓ |
| MXFP4 | 🚫 | 🚫 | ❓ | ❓ |
| Q5_0 | ✅ | ✅ | ❓ | ❓ |
| Q5_1 | ✅ | ✅ | ❓ | ❓ |
| Q8_0 | ✅ | ✅ | ❓ | ❓ |
| Q2_K | 🚫 | 🚫 | ❓ | ❓ |
| Q3_K | ✅ | ✅ | ❓ | ❓ |
| Q4_K | ✅ | ✅ | ❓ | ❓ |
| Q5_K | ✅ | ✅ | ❓ | ❓ |
| Q6_K | ✅ | ✅ | ❓ | ❓ |
| TQ1_0 | 🚫 | 🚫 | ❓ | ❓ |
| TQ2_0 | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_XXS | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_XS | 🚫 | 🚫 | ❓ | ❓ |
| IQ2_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ3_XXS | 🚫 | 🚫 | ❓ | ❓ |
| IQ3_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ1_S | 🚫 | 🚫 | ❓ | ❓ |
| IQ1_M | 🚫 | 🚫 | ❓ | ❓ |
| IQ4_NL | ✅ | ✅ | ❓ | ❓ |
| IQ4_XS | ✅ | ✅ | ❓ | ❓ |
| FP32->FP16 | 🚫 | ✅ | ❓ | ❓ |
| FP16->FP32 | 🚫 | ✅ | ❓ | ❓ |
| | VX/VXE/VXE2 | zDNN | Spyre |
|------------|-------------|------|-------|
| FP32 | ✅ | ✅ | ❓ |
| FP16 | ✅ | ❓ | ❓ |
| BF16 | 🚫 | ❓ | ❓ |
| Q4_0 | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ❓ | ❓ |
| MXFP4 | 🚫 | ❓ | ❓ |
| Q5_0 | ✅ | ❓ | ❓ |
| Q5_1 | ✅ | ❓ | ❓ |
| Q8_0 | ✅ | ❓ | ❓ |
| Q2_K | 🚫 | ❓ | ❓ |
| Q3_K | ✅ | ❓ | ❓ |
| Q4_K | ✅ | ❓ | ❓ |
| Q5_K | ✅ | ❓ | ❓ |
| Q6_K | ✅ | ❓ | ❓ |
| TQ1_0 | 🚫 | ❓ | ❓ |
| TQ2_0 | 🚫 | ❓ | ❓ |
| IQ2_XXS | 🚫 | ❓ | ❓ |
| IQ2_XS | 🚫 | ❓ | ❓ |
| IQ2_S | 🚫 | ❓ | ❓ |
| IQ3_XXS | 🚫 | ❓ | ❓ |
| IQ3_S | 🚫 | ❓ | ❓ |
| IQ1_S | 🚫 | ❓ | ❓ |
| IQ1_M | 🚫 | ❓ | ❓ |
| IQ4_NL | ✅ | ❓ | ❓ |
| IQ4_XS | ✅ | ❓ | ❓ |
| FP32->FP16 | 🚫 | ❓ | ❓ |
| FP16->FP32 | 🚫 | ❓ | ❓ |
- ✅ - acceleration available
- 🚫 - acceleration unavailable, will still run using scalar implementation
- ❓ - acceleration unknown, please contribute if you can test it yourself
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Aug 22, 2025.
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Sep 6, 2025.

View File

@@ -134,7 +134,6 @@ option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON)
option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON)
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_NNPA "ggml: enable nnpa" OFF) # temp disabled by default, see: https://github.com/ggml-org/llama.cpp/issues/14877
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")

View File

@@ -101,7 +101,6 @@ extern "C" {
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
GGML_BACKEND_API int ggml_cpu_has_nnpa (void);
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);

View File

@@ -457,7 +457,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# TODO: Separation to determine activation of VX/VXE/VXE2
if (${S390X_M} MATCHES "8561|8562")
set(GGML_NNPA OFF)
message(STATUS "z15 target")
list(APPEND ARCH_FLAGS -march=z15)
elseif (${S390X_M} MATCHES "3931")
@@ -479,11 +478,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND ARCH_FLAGS -mvx -mzvector)
list(APPEND ARCH_DEFINITIONS GGML_VXE)
endif()
if (GGML_NNPA)
message(STATUS "NNPA enabled")
list(APPEND ARCH_DEFINITIONS GGML_NNPA)
endif()
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
message(STATUS "Wasm detected")
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)

View File

@@ -68,12 +68,6 @@ struct ggml_compute_params {
#endif // __VXE2__
#endif // __s390x__ && __VEC__
#if defined(__s390x__) && defined(GGML_NNPA)
#ifndef __NNPA__
#define __NNPA__
#endif // __NNPA__
#endif // __s390x__ && GGML_NNPA
#if defined(__ARM_FEATURE_SVE)
#include <sys/prctl.h>
#endif

View File

@@ -3211,21 +3211,6 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
#elif defined(__NNPA__)
for (; i + 7 < n; i += 8) {
float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0));
float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4));
uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0);
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
}
for (; i + 3 < n; i += 4) {
float32x4_t v_x = vec_xl(0, (const float *)(x + i));
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0);
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
}
#elif defined(__riscv_zvfh)
for (int vl; i < n; i += vl) {
vl = __riscv_vsetvl_e32m2(n - i);
@@ -3259,21 +3244,6 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
__m128 y_vec = _mm_cvtph_ps(x_vec);
_mm_storeu_ps(y + i, y_vec);
}
#elif defined(__NNPA__)
for (; i + 7 < n; i += 8) {
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0);
vec_xst(v_yh, 0, (float *)(y + i + 0));
vec_xst(v_yl, 0, (float *)(y + i + 4));
}
for (; i + 3 < n; i += 4) {
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
vec_xst(v_yh, 0, (float *)(y + i));
}
#endif
for (; i < n; ++i) {
@@ -3477,14 +3447,6 @@ int ggml_cpu_has_vxe(void) {
#endif
}
int ggml_cpu_has_nnpa(void) {
#if defined(GGML_NNPA)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_neon(void) {
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
return 1;

View File

@@ -576,9 +576,6 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
if (ggml_cpu_has_vxe()) {
features.push_back({ "VXE", "1" });
}
if (ggml_cpu_has_nnpa()) {
features.push_back({ "NNPA", "1" });
}
if (ggml_cpu_has_wasm_simd()) {
features.push_back({ "WASM_SIMD", "1" });
}

View File

@@ -114,26 +114,6 @@ extern "C" {
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) riscv_compute_fp32_to_fp16(x)
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
#elif defined(__NNPA__)
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) nnpa_compute_fp16_to_fp32(x)
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) nnpa_compute_fp32_to_fp16(x)
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
static inline float nnpa_compute_fp16_to_fp32(ggml_fp16_t h) {
uint16x8_t v_h = vec_splats(h);
uint16x8_t v_hd = vec_convert_from_fp16(v_h, 0);
return vec_extend_to_fp32_hi(v_hd, 0)[0];
}
static inline ggml_fp16_t nnpa_compute_fp32_to_fp16(float f) {
float32x4_t v_f = vec_splats(f);
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_hd = vec_round_from_fp32(v_f, v_zero, 0);
uint16x8_t v_h = vec_convert_to_fp16(v_hd, 0);
return vec_extract(v_h, 0);
}
#endif
// precomputed f32 table for f16 (256 KB)
@@ -1156,11 +1136,6 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
#define GGML_F16_EPR GGML_F32_EPR
static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
#if defined(__NNPA__)
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)x);
uint16x8_t v_xd = vec_convert_from_fp16(v_x, 0);
return vec_extend_to_fp32_hi(v_xd, 0);
#else
float tmp[4];
for (int i = 0; i < 4; i++) {
@@ -1170,20 +1145,9 @@ static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
// note: keep type-cast here to prevent compiler bugs
// see: https://github.com/ggml-org/llama.cpp/issues/12846
return vec_xl(0, (const float *)(tmp));
#endif
}
static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
#if defined(__NNPA__)
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_xd = vec_round_from_fp32(v_y, v_zero, 0);
uint16x8_t v_x = vec_convert_to_fp16(v_xd, 0);
x[0] = vec_extract(v_x, 0);
x[1] = vec_extract(v_x, 1);
x[2] = vec_extract(v_x, 2);
x[3] = vec_extract(v_x, 3);
#else
float arr[4];
// note: keep type-cast here to prevent compiler bugs
@@ -1193,7 +1157,6 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
for (int i = 0; i < 4; i++) {
x[i] = GGML_CPU_FP32_TO_FP16(arr[i]);
}
#endif
}
#define GGML_F16_VEC GGML_F32x4