* Revert "devops : fix compile bug when the BASE_CUDA_DEV_CONTAINER is based on Ubuntu 24.04 (#15005)"
This reverts commit e4e915912c.
* devops: Allow pip to modify externally-managed python environment (system installation)
- Updated pip install commands to include the --break-system-packages
flag, ensuring compatibility when working with system-managed Python
environments (PEP 668).
- Note: The --break-system-packages option was introduced in 2023.
Ensure pip is updated to a recent version before using this flag.
fixes [#15004](https://github.com/danchev/llama.cpp/issues/15004)
Add tracking for high watermark cache usage and make it available in /metrics endpoint.
Use-case: Tracking largest needed cache usage under realistic workload
to better understand memory requirements and be able to adjust
cache size/quantization for model/cache accordingly.
* vulkan: Use larger workgroups for mul_mat_vec when M is small
Also use subgroup instructions for (part of) the reduction when supported.
Without this, the more expensive reductions would eat into the benefits of
the larger workgroups.
* update heuristic for amd/intel
Co-authored-by: 0cc4m <picard12@live.de>
---------
Co-authored-by: 0cc4m <picard12@live.de>
- Launch an appropriate number of invocations (next larger power of two).
32 invocations is common and the barrier is much cheaper there.
- Specialize for "needs bounds checking" vs not.
- Make the code less branchy and [[unroll]] the loops. In the final code,
I see no branches inside the main loop (only predicated stores) when
needs_bounds_check is false.
- Always sort ascending, then apply the ascending vs descending option when
doing the final stores to memory.
- Copy the values into shared memory, makes them slightly cheaper to access.
* wip lfm2 vision model
* Fix conv weight
* Implement dynamic resolution
* Fix cuda
* support LFM2-VL-450M
* happy CI
* Remove extra `ggml_conv` and put others into the right place
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* vulkan: fuse adds
Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.
* check runtimeDescriptorArray feature
* disable multi_add for Intel due to likely driver bug
* vulkan: Add missing bounds checking to scalar/coopmat1 mul_mat_id
* vulkan: Support mul_mat_id with f32 accumulators, but they are not hooked up
- There's no explicit way to request f32 precision for mul_mat_id, but there
probably should be, and this gets the code in place for that.
- A couple fixes to check_results.
- Remove casts to fp16 in coopmat1 FA shader (found by inspection).
* add F16/F16 fa support
* fix kernel init
* use mad instead of fma
* use inline function
* mark FA with sinks as unsupported for now
* add pragma unroll to loops
This commit updates common_chat_templates_apply_jinja to use the
the add_bos and add_eos parameters from the chat template instead of
the inputs.
The motivation for this is that currently if the `add_bos` and `add_eos`
from the input parameters are used it is possible to there will be a
missmatch between the model and the chat template which can lead to the
the removal of duplicate BOS/EOS tokens in chat.cpp `apply` to not
happen leading to two BOS tokens being added to the template.
This commit adds support for the 18-layer model type in the Gemma3
series, which is the size of the Gemma3-270m model.
The motivation for this commit is was the only change required for
Gemma3-270m to be converted to GGUF format and used with llama.cpp.
Once the model has been converted and uploaded to Huggingface it can be
used like this:
```console
$ ./build/bin/llama-cli -hf ggml-org/gemma-3-270m-GGUF:Q8_0
```
add expicit conversion operator to support older versions of rocm
Switch over to hip_bf16 from legacy hip_bfloat16
Simplify RDNA3 define
Reduce swap over of new hipblas api to rocm 6.5 as this version is used for rocm 7.0 previews
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* model : add harmony parser for gpt-oss
* gpt-oss : fix grammar trigger from causing empty stack
* gpt-oss: tweak the grammar trigger again
* gpt-oss : add support for recipient in role header
* gpt-oss : fix ungrouped tool calls in grammar
* gpt-oss : loosen function name matching during parse
* gpt-oss : clean up workarounds
* gpt-oss : add template tests
* gpt-oss : simulate thinking and tool call tags
* gpt-oss : undo think tags when reasoning_format is none
* gpt-oss : set special tokens back to user defined
* gpt-oss : update openai-gpt-oss template
* server : filter out harmony thought messages
* gpt-oss : simplify parsing
* vulkan: perf_logger improvements
- Account for batch dimension in flops calculation.
- Fix how "_VEC" is detected for mat_mul_id.
- Fix "n" dimension for mat_mul_id (in case of broadcasting).
- Include a->type in name.
* use <=mul_mat_vec_max_cols rather than ==1
* server : add SWA checkpoints
ggml-ci
* cont : server clean-up
* server : handle state restore fails
* llama : add extended llama_state_seq_ API
* server : do not make checkpoints if --swa-full
ggml-ci
* llama : remove flags value for NONE
* server : configure number of SWA checkpoints with CLI arg
ggml-ci
* args : fix scope of new argument
When attempting to do llama-perplexity on certain tasks which have coupled sequences there is a cryptic error that does not tell you what to do, which is to set the -kvu flag. This adds a hint about that fact.
* examples/finetune -opt SGD (stochastic gradient descent) memory opt
add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.
support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)
llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)
(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val: [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00
SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val: [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)
note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')
-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.
note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence
new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)
cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)
since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)
test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values); tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)
* Vulkan: Implement GGML_OP_OPT_STEP_SGD
* tests: Fix OPT_STEP_SGD test-backend-ops
* SGD op param store weight-decay and not 1-alpha*wd
* minor + cosmetic changes
* fix vulkan sgd
* try CI fix
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* perplexity: give more information about constraints on failure
This checks whether -np is insufficient vs context, and provides clues as to how much is needed for each.
* log formatting
* log error and return instead of storing max_seq_exceeded int
* check if s0 is zero for -np check
The flake.nix included references to llama-cpp.cachix.org cache with a comment
claiming it's 'Populated by the CI in ggml-org/llama.cpp', but:
1. No visible CI workflow populates this cache
2. The cache is empty for recent builds (tested b6150, etc.)
3. This misleads users into expecting pre-built binaries that don't exist
This change removes the non-functional cache references entirely, leaving only
the working cuda-maintainers cache that actually provides CUDA dependencies.
Users can still manually add the llama-cpp cache if it becomes functional in the future.
* Checkpoint from VS Code for coding agent session
* Initial plan
* Fix typo in --override-tensor-draft flag implementation
* Add null termination for speculative tensor buffer overrides
* Apply suggestions from code review
* Apply suggestions from code review
* Extract tensor override parsing logic to common function (addresses @slaren's feedback)
* Apply suggestions from code review
* Apply suggestions
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>