Commit Graph

172 Commits

Author SHA1 Message Date
Acly
e29acf74fe vulkan : incremental shader builds (#16341)
* vulkan (DRAFT): split shader generation by GLSL source file, to improve incremental build times

* support dep-files so shaders are recompiled if their included files change

* rename shader files which are used as "headers" to use .glsl extension
* move glslc extension detection shaders to separate folders
* the above is to prevent them from getting glob'd with the actual compute shaders that need to be compiled

* vulkan : only write embedded shader .hpp/.cpp when they change

* avoid recompiling ggml-vulkan.cpp when editing shaders
* pass single --source argument instead of --input-dir & --filter to shader gen
* check for source file match earlier

* fix hang in vulkan-shaders-gen when there are compilation errors

* early out did not decrement compile_count

* clean up

* fix glslc integer dot product test

* unconditionally write the embedded shader cpp output

* replace output filepath in generated dep-files to match output in CMakeLists

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-04 11:42:56 +02:00
Jeff Bolz
0e1f838556 vulkan: Fix FA coopmat1 invalid array indexing (#16365)
When computing sinks, the cm1 shader was looping r from 0 to Br rather than
to rows_per_thread. I must have copied this from the scalar path (where it is
correct), and somehow it wasn't causing failures on current drivers.
2025-10-03 11:52:46 +02:00
Jeff Bolz
e308efda8e vulkan: in flash attention, bounds check against nem1 (don't rely on GGML_KQ_MASK_PAD) (#16316) 2025-10-03 10:33:08 +02:00
Jeff Bolz
92cd103f62 vulkan: Fix validation failure in quantized flash attention (#16292) 2025-09-29 06:50:37 +02:00
Jeff Bolz
d8359f5fde vulkan: 64-bit im2col (#16135)
* vulkan: 64-bit im2col

Add variants of the im2col shaders that use buffer_device_address/buffer_reference,
and use 64-bit address calculations. This is needed for large convolutions used in
stable-diffusion.cpp.

* fix validation error for large im2col
2025-09-28 08:38:37 +02:00
Jeff Bolz
1384abf8b8 vulkan: handle mat_mul with A matrix > 4GB (#16176)
* vulkan: handle mat_mul with A matrix > 4GB

This change splits mat_mul operations with huge A matrix into chunks in the M
dimension. This works well for stable-diffusion use cases where the im2col
matrix has very large M.

Fix the order of setting the stride in mul_mm_cm2 - setting the dimension
clobbers the stride, so stride should be set after.

* build fixes
2025-09-27 20:36:34 -05:00
Jeff Bolz
e6d65fb02d vulkan: support arbitrary KV dimension in flash attention (#16160)
The "Clamp" spec constant is already based on whether KV is a multiple of Bc,
so use that to control whether bounds checking is performed. Add bounds checking
to the scalar and coopmat1 paths. Coopmat2 didn't need any changes (the K/V
tensors are already optionally clamped, nothing else needed to be changed).
2025-09-27 22:43:39 +02:00
Jeff Bolz
3f81b4e91c vulkan: support GET_ROWS for k-quants (#16235)
The dequantize functions are copy/pasted from mul_mm_funcs.comp with very few
changes - add a_offset and divide iqs by 2. It's probably possible to call
these functions from mul_mm_funcs and avoid the duplication, but I didn't go
that far in this change.
2025-09-27 12:36:11 +02:00
Sigbjørn Skjæret
3ecb2f671a ggml : implement set_rows with i32 index (#16159)
* implement set_rows with i32 index

* template fix

* test quantized path

warnings--

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* forgotten name change

* deduplicate cuda/sycl and test-fix

* indent++

* vulkan: support set_rows with i32 index type (#16162)

* disable i32 index for webgpu for now

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-22 19:13:00 +02:00
Shin-myoung-serp
96fdca043b Vulkan: add conv_transpose_2d operation (#16022)
* Vulkan: add conv_transpose_2d operation

* Vulkan: fix typo in conv_transpose_2d shader(s0mp, s0L, s1mp, s1L)

* Vulkan: fix incorrect indentation in conv_transpose_2d shader

* Vulkan: add checking the push constants size limit and reuse conv2d_mm.comp for conv_transpose_2d operation

* Vulkan: revert the order of the index calculation and bound check in conv_2d shader

* Vulkan: explicity check push constants limit in supports_op() for conv_transpose_2d operation.

* Vulkan: remove unnecessary lower bound checks for H/W_idx in the conv_2d shader.
2025-09-22 10:04:01 +02:00
Jeff Bolz
a20d810d79 vulkan: add RTE variants of exp shader (#16165)
This fixes some failures on Turing where "round to zero" rounds to the max f16
value but the CPU reference value is infinite.
2025-09-22 07:37:17 +02:00
Ruben Ortlam
9073a73d82 vulkan: vec dot matrix multiplication fix (#16151)
* vulkan: fix matrix multiplication index calculation for odd m/n and odd k in combination with batching

* add odd m/n + odd k test with batching
2025-09-22 07:22:43 +02:00
Ruben Ortlam
803dac2e48 vulkan: use vec dot for matrix matrix multiplications (#16056)
* vulkan: Change the mul_mm shared memory and register caching system to use vec2 instead of scalars, to enable using dot2 instructions

* use fma instead of dot to fix Nvidia and Apple performance issues
2025-09-20 10:42:56 +02:00
Daniel Bevenius
3913f8730e ggml : fix padding in timestep embedding kernels (#15932)
* ggml : remove adding extra dim timestep embedding

This commit updates the ggml_timestep_embedding function to no longer
add an extra dimension when the specified dimension is odd.

The motivation for this change is that this introduces an unnecessary
dimension when the dimension is odd, which caused an issue in the
kernels which were not expecting this extra dimension and it resulted in
uninitialized memory for the second to last dimension.

* ggml-cuda : fix padding in timestep embedding kernel

This commit removes the zeroing out of the last dimension now that we
are not adding the extra padding dimension.

* ggml-metal : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel

* ggml-opencl : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.

* ggml-sycl : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.

* ggml-vulkan : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.

* ggml-cpu : fix padding in timestep embedding function

This commit removes the zeroing out of the last dimension now that we
are not adding the extra padding dimension.
2025-09-16 15:25:57 +02:00
Ruben Ortlam
261e6a20ff Vulkan: Clean up mul_mm shader (#15987)
* vulkan: move mul_mm dequantization steps into a separate file and functions

* improve mul_mm vector load code

* fix debug mode issues and warnings
2025-09-14 16:56:28 +02:00
Jeff Bolz
aa0c461efe vulkan: fix failing dequant shaders (#15862)
* vulkan: fix failing dequant shaders

* add missing const
2025-09-13 17:29:43 +02:00
Jeff Bolz
4f63cd705c vulkan: Fix OOB accesses in soft_max_back (#15861) 2025-09-09 14:41:15 +02:00
Xuan-Son Nguyen
9fcb29f22f ggml: allow casting between f32 and i32 (#15783)
* ggml: allow casting between f32 and i32

* fix cuda

* add vulkan

* fix CPU non-cont

* add non-cont test case

* add note

* extend test number range

* correct note

* add cont version for vulkan
2025-09-08 12:33:01 +02:00
Jeff Bolz
3976dfbe00 vulkan: support im2col_3d (#15795) 2025-09-07 13:50:26 -05:00
Jeff Bolz
c97b5e5854 vulkan: Support pad_ext (#15794) 2025-09-07 19:00:49 +02:00
Jeff Bolz
267e99867f vulkan: Use larger loads in scalar/coopmat1 matmul (#15729)
I think glslang will translate an access like x[i][1].z to
OpAccessChain ... x, i, 1, 2
OpLoad float16_t ...

rather than loading all of x[i] in a single OpLoad. Change the
code to explicitly load the vector/matrix.
2025-09-07 18:53:07 +02:00
Shin-myoung-serp
0014fb4add ggml vulkan: add hardsigmoid and hardswish operations (#15762) 2025-09-03 20:22:55 +02:00
Ruben Ortlam
0a2a3841e8 vulkan: fix shaders gen when no integer dot is available (#15740) 2025-09-02 16:02:26 +02:00
Jeff Bolz
35a42edac8 vulkan: add missing clamps in new mul_mat_id paths (#15702)
This is a missing interaction between #15546 and #15652
2025-09-01 21:01:10 +02:00
Ruben Ortlam
02c1813517 Vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants (#14903)
* vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants

* vulkan: use subgroup operations for quantize_q8_1 shader

* vulkan: add q8_1_x4 type with 128-bit alignment, use in mul_mat_vecq shader

* vulkan: use q8_1_x4 blocks in mul_mmq shader

* vulkan: do 8 calculations per invocation instead of 32 in mul_mat_vecq, similar to mul_mat_vec

* vulkan: tune mul_mat_vecq performance for Intel

* vulkan: fix quantizing issue when tensor is not divisible by 128

* vulkan: adapt integer dot mmv to mmv small m optimization (#15355)

* vulkan: allow all subgroup modes for mmv and mmvq

* vulkan: use prealloc intermediate reuse for mmvq path

* vulkan: tune mmvq for Intel, AMD GCN and Nvidia RTX 3090

* vulkan: adapt mmv quantize_y path to conditional sync logic

* vulkan: disable q8_0 mmvq on Nvidia

* vulkan: enable q8_0 on Nvidia pre-turing

* fix prealloc sync condition

* fix llvmpipe subgroup 8 issue
2025-09-01 16:19:07 +02:00
Jeff Bolz
bbbf5ecccb vulkan: handle large sizes for get_rows (#15686) 2025-08-31 10:13:27 +02:00
Jeff Bolz
c37052ab4d vulkan: mul_mat_id coopmat2 optimizations (#15546)
* vulkan: mul_mat_id coopmat2 optimizations

Add a path for when the tile fits in BN/2, similar to what we have for mul_mat.

Only call fetch_scales/store_scales once per QUANT_K block, and once at the
beginning in case start_k is not aligned.

* Also add a path for BN/4 - worth a couple more percent
2025-08-31 09:06:43 +02:00
Jeff Bolz
94e82c7ead vulkan: clamp matmul and FA results to the max finite value (#15652)
* vulkan: clamp matmul and FA results to the max finite value

* only clamp for fp16
2025-08-31 08:27:57 +02:00
Jeff Bolz
34bdbbd7c2 vulkan: Remove splitting for mul_mat_id (#15568)
row_ids only needs to hold the BN rows for the current tile.
2025-08-26 06:42:44 +02:00
Ruben Ortlam
043fb27d38 vulkan: apply MUL_MAT_ID subgroup optimization to non-coopmat devices (#15524)
* vulkan: use subgroup function for mul_mat_id shader even without coopmat

* vulkan: fix compile warnings

* vulkan: properly check for subgroup size control and require full subgroups for subgroup mul_mat_id

* vulkan: disable subgroup mul_mat_id on devices with subgroups < 16
2025-08-24 19:36:36 +02:00
Jeff Bolz
c9a24fb932 vulkan: Support FA with any multiple of 8 head sizes (#15537)
The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.

Store the FA pipelines in a map, indexed by the pipeline state.
2025-08-24 11:24:25 +02:00
Jeff Bolz
e78cf0d4b1 vulkan: workaround MoltenVK compile failure in multi_add (#15506)
* vulkan: workaround MoltenVK compile failure in multi_add

* Update ggml/src/ggml-vulkan/vulkan-shaders/multi_add.comp

Co-authored-by: 0cc4m <picard12@live.de>
2025-08-24 10:48:21 +02:00
Jeff Bolz
611f419cff vulkan: optimize rms_norm, and allow the work to spread across multiple SMs (#15281)
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs

There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.

The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.

* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.

* complete rebase against fused adds - multi_add shader can also compute partial sums

* fix validation errors

* disable add_rms_fusion for Intel due to possible driver bug

* resolve against #15489, sync after clearing partial sums
2025-08-23 13:16:17 -05:00
Acly
0a9b43e507 vulkan : support ggml_mean (#15393)
* vulkan : support ggml_mean

* vulkan : support sum, sum_rows and mean with non-contiguous tensors

* vulkan : fix subbuffer size not accounting for misalign offset

* tests : add backend-op tests for non-contiguous sum_rows

* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support

* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
2025-08-23 08:35:21 +02:00
Jeff Bolz
330c3d2d21 vulkan: optimize mul_mat_id loading row ids into shared memory (#15427)
- Spread the work across the whole workgroup. Using more threads seems to
far outweigh the synchronization overhead.
- Specialize the code for when the division is by a power of two.
2025-08-23 08:31:54 +02:00
Acly
97ae5961a4 vulkan : support conv_2d_dw with f16 weights (#15392) 2025-08-21 17:01:51 +02:00
Dong Won Kim
20c2dac8c6 vulkan: add exp operation (#15456)
Co-authored-by: aeseulgi <kim2h7903@gmail.com>
2025-08-21 17:00:16 +02:00
Jeff Bolz
ae532eac2c vulkan: disable spirv-opt for bfloat16 shaders (#15352) 2025-08-18 07:56:29 +02:00
Jeff Bolz
21c17b5bef vulkan: Use larger workgroups for mul_mat_vec when M is small (#15355)
* vulkan: Use larger workgroups for mul_mat_vec when M is small

Also use subgroup instructions for (part of) the reduction when supported.
Without this, the more expensive reductions would eat into the benefits of
the larger workgroups.

* update heuristic for amd/intel

Co-authored-by: 0cc4m <picard12@live.de>

---------

Co-authored-by: 0cc4m <picard12@live.de>
2025-08-17 18:08:57 +02:00
Dong Won Kim
19f4decae0 vulkan: support sqrt (#15370) 2025-08-17 16:03:09 +02:00
Jeff Bolz
de5627910d vulkan: Optimize argsort (#15354)
- Launch an appropriate number of invocations (next larger power of two).
32 invocations is common and the barrier is much cheaper there.
- Specialize for "needs bounds checking" vs not.
- Make the code less branchy and [[unroll]] the loops. In the final code,
I see no branches inside the main loop (only predicated stores) when
needs_bounds_check is false.
- Always sort ascending, then apply the ascending vs descending option when
doing the final stores to memory.
- Copy the values into shared memory, makes them slightly cheaper to access.
2025-08-17 10:41:45 +02:00
Jeff Bolz
1fe00296f5 vulkan: fuse adds (#15252)
* vulkan: fuse adds

Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.

* check runtimeDescriptorArray feature

* disable multi_add for Intel due to likely driver bug
2025-08-16 11:48:22 -05:00
Jeff Bolz
de2192794f vulkan: Support mul_mat_id with f32 accumulators (#15337)
* vulkan: Add missing bounds checking to scalar/coopmat1 mul_mat_id

* vulkan: Support mul_mat_id with f32 accumulators, but they are not hooked up

- There's no explicit way to request f32 precision for mul_mat_id, but there
probably should be, and this gets the code in place for that.
- A couple fixes to check_results.
- Remove casts to fp16 in coopmat1 FA shader (found by inspection).
2025-08-16 11:18:31 +02:00
Jeff Bolz
2e2b22ba66 vulkan: Add missing bounds checking to scalar/coopmat1 mul_mat_id (#15334) 2025-08-16 10:58:38 +02:00
Georgi Gerganov
5edf1592fd vulkan : fix out-of-bounds access in argmax kernel (#15342)
ggml-ci
2025-08-15 16:16:36 +02:00
Jonathan Graehl
5cdb27e091 finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
Jeff Bolz
c4f53563df vulkan: support fattn sinks (#15126) 2025-08-07 22:44:20 +02:00
Georgi Gerganov
fd1234cb46 llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Jeff Bolz
5aa1105da2 vulkan: fix build when using glslang that does not support coopmat2 (#15062) 2025-08-04 07:09:19 +02:00
Jeff Bolz
6c7a441161 vulkan: Use coopmat2 for conv2d (#14982) 2025-08-03 14:23:57 +02:00