mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
Vulkan: Clean up mul_mm shader (#15987)
* vulkan: move mul_mm dequantization steps into a separate file and functions * improve mul_mm vector load code * fix debug mode issues and warnings
This commit is contained in:
@@ -1231,8 +1231,6 @@ static std::string format_size(size_t size) {
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
static std::mutex log_mutex;
|
||||
|
||||
class vk_memory_logger {
|
||||
public:
|
||||
vk_memory_logger(): total_device(0), total_host(0) {}
|
||||
@@ -1422,6 +1420,8 @@ struct ggml_backend_vk_buffer_context {
|
||||
};
|
||||
|
||||
#ifdef GGML_VULKAN_MEMORY_DEBUG
|
||||
static std::mutex log_mutex;
|
||||
|
||||
void vk_memory_logger::log_allocation(vk_buffer_ref buf_ref, size_t size) {
|
||||
std::lock_guard<std::mutex> guard(log_mutex);
|
||||
vk_buffer buf = buf_ref.lock();
|
||||
@@ -13138,16 +13138,16 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
||||
} else if (tensor->op == GGML_OP_IM2COL_3D) {
|
||||
const int32_t s0 = tensor->op_params[0];
|
||||
const int32_t s1 = tensor->op_params[1];
|
||||
const int32_t s1 = tensor->op_params[2];
|
||||
const int32_t s2 = tensor->op_params[2];
|
||||
const int32_t p0 = tensor->op_params[3];
|
||||
const int32_t p1 = tensor->op_params[4];
|
||||
const int32_t p1 = tensor->op_params[5];
|
||||
const int32_t p2 = tensor->op_params[5];
|
||||
const int32_t d0 = tensor->op_params[6];
|
||||
const int32_t d1 = tensor->op_params[7];
|
||||
const int32_t d1 = tensor->op_params[8];
|
||||
const int32_t d2 = tensor->op_params[8];
|
||||
const int32_t IC = tensor->op_params[9];
|
||||
|
||||
tensor_clone = ggml_im2col(ggml_ctx, src_clone[0], src_clone[1], IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, tensor->type);
|
||||
tensor_clone = ggml_im2col_3d(ggml_ctx, src_clone[0], src_clone[1], IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, tensor->type);
|
||||
} else if (tensor->op == GGML_OP_TIMESTEP_EMBEDDING) {
|
||||
const int32_t dim = tensor->op_params[0];
|
||||
const int32_t max_period = tensor->op_params[1];
|
||||
|
||||
@@ -183,6 +183,8 @@ void load_row_ids(uint expert_idx, bool nei0_is_pow2, uint ic) {
|
||||
shared ACC_TYPE coopmat_stage[TM * TN * NUM_WARPS];
|
||||
#endif
|
||||
|
||||
#include "mul_mm_funcs.comp"
|
||||
|
||||
void main() {
|
||||
#ifdef NEEDS_INIT_IQ_SHMEM
|
||||
init_iq_shmem(gl_WorkGroupSize);
|
||||
@@ -310,550 +312,13 @@ void main() {
|
||||
|
||||
for (uint block = start_k; block < end_k; block += BK) {
|
||||
[[unroll]] for (uint l = 0; l < BM; l += loadstride_a) {
|
||||
|
||||
#if defined(DATA_A_F32) || defined(DATA_A_F16)
|
||||
#if LOAD_VEC_A == 8
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
A_TYPE32 aa = A_TYPE32(data_a[idx]);
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(aa[0].x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(aa[0].y);
|
||||
buf_a[buf_idx + 2] = FLOAT_TYPE(aa[0].z);
|
||||
buf_a[buf_idx + 3] = FLOAT_TYPE(aa[0].w);
|
||||
buf_a[buf_idx + 4] = FLOAT_TYPE(aa[1].x);
|
||||
buf_a[buf_idx + 5] = FLOAT_TYPE(aa[1].y);
|
||||
buf_a[buf_idx + 6] = FLOAT_TYPE(aa[1].z);
|
||||
buf_a[buf_idx + 7] = FLOAT_TYPE(aa[1].w);
|
||||
#elif LOAD_VEC_A == 4
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
A_TYPE32 aa = A_TYPE32(data_a[idx]);
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(aa.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(aa.y);
|
||||
buf_a[buf_idx + 2] = FLOAT_TYPE(aa.z);
|
||||
buf_a[buf_idx + 3] = FLOAT_TYPE(aa.w);
|
||||
#else
|
||||
if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
|
||||
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
|
||||
} else {
|
||||
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = FLOAT_TYPE(0.0f);
|
||||
}
|
||||
#endif
|
||||
#elif defined(DATA_A_BF16)
|
||||
#if LOAD_VEC_A == 4
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
buf_a[buf_idx ] = TO_FLOAT_TYPE(data_a[idx].x);
|
||||
buf_a[buf_idx + 1] = TO_FLOAT_TYPE(data_a[idx].y);
|
||||
buf_a[buf_idx + 2] = TO_FLOAT_TYPE(data_a[idx].z);
|
||||
buf_a[buf_idx + 3] = TO_FLOAT_TYPE(data_a[idx].w);
|
||||
#else
|
||||
if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
|
||||
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
|
||||
} else {
|
||||
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(uint16_t(0));
|
||||
}
|
||||
#endif
|
||||
#elif defined(DATA_A_Q4_0)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 4 * loadr_a;
|
||||
|
||||
const uint ib = idx / 4;
|
||||
const uint iqs = idx & 0x03;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const uint vui = uint(data_a_packed16[ib].qs[2*iqs]) | (uint(data_a_packed16[ib].qs[2*iqs + 1]) << 16);
|
||||
const vec4 v0 = (vec4(unpack8(vui & 0x0F0F0F0F)) - 8.0f) * d;
|
||||
const vec4 v1 = (vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) - 8.0f) * d;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v0.x);
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(v0.y);
|
||||
buf_a[buf_idx + 2 ] = FLOAT_TYPE(v0.z);
|
||||
buf_a[buf_idx + 3 ] = FLOAT_TYPE(v0.w);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(v1.x);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(v1.y);
|
||||
buf_a[buf_idx + 18] = FLOAT_TYPE(v1.z);
|
||||
buf_a[buf_idx + 19] = FLOAT_TYPE(v1.w);
|
||||
#elif defined(DATA_A_Q4_1)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 4 * loadr_a;
|
||||
|
||||
const uint ib = idx / 4;
|
||||
const uint iqs = idx & 0x03;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const float m = float(data_a_packed16[ib].m);
|
||||
const uint vui = uint(data_a_packed16[ib].qs[2*iqs]) | (uint(data_a_packed16[ib].qs[2*iqs + 1]) << 16);
|
||||
const vec4 v0 = vec4(unpack8(vui & 0x0F0F0F0F)) * d + m;
|
||||
const vec4 v1 = vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) * d + m;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v0.x);
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(v0.y);
|
||||
buf_a[buf_idx + 2 ] = FLOAT_TYPE(v0.z);
|
||||
buf_a[buf_idx + 3 ] = FLOAT_TYPE(v0.w);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(v1.x);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(v1.y);
|
||||
buf_a[buf_idx + 18] = FLOAT_TYPE(v1.z);
|
||||
buf_a[buf_idx + 19] = FLOAT_TYPE(v1.w);
|
||||
#elif defined(DATA_A_Q5_0)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 2 * loadr_a;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = idx & 0x07;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const uint uint_qh = uint(data_a_packed16[ib].qh[1]) << 16 | uint(data_a_packed16[ib].qh[0]);
|
||||
const ivec2 qh0 = ivec2(((uint_qh >> 2*iqs) << 4) & 0x10, (uint_qh >> (2*iqs + 12)) & 0x10);
|
||||
const ivec2 qh1 = ivec2(((uint_qh >> (2*iqs + 1)) << 4) & 0x10, (uint_qh >> (2*iqs + 13)) & 0x10);
|
||||
|
||||
const uint vui = uint(data_a_packed16[ib].qs[iqs]);
|
||||
const vec4 v = (vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) - 16.0f) * d;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(v.z);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(v.w);
|
||||
#elif defined(DATA_A_Q5_1)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 2 * loadr_a;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = idx & 0x07;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const float m = float(data_a_packed16[ib].m);
|
||||
const uint uint_qh = data_a_packed16[ib].qh;
|
||||
const ivec2 qh0 = ivec2(((uint_qh >> 2*iqs) << 4) & 0x10, (uint_qh >> (2*iqs + 12)) & 0x10);
|
||||
const ivec2 qh1 = ivec2(((uint_qh >> (2*iqs + 1)) << 4) & 0x10, (uint_qh >> (2*iqs + 13)) & 0x10);
|
||||
|
||||
const uint vui = uint(data_a_packed16[ib].qs[iqs]);
|
||||
const vec4 v = vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) * d + m;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(v.z);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(v.w);
|
||||
#elif defined(DATA_A_Q8_0)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = idx & 0x07;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const i8vec2 v0 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs])).xy; // vec4 used due to #12147
|
||||
const i8vec2 v1 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs + 1])).xy;
|
||||
const vec4 v = vec4(v0.x, v0.y, v1.x, v1.y) * d;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
|
||||
buf_a[buf_idx + 2] = FLOAT_TYPE(v.z);
|
||||
buf_a[buf_idx + 3] = FLOAT_TYPE(v.w);
|
||||
#elif defined(DATA_A_Q2_K)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30
|
||||
const uint scalesi = iqs / 8; // 0..15
|
||||
const uint qsshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
|
||||
|
||||
const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]);
|
||||
const uint scales = data_a[ib].scales[scalesi];
|
||||
const vec2 d = vec2(data_a[ib].d);
|
||||
|
||||
const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
|
||||
#elif defined(DATA_A_Q3_K)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 64; // 0,1
|
||||
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
|
||||
const uint hmi = (iqs % 16) * 2; // 0,2,4..30
|
||||
const uint j = (iqs % 64) / 4; // 0..3
|
||||
const uint is = iqs / 8; // 0..15
|
||||
const uint halfsplit = ((iqs % 64) / 16); // 0,1,2,3
|
||||
const uint qsshift = halfsplit * 2; // 0,2,4,6
|
||||
const uint m = 1 << (4 * n + halfsplit); // 1,2,4,8,16,32,64,128
|
||||
|
||||
const int8_t us = int8_t(((data_a[ib].scales[is % 8] >> (4 * int(is / 8))) & 0xF)
|
||||
| (((data_a[ib].scales[8 + (is % 4)] >> (2 * int(is / 4))) & 3) << 4));
|
||||
const float dl = float(data_a[ib].d) * float(us - 32);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi ] & m) != 0) ? 0 : 4)));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4)));
|
||||
#elif defined(DATA_A_Q4_K)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 32; // 0,1,2,3
|
||||
const uint b = (iqs % 32) / 16; // 0,1
|
||||
const uint is = 2 * n + b; // 0..7
|
||||
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
|
||||
|
||||
const vec2 loadd = vec2(data_a[ib].d);
|
||||
|
||||
const uint scidx0 = (is < 4) ? is : (is + 4);
|
||||
const uint scidx1 = (is < 4) ? is : (is - 4);
|
||||
const uint scidxmask1 = (is < 4) ? 0x30 : 0xC0;
|
||||
const uint scidxshift1 = (is < 4) ? 0 : 2;
|
||||
const uint mbidx0 = is + 4;
|
||||
const uint mbidx1 = (is < 4) ? is + 4 : is;
|
||||
const uint mbidxmask0 = (is < 4) ? 0xF : 0xF0;
|
||||
const uint mbidxshift0 = (is < 4) ? 0 : 4;
|
||||
const uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
|
||||
const uint mbidxshift1 = (is < 4) ? 0 : 2;
|
||||
|
||||
const uint8_t sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
|
||||
const uint8_t mbyte = uint8_t((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0 | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));
|
||||
|
||||
const float d = loadd.x * sc;
|
||||
const float m = -loadd.y * mbyte;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF), m));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF), m));
|
||||
#elif defined(DATA_A_Q5_K)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 32; // 0,1,2,3
|
||||
const uint b = (iqs % 32) / 16; // 0,1
|
||||
const uint is = 2 * n + b; // 0..7
|
||||
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
|
||||
const uint qhi = (iqs % 16) * 2; // 0,2,4..30
|
||||
|
||||
const uint8_t hm = uint8_t(1 << (iqs / 16));
|
||||
|
||||
const vec2 loadd = vec2(data_a[ib].d);
|
||||
|
||||
const uint scidx0 = (is < 4) ? is : (is + 4);
|
||||
const uint scidx1 = (is < 4) ? is : (is - 4);
|
||||
const uint scidxmask1 = (is < 4) ? 0x30 : 0xC0;
|
||||
const uint scidxshift1 = (is < 4) ? 0 : 2;
|
||||
const uint mbidx0 = is + 4;
|
||||
const uint mbidx1 = (is < 4) ? is + 4 : is;
|
||||
const uint mbidxmask0 = (is < 4) ? 0xF : 0xF0;
|
||||
const uint mbidxshift0 = (is < 4) ? 0 : 4;
|
||||
const uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
|
||||
const uint mbidxshift1 = (is < 4) ? 0 : 2;
|
||||
|
||||
const uint8_t sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
|
||||
const uint8_t mbyte = uint8_t(((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0) | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));
|
||||
|
||||
const float d = loadd.x * sc;
|
||||
const float m = -loadd.y * mbyte;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0), m));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0), m));
|
||||
#elif defined(DATA_A_Q6_K)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 64; // 0,1
|
||||
const uint b = (iqs % 64) / 32; // 0,1
|
||||
const uint is_b = (iqs % 16) / 8; // 0,1
|
||||
const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
|
||||
const uint is = 8 * n + qhshift + is_b; // 0..15
|
||||
const uint qsi = n * 64 + (iqs % 32) * 2; // 0,2,4..126
|
||||
const uint qhi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
|
||||
|
||||
const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi ] >> qhshift) & 3) << 4)) - 32));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));
|
||||
#elif defined(DATA_A_IQ1_S)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib32 = (idx % 32) / 4; // 0..7
|
||||
const uint ib8 = idx % 32;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint qh = data_a[ib].qh[ib32];
|
||||
const uint qs = data_a[ib].qs[ib8];
|
||||
const float dl = d * (2 * bitfieldExtract(qh, 12, 3) + 1);
|
||||
const float delta = ((qh & 0x8000) != 0) ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||
const int16_t grid = int16_t(iq1s_grid[qs | (bitfieldExtract(qh, 3 * int(ib8 & 3), 3) << 8)]);
|
||||
|
||||
[[unroll]] for (int k = 0; k < 8; ++k) {
|
||||
buf_a[buf_idx + k] = FLOAT_TYPE(dl * (bitfieldExtract(grid, 2 * k, 2) + delta));
|
||||
}
|
||||
#elif defined(DATA_A_IQ1_M)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib8 = idx % 32;
|
||||
const uint ib16 = ib8 / 2;
|
||||
|
||||
const uint16_t[4] scales = data_a[ib].scales;
|
||||
const u16vec4 s = u16vec4(scales[0], scales[1], scales[2], scales[3]) >> 12;
|
||||
const float d = float(unpackHalf2x16(s.x | (s.y << 4) | (s.z << 8) | (s.w << 12)).x);
|
||||
const uint sc = scales[ib8 / 8];
|
||||
const uint qs = data_a[ib].qs[ib8];
|
||||
const uint qh = data_a[ib].qh[ib16] >> (4 * (ib8 & 1));
|
||||
const float dl = d * (2 * bitfieldExtract(sc, 3 * int(ib16 & 3), 3) + 1);
|
||||
const float delta = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA;
|
||||
const int16_t grid = int16_t(iq1s_grid[qs | ((qh & 7) << 8)]);
|
||||
|
||||
[[unroll]] for (int k = 0; k < 8; ++k) {
|
||||
buf_a[buf_idx + k] = FLOAT_TYPE(dl * (bitfieldExtract(grid, 2 * k, 2) + delta));
|
||||
}
|
||||
#elif defined(DATA_A_IQ2_XXS)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib32 = (idx % 32) / 4; // 0..7
|
||||
const uint ib8 = idx % 4;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint qs = data_a[ib].qs[8 * ib32 + ib8];
|
||||
const uint signs = pack32(u8vec4(
|
||||
data_a[ib].qs[8*ib32 + 4],
|
||||
data_a[ib].qs[8*ib32 + 5],
|
||||
data_a[ib].qs[8*ib32 + 6],
|
||||
data_a[ib].qs[8*ib32 + 7]
|
||||
));
|
||||
const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + (signs >> 28)));
|
||||
const uint32_t sign7 = bitfieldExtract(signs, 7 * int(ib8), 7);
|
||||
const uint sign = sign7 | (bitCount(sign7) << 7);
|
||||
const uvec2 grid = iq2xxs_grid[qs];
|
||||
const vec4 grid0 = vec4(unpack8(grid.x));
|
||||
const vec4 grid1 = vec4(unpack8(grid.y));
|
||||
|
||||
buf_a[buf_idx ] = db * FLOAT_TYPE((sign & 1) != 0 ? -grid0.x : grid0.x);
|
||||
buf_a[buf_idx + 1] = db * FLOAT_TYPE((sign & 2) != 0 ? -grid0.y : grid0.y);
|
||||
buf_a[buf_idx + 2] = db * FLOAT_TYPE((sign & 4) != 0 ? -grid0.z : grid0.z);
|
||||
buf_a[buf_idx + 3] = db * FLOAT_TYPE((sign & 8) != 0 ? -grid0.w : grid0.w);
|
||||
buf_a[buf_idx + 4] = db * FLOAT_TYPE((sign & 16) != 0 ? -grid1.x : grid1.x);
|
||||
buf_a[buf_idx + 5] = db * FLOAT_TYPE((sign & 32) != 0 ? -grid1.y : grid1.y);
|
||||
buf_a[buf_idx + 6] = db * FLOAT_TYPE((sign & 64) != 0 ? -grid1.z : grid1.z);
|
||||
buf_a[buf_idx + 7] = db * FLOAT_TYPE((sign & 128) != 0 ? -grid1.w : grid1.w);
|
||||
#elif defined(DATA_A_IQ2_XS)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib32 = (idx % 32) / 4; // 0..7
|
||||
const uint ib8 = idx % 4; // 0..3
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint scale = (data_a[ib].scales[ib32] >> (2 * (ib8 & 2))) & 0xf;
|
||||
const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + scale));
|
||||
const uint qs = data_a[ib].qs[4 * ib32 + ib8];
|
||||
const uint sign7 = qs >> 9;
|
||||
const uint sign = sign7 | (bitCount(sign7) << 7);
|
||||
const uvec2 grid = iq2xs_grid[qs & 511];
|
||||
const vec4 grid0 = vec4(unpack8(grid.x));
|
||||
const vec4 grid1 = vec4(unpack8(grid.y));
|
||||
|
||||
buf_a[buf_idx ] = db * FLOAT_TYPE((sign & 1) != 0 ? -grid0.x : grid0.x);
|
||||
buf_a[buf_idx + 1] = db * FLOAT_TYPE((sign & 2) != 0 ? -grid0.y : grid0.y);
|
||||
buf_a[buf_idx + 2] = db * FLOAT_TYPE((sign & 4) != 0 ? -grid0.z : grid0.z);
|
||||
buf_a[buf_idx + 3] = db * FLOAT_TYPE((sign & 8) != 0 ? -grid0.w : grid0.w);
|
||||
buf_a[buf_idx + 4] = db * FLOAT_TYPE((sign & 16) != 0 ? -grid1.x : grid1.x);
|
||||
buf_a[buf_idx + 5] = db * FLOAT_TYPE((sign & 32) != 0 ? -grid1.y : grid1.y);
|
||||
buf_a[buf_idx + 6] = db * FLOAT_TYPE((sign & 64) != 0 ? -grid1.z : grid1.z);
|
||||
buf_a[buf_idx + 7] = db * FLOAT_TYPE((sign & 128) != 0 ? -grid1.w : grid1.w);
|
||||
#elif defined(DATA_A_IQ2_S)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib8 = idx % 32; // 0..31
|
||||
const uint ib32 = ib8 / 4; // 0..7
|
||||
|
||||
const uint scale = (data_a[ib].scales[ib32] >> (2 * (ib8 & 2))) & 0xf;
|
||||
const uint qs = data_a[ib].qs[ib8];
|
||||
const uint qh = data_a[ib].qh[ib32];
|
||||
const uint qhshift = 2 * (ib8 % 4);
|
||||
const uint sign = data_a[ib].qs[QUANT_K / 8 + ib8];
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + scale));
|
||||
const uvec2 grid = iq2s_grid[qs | ((qh << (8 - qhshift)) & 0x300)];
|
||||
const vec4 grid0 = vec4(unpack8(grid.x));
|
||||
const vec4 grid1 = vec4(unpack8(grid.y));
|
||||
|
||||
buf_a[buf_idx ] = db * FLOAT_TYPE((sign & 1) != 0 ? -grid0.x : grid0.x);
|
||||
buf_a[buf_idx + 1] = db * FLOAT_TYPE((sign & 2) != 0 ? -grid0.y : grid0.y);
|
||||
buf_a[buf_idx + 2] = db * FLOAT_TYPE((sign & 4) != 0 ? -grid0.z : grid0.z);
|
||||
buf_a[buf_idx + 3] = db * FLOAT_TYPE((sign & 8) != 0 ? -grid0.w : grid0.w);
|
||||
buf_a[buf_idx + 4] = db * FLOAT_TYPE((sign & 16) != 0 ? -grid1.x : grid1.x);
|
||||
buf_a[buf_idx + 5] = db * FLOAT_TYPE((sign & 32) != 0 ? -grid1.y : grid1.y);
|
||||
buf_a[buf_idx + 6] = db * FLOAT_TYPE((sign & 64) != 0 ? -grid1.z : grid1.z);
|
||||
buf_a[buf_idx + 7] = db * FLOAT_TYPE((sign & 128) != 0 ? -grid1.w : grid1.w);
|
||||
#elif defined(DATA_A_IQ3_XXS)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 64; // 4 values per idx
|
||||
const uint iqs = idx % 64; // 0..63
|
||||
const uint is = QUANT_K / 4 + 4 * (iqs / 8); // 8 values
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint qs = data_a[ib].qs[iqs];
|
||||
const uint signs = pack32(u8vec4(
|
||||
data_a[ib].qs[is+0],
|
||||
data_a[ib].qs[is+1],
|
||||
data_a[ib].qs[is+2],
|
||||
data_a[ib].qs[is+3]
|
||||
));
|
||||
const float db = d * 0.5 * (0.5 + (signs >> 28));
|
||||
const uint32_t sign7 = bitfieldExtract(signs, 7 * (int(iqs / 2) % 4), 7);
|
||||
const uint sign = (sign7 | (bitCount(sign7) << 7)) >> (4 * (idx % 2));
|
||||
const uint grid = iq3xxs_grid[qs];
|
||||
const vec4 v = db * vec4(unpack8(grid));
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE((sign & 1) != 0 ? -v.x : v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE((sign & 2) != 0 ? -v.y : v.y);
|
||||
buf_a[buf_idx + 2] = FLOAT_TYPE((sign & 4) != 0 ? -v.z : v.z);
|
||||
buf_a[buf_idx + 3] = FLOAT_TYPE((sign & 8) != 0 ? -v.w : v.w);
|
||||
#elif defined(DATA_A_IQ3_S)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 64; // 4 values per idx
|
||||
const uint iqs = idx % 64; // 0..63
|
||||
const uint iqh = iqs / 8;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint qs = data_a[ib].qs[iqs];
|
||||
const uint qh = data_a[ib].qh[iqh];
|
||||
const int8_t sign = int8_t(data_a[ib].signs[iqs / 2] >> (4 * (idx % 2)));
|
||||
const uint scale = data_a[ib].scales[iqs / 16];
|
||||
const i8vec2 sign01 = i8vec2(1 - (2 & i8vec2(sign << 1, sign)));
|
||||
const float db = d * (1 + 2 * ((scale >> (4 * (iqh & 1))) & 0xf));
|
||||
const uint32_t grid = iq3s_grid[qs | ((qh << (8 - (iqs % 8))) & 256)];
|
||||
const vec4 v = db * vec4(unpack8(grid));
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE((sign & 1) != 0 ? -v.x : v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE((sign & 2) != 0 ? -v.y : v.y);
|
||||
buf_a[buf_idx + 2] = FLOAT_TYPE((sign & 4) != 0 ? -v.z : v.z);
|
||||
buf_a[buf_idx + 3] = FLOAT_TYPE((sign & 8) != 0 ? -v.w : v.w);
|
||||
#elif defined(DATA_A_IQ4_XS)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint ib32 = (idx % 128) / 16; // 0..7
|
||||
const uint iq = 16 * ib32 + 2 * (idx % 8);
|
||||
|
||||
const uint sl = (data_a[ib].scales_l[ib32/2] >> (4 * (ib32 & 1))) & 0xF;
|
||||
const uint sh = ((data_a[ib].scales_h) >> (2 * ib32)) & 3;
|
||||
const uint qshift = (idx & 8) >> 1;
|
||||
u8vec2 qs = u8vec2(data_a[ib].qs[iq], data_a[ib].qs[iq + 1]);
|
||||
qs = (qs >> qshift) & uint8_t(0xF);
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const vec2 v = d * float(int(sl | (sh << 4)) - 32) * vec2(kvalues_iq4nl[qs.x], kvalues_iq4nl[qs.y]);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
|
||||
#elif defined(DATA_A_IQ4_NL)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 2 * loadr_a;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = idx & 0x07;
|
||||
|
||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a_packed16[ib].d);
|
||||
const uint vui = uint(data_a_packed16[ib].qs[iqs]);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(kvalues_iq4nl[vui & 0xF]) * d;
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 8, 4)]) * d;
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 4, 4)]) * d;
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(kvalues_iq4nl[vui >> 12]) * d;
|
||||
#elif defined(DATA_A_MXFP4)
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 2 * loadr_a;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = (idx & 0x07) * 2;
|
||||
|
||||
const float d = e8m0_to_fp32(data_a[ib].e);
|
||||
const uint vui = uint(data_a[ib].qs[iqs]);
|
||||
const uint vui2 = uint(data_a[ib].qs[iqs+1]);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(kvalues_mxfp4[vui & 0xF] * d);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(kvalues_mxfp4[vui >> 4] * d);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(kvalues_mxfp4[vui2 & 0xF] * d);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(kvalues_mxfp4[vui2 >> 4] * d);
|
||||
#endif
|
||||
load_a_to_shmem(pos_a, loadr_a, loadc_a + l, ir * BM + loadc_a + l, block + loadr_a, end_k);
|
||||
}
|
||||
[[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {
|
||||
#if LOAD_VEC_B == 8
|
||||
#ifdef MUL_MAT_ID
|
||||
const u16vec2 row_idx = row_ids[loadc_b + l];
|
||||
const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
|
||||
#if !defined(MUL_MAT_ID)
|
||||
load_b_to_shmem(pos_b, loadr_b, loadc_b + l, ic * BN + loadc_b + l, block + loadr_b, end_k);
|
||||
#else
|
||||
const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
|
||||
#endif
|
||||
const uint buf_idx = (loadc_b + l) * SHMEM_STRIDE + loadr_b * LOAD_VEC_B;
|
||||
#if defined(DATA_B_BF16)
|
||||
B_TYPE32 bb = TO_FLOAT_TYPE(data_b[idx]);
|
||||
#else
|
||||
B_TYPE32 bb = B_TYPE32(data_b[idx]);
|
||||
#endif
|
||||
buf_b[buf_idx + 0] = FLOAT_TYPE(bb[0].x);
|
||||
buf_b[buf_idx + 1] = FLOAT_TYPE(bb[0].y);
|
||||
buf_b[buf_idx + 2] = FLOAT_TYPE(bb[0].z);
|
||||
buf_b[buf_idx + 3] = FLOAT_TYPE(bb[0].w);
|
||||
buf_b[buf_idx + 4] = FLOAT_TYPE(bb[1].x);
|
||||
buf_b[buf_idx + 5] = FLOAT_TYPE(bb[1].y);
|
||||
buf_b[buf_idx + 6] = FLOAT_TYPE(bb[1].z);
|
||||
buf_b[buf_idx + 7] = FLOAT_TYPE(bb[1].w);
|
||||
#elif LOAD_VEC_B == 4
|
||||
#ifdef MUL_MAT_ID
|
||||
const u16vec2 row_idx = row_ids[loadc_b + l];
|
||||
const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
|
||||
#else
|
||||
const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
|
||||
#endif
|
||||
const uint buf_idx = (loadc_b + l) * SHMEM_STRIDE + loadr_b * LOAD_VEC_B;
|
||||
#if defined(DATA_B_BF16)
|
||||
B_TYPE32 bb = TO_FLOAT_TYPE(data_b[idx]);
|
||||
#else
|
||||
B_TYPE32 bb = B_TYPE32(data_b[idx]);
|
||||
#endif
|
||||
buf_b[buf_idx + 0] = FLOAT_TYPE(bb.x);
|
||||
buf_b[buf_idx + 1] = FLOAT_TYPE(bb.y);
|
||||
buf_b[buf_idx + 2] = FLOAT_TYPE(bb.z);
|
||||
buf_b[buf_idx + 3] = FLOAT_TYPE(bb.w);
|
||||
#elif !MUL_MAT_ID
|
||||
if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
|
||||
} else {
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
|
||||
}
|
||||
#else
|
||||
const uint row_i = ic * BN + loadc_b + l;
|
||||
if (row_i < _ne1 && block + loadr_b < end_k) {
|
||||
const u16vec2 row_idx = row_ids[loadc_b + l];
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
|
||||
} else {
|
||||
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
|
||||
}
|
||||
load_b_to_shmem(pos_b, loadr_b, loadc_b + l, ic, _ne1, block + loadr_b, end_k);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
568
ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_funcs.comp
Normal file
568
ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_funcs.comp
Normal file
@@ -0,0 +1,568 @@
|
||||
void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uint idx_m, const uint idx_k, const uint end_k) {
|
||||
#if defined(DATA_A_F32) || defined(DATA_A_F16)
|
||||
#if LOAD_VEC_A == 8
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
FLOAT_TYPE_VEC8 aa = FLOAT_TYPE_VEC8(data_a[idx]);
|
||||
buf_a[buf_idx ] = aa[0].x;
|
||||
buf_a[buf_idx + 1] = aa[0].y;
|
||||
buf_a[buf_idx + 2] = aa[0].z;
|
||||
buf_a[buf_idx + 3] = aa[0].w;
|
||||
buf_a[buf_idx + 4] = aa[1].x;
|
||||
buf_a[buf_idx + 5] = aa[1].y;
|
||||
buf_a[buf_idx + 6] = aa[1].z;
|
||||
buf_a[buf_idx + 7] = aa[1].w;
|
||||
#elif LOAD_VEC_A == 4
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
FLOAT_TYPE_VEC4 aa = FLOAT_TYPE_VEC4(data_a[idx]);
|
||||
buf_a[buf_idx ] = aa.x;
|
||||
buf_a[buf_idx + 1] = aa.y;
|
||||
buf_a[buf_idx + 2] = aa.z;
|
||||
buf_a[buf_idx + 3] = aa.w;
|
||||
#else
|
||||
if (idx_m < p.M && idx_k < end_k) {
|
||||
buf_a[col * SHMEM_STRIDE + row] = FLOAT_TYPE(data_a[pos_a + col * p.stride_a + row]);
|
||||
} else {
|
||||
buf_a[col * SHMEM_STRIDE + row] = FLOAT_TYPE(0.0f);
|
||||
}
|
||||
#endif
|
||||
#elif defined(DATA_A_BF16)
|
||||
#if LOAD_VEC_A == 4
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
FLOAT_TYPE_VEC4 aa = FLOAT_TYPE_VEC4(TO_FLOAT_TYPE(data_a[idx]));
|
||||
buf_a[buf_idx ] = aa.x;
|
||||
buf_a[buf_idx + 1] = aa.y;
|
||||
buf_a[buf_idx + 2] = aa.z;
|
||||
buf_a[buf_idx + 3] = aa.w;
|
||||
#else
|
||||
if (idx_m < p.M && idx_k < end_k) {
|
||||
buf_a[col * SHMEM_STRIDE + row] = TO_FLOAT_TYPE(data_a[pos_a + col * p.stride_a + row]);
|
||||
} else {
|
||||
buf_a[col * SHMEM_STRIDE + row] = TO_FLOAT_TYPE(uint16_t(0));
|
||||
}
|
||||
#endif
|
||||
#elif defined(DATA_A_Q4_0)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + 4 * row;
|
||||
|
||||
const uint ib = idx / 4;
|
||||
const uint iqs = idx & 0x03;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const uint vui = uint(data_a_packed16[ib].qs[2*iqs]) | (uint(data_a_packed16[ib].qs[2*iqs + 1]) << 16);
|
||||
const vec4 v0 = (vec4(unpack8(vui & 0x0F0F0F0F)) - 8.0f) * d;
|
||||
const vec4 v1 = (vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) - 8.0f) * d;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v0.x);
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(v0.y);
|
||||
buf_a[buf_idx + 2 ] = FLOAT_TYPE(v0.z);
|
||||
buf_a[buf_idx + 3 ] = FLOAT_TYPE(v0.w);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(v1.x);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(v1.y);
|
||||
buf_a[buf_idx + 18] = FLOAT_TYPE(v1.z);
|
||||
buf_a[buf_idx + 19] = FLOAT_TYPE(v1.w);
|
||||
#elif defined(DATA_A_Q4_1)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + 4 * row;
|
||||
|
||||
const uint ib = idx / 4;
|
||||
const uint iqs = idx & 0x03;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const float m = float(data_a_packed16[ib].m);
|
||||
const uint vui = uint(data_a_packed16[ib].qs[2*iqs]) | (uint(data_a_packed16[ib].qs[2*iqs + 1]) << 16);
|
||||
const vec4 v0 = vec4(unpack8(vui & 0x0F0F0F0F)) * d + m;
|
||||
const vec4 v1 = vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) * d + m;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v0.x);
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(v0.y);
|
||||
buf_a[buf_idx + 2 ] = FLOAT_TYPE(v0.z);
|
||||
buf_a[buf_idx + 3 ] = FLOAT_TYPE(v0.w);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(v1.x);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(v1.y);
|
||||
buf_a[buf_idx + 18] = FLOAT_TYPE(v1.z);
|
||||
buf_a[buf_idx + 19] = FLOAT_TYPE(v1.w);
|
||||
#elif defined(DATA_A_Q5_0)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + 2 * row;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = idx & 0x07;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const uint uint_qh = uint(data_a_packed16[ib].qh[1]) << 16 | uint(data_a_packed16[ib].qh[0]);
|
||||
const ivec2 qh0 = ivec2(((uint_qh >> 2*iqs) << 4) & 0x10, (uint_qh >> (2*iqs + 12)) & 0x10);
|
||||
const ivec2 qh1 = ivec2(((uint_qh >> (2*iqs + 1)) << 4) & 0x10, (uint_qh >> (2*iqs + 13)) & 0x10);
|
||||
|
||||
const uint vui = uint(data_a_packed16[ib].qs[iqs]);
|
||||
const vec4 v = (vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) - 16.0f) * d;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(v.z);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(v.w);
|
||||
#elif defined(DATA_A_Q5_1)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + 2 * row;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = idx & 0x07;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const float m = float(data_a_packed16[ib].m);
|
||||
const uint uint_qh = data_a_packed16[ib].qh;
|
||||
const ivec2 qh0 = ivec2(((uint_qh >> 2*iqs) << 4) & 0x10, (uint_qh >> (2*iqs + 12)) & 0x10);
|
||||
const ivec2 qh1 = ivec2(((uint_qh >> (2*iqs + 1)) << 4) & 0x10, (uint_qh >> (2*iqs + 13)) & 0x10);
|
||||
|
||||
const uint vui = uint(data_a_packed16[ib].qs[iqs]);
|
||||
const vec4 v = vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) * d + m;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(v.z);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(v.w);
|
||||
#elif defined(DATA_A_Q8_0)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = idx & 0x07;
|
||||
|
||||
const float d = float(data_a_packed16[ib].d);
|
||||
const i8vec2 v0 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs])).xy; // vec4 used due to #12147
|
||||
const i8vec2 v1 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs + 1])).xy;
|
||||
const vec4 v = vec4(v0.x, v0.y, v1.x, v1.y) * d;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
|
||||
buf_a[buf_idx + 2] = FLOAT_TYPE(v.z);
|
||||
buf_a[buf_idx + 3] = FLOAT_TYPE(v.w);
|
||||
#elif defined(DATA_A_Q2_K)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30
|
||||
const uint scalesi = iqs / 8; // 0..15
|
||||
const uint qsshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
|
||||
|
||||
const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]);
|
||||
const uint scales = data_a[ib].scales[scalesi];
|
||||
const vec2 d = vec2(data_a[ib].d);
|
||||
|
||||
const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
|
||||
#elif defined(DATA_A_Q3_K)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 64; // 0,1
|
||||
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
|
||||
const uint hmi = (iqs % 16) * 2; // 0,2,4..30
|
||||
const uint j = (iqs % 64) / 4; // 0..3
|
||||
const uint is = iqs / 8; // 0..15
|
||||
const uint halfsplit = ((iqs % 64) / 16); // 0,1,2,3
|
||||
const uint qsshift = halfsplit * 2; // 0,2,4,6
|
||||
const uint m = 1 << (4 * n + halfsplit); // 1,2,4,8,16,32,64,128
|
||||
|
||||
const int8_t us = int8_t(((data_a[ib].scales[is % 8] >> (4 * int(is / 8))) & 0xF)
|
||||
| (((data_a[ib].scales[8 + (is % 4)] >> (2 * int(is / 4))) & 3) << 4));
|
||||
const float dl = float(data_a[ib].d) * float(us - 32);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi ] & m) != 0) ? 0 : 4)));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4)));
|
||||
#elif defined(DATA_A_Q4_K)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 32; // 0,1,2,3
|
||||
const uint b = (iqs % 32) / 16; // 0,1
|
||||
const uint is = 2 * n + b; // 0..7
|
||||
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
|
||||
|
||||
const vec2 loadd = vec2(data_a[ib].d);
|
||||
|
||||
const uint scidx0 = (is < 4) ? is : (is + 4);
|
||||
const uint scidx1 = (is < 4) ? is : (is - 4);
|
||||
const uint scidxmask1 = (is < 4) ? 0x30 : 0xC0;
|
||||
const uint scidxshift1 = (is < 4) ? 0 : 2;
|
||||
const uint mbidx0 = is + 4;
|
||||
const uint mbidx1 = (is < 4) ? is + 4 : is;
|
||||
const uint mbidxmask0 = (is < 4) ? 0xF : 0xF0;
|
||||
const uint mbidxshift0 = (is < 4) ? 0 : 4;
|
||||
const uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
|
||||
const uint mbidxshift1 = (is < 4) ? 0 : 2;
|
||||
|
||||
const uint8_t sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
|
||||
const uint8_t mbyte = uint8_t((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0 | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));
|
||||
|
||||
const float d = loadd.x * sc;
|
||||
const float m = -loadd.y * mbyte;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF), m));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF), m));
|
||||
#elif defined(DATA_A_Q5_K)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 32; // 0,1,2,3
|
||||
const uint b = (iqs % 32) / 16; // 0,1
|
||||
const uint is = 2 * n + b; // 0..7
|
||||
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
|
||||
const uint qhi = (iqs % 16) * 2; // 0,2,4..30
|
||||
|
||||
const uint8_t hm = uint8_t(1 << (iqs / 16));
|
||||
|
||||
const vec2 loadd = vec2(data_a[ib].d);
|
||||
|
||||
const uint scidx0 = (is < 4) ? is : (is + 4);
|
||||
const uint scidx1 = (is < 4) ? is : (is - 4);
|
||||
const uint scidxmask1 = (is < 4) ? 0x30 : 0xC0;
|
||||
const uint scidxshift1 = (is < 4) ? 0 : 2;
|
||||
const uint mbidx0 = is + 4;
|
||||
const uint mbidx1 = (is < 4) ? is + 4 : is;
|
||||
const uint mbidxmask0 = (is < 4) ? 0xF : 0xF0;
|
||||
const uint mbidxshift0 = (is < 4) ? 0 : 4;
|
||||
const uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
|
||||
const uint mbidxshift1 = (is < 4) ? 0 : 2;
|
||||
|
||||
const uint8_t sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
|
||||
const uint8_t mbyte = uint8_t(((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0) | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));
|
||||
|
||||
const float d = loadd.x * sc;
|
||||
const float m = -loadd.y * mbyte;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0), m));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0), m));
|
||||
#elif defined(DATA_A_Q6_K)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 64; // 0,1
|
||||
const uint b = (iqs % 64) / 32; // 0,1
|
||||
const uint is_b = (iqs % 16) / 8; // 0,1
|
||||
const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
|
||||
const uint is = 8 * n + qhshift + is_b; // 0..15
|
||||
const uint qsi = n * 64 + (iqs % 32) * 2; // 0,2,4..126
|
||||
const uint qhi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
|
||||
|
||||
const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi ] >> qhshift) & 3) << 4)) - 32));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));
|
||||
#elif defined(DATA_A_IQ1_S)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib32 = (idx % 32) / 4; // 0..7
|
||||
const uint ib8 = idx % 32;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint qh = data_a[ib].qh[ib32];
|
||||
const uint qs = data_a[ib].qs[ib8];
|
||||
const float dl = d * (2 * bitfieldExtract(qh, 12, 3) + 1);
|
||||
const float delta = ((qh & 0x8000) != 0) ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||
const int16_t grid = int16_t(iq1s_grid[qs | (bitfieldExtract(qh, 3 * int(ib8 & 3), 3) << 8)]);
|
||||
|
||||
[[unroll]] for (int k = 0; k < 8; ++k) {
|
||||
buf_a[buf_idx + k] = FLOAT_TYPE(dl * (bitfieldExtract(grid, 2 * k, 2) + delta));
|
||||
}
|
||||
#elif defined(DATA_A_IQ1_M)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib8 = idx % 32;
|
||||
const uint ib16 = ib8 / 2;
|
||||
|
||||
const uint16_t[4] scales = data_a[ib].scales;
|
||||
const u16vec4 s = u16vec4(scales[0], scales[1], scales[2], scales[3]) >> 12;
|
||||
const float d = float(unpackHalf2x16(s.x | (s.y << 4) | (s.z << 8) | (s.w << 12)).x);
|
||||
const uint sc = scales[ib8 / 8];
|
||||
const uint qs = data_a[ib].qs[ib8];
|
||||
const uint qh = data_a[ib].qh[ib16] >> (4 * (ib8 & 1));
|
||||
const float dl = d * (2 * bitfieldExtract(sc, 3 * int(ib16 & 3), 3) + 1);
|
||||
const float delta = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA;
|
||||
const int16_t grid = int16_t(iq1s_grid[qs | ((qh & 7) << 8)]);
|
||||
|
||||
[[unroll]] for (int k = 0; k < 8; ++k) {
|
||||
buf_a[buf_idx + k] = FLOAT_TYPE(dl * (bitfieldExtract(grid, 2 * k, 2) + delta));
|
||||
}
|
||||
#elif defined(DATA_A_IQ2_XXS)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib32 = (idx % 32) / 4; // 0..7
|
||||
const uint ib8 = idx % 4;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint qs = data_a[ib].qs[8 * ib32 + ib8];
|
||||
const uint signs = pack32(u8vec4(
|
||||
data_a[ib].qs[8*ib32 + 4],
|
||||
data_a[ib].qs[8*ib32 + 5],
|
||||
data_a[ib].qs[8*ib32 + 6],
|
||||
data_a[ib].qs[8*ib32 + 7]
|
||||
));
|
||||
const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + (signs >> 28)));
|
||||
const uint32_t sign7 = bitfieldExtract(signs, 7 * int(ib8), 7);
|
||||
const uint sign = sign7 | (bitCount(sign7) << 7);
|
||||
const uvec2 grid = iq2xxs_grid[qs];
|
||||
const vec4 grid0 = vec4(unpack8(grid.x));
|
||||
const vec4 grid1 = vec4(unpack8(grid.y));
|
||||
|
||||
buf_a[buf_idx ] = db * FLOAT_TYPE((sign & 1) != 0 ? -grid0.x : grid0.x);
|
||||
buf_a[buf_idx + 1] = db * FLOAT_TYPE((sign & 2) != 0 ? -grid0.y : grid0.y);
|
||||
buf_a[buf_idx + 2] = db * FLOAT_TYPE((sign & 4) != 0 ? -grid0.z : grid0.z);
|
||||
buf_a[buf_idx + 3] = db * FLOAT_TYPE((sign & 8) != 0 ? -grid0.w : grid0.w);
|
||||
buf_a[buf_idx + 4] = db * FLOAT_TYPE((sign & 16) != 0 ? -grid1.x : grid1.x);
|
||||
buf_a[buf_idx + 5] = db * FLOAT_TYPE((sign & 32) != 0 ? -grid1.y : grid1.y);
|
||||
buf_a[buf_idx + 6] = db * FLOAT_TYPE((sign & 64) != 0 ? -grid1.z : grid1.z);
|
||||
buf_a[buf_idx + 7] = db * FLOAT_TYPE((sign & 128) != 0 ? -grid1.w : grid1.w);
|
||||
#elif defined(DATA_A_IQ2_XS)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib32 = (idx % 32) / 4; // 0..7
|
||||
const uint ib8 = idx % 4; // 0..3
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint scale = (data_a[ib].scales[ib32] >> (2 * (ib8 & 2))) & 0xf;
|
||||
const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + scale));
|
||||
const uint qs = data_a[ib].qs[4 * ib32 + ib8];
|
||||
const uint sign7 = qs >> 9;
|
||||
const uint sign = sign7 | (bitCount(sign7) << 7);
|
||||
const uvec2 grid = iq2xs_grid[qs & 511];
|
||||
const vec4 grid0 = vec4(unpack8(grid.x));
|
||||
const vec4 grid1 = vec4(unpack8(grid.y));
|
||||
|
||||
buf_a[buf_idx ] = db * FLOAT_TYPE((sign & 1) != 0 ? -grid0.x : grid0.x);
|
||||
buf_a[buf_idx + 1] = db * FLOAT_TYPE((sign & 2) != 0 ? -grid0.y : grid0.y);
|
||||
buf_a[buf_idx + 2] = db * FLOAT_TYPE((sign & 4) != 0 ? -grid0.z : grid0.z);
|
||||
buf_a[buf_idx + 3] = db * FLOAT_TYPE((sign & 8) != 0 ? -grid0.w : grid0.w);
|
||||
buf_a[buf_idx + 4] = db * FLOAT_TYPE((sign & 16) != 0 ? -grid1.x : grid1.x);
|
||||
buf_a[buf_idx + 5] = db * FLOAT_TYPE((sign & 32) != 0 ? -grid1.y : grid1.y);
|
||||
buf_a[buf_idx + 6] = db * FLOAT_TYPE((sign & 64) != 0 ? -grid1.z : grid1.z);
|
||||
buf_a[buf_idx + 7] = db * FLOAT_TYPE((sign & 128) != 0 ? -grid1.w : grid1.w);
|
||||
#elif defined(DATA_A_IQ2_S)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 32; // 8 values per idx
|
||||
const uint ib8 = idx % 32; // 0..31
|
||||
const uint ib32 = ib8 / 4; // 0..7
|
||||
|
||||
const uint scale = (data_a[ib].scales[ib32] >> (2 * (ib8 & 2))) & 0xf;
|
||||
const uint qs = data_a[ib].qs[ib8];
|
||||
const uint qh = data_a[ib].qh[ib32];
|
||||
const uint qhshift = 2 * (ib8 % 4);
|
||||
const uint sign = data_a[ib].qs[QUANT_K / 8 + ib8];
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const FLOAT_TYPE db = FLOAT_TYPE(d * 0.25 * (0.5 + scale));
|
||||
const uvec2 grid = iq2s_grid[qs | ((qh << (8 - qhshift)) & 0x300)];
|
||||
const vec4 grid0 = vec4(unpack8(grid.x));
|
||||
const vec4 grid1 = vec4(unpack8(grid.y));
|
||||
|
||||
buf_a[buf_idx ] = db * FLOAT_TYPE((sign & 1) != 0 ? -grid0.x : grid0.x);
|
||||
buf_a[buf_idx + 1] = db * FLOAT_TYPE((sign & 2) != 0 ? -grid0.y : grid0.y);
|
||||
buf_a[buf_idx + 2] = db * FLOAT_TYPE((sign & 4) != 0 ? -grid0.z : grid0.z);
|
||||
buf_a[buf_idx + 3] = db * FLOAT_TYPE((sign & 8) != 0 ? -grid0.w : grid0.w);
|
||||
buf_a[buf_idx + 4] = db * FLOAT_TYPE((sign & 16) != 0 ? -grid1.x : grid1.x);
|
||||
buf_a[buf_idx + 5] = db * FLOAT_TYPE((sign & 32) != 0 ? -grid1.y : grid1.y);
|
||||
buf_a[buf_idx + 6] = db * FLOAT_TYPE((sign & 64) != 0 ? -grid1.z : grid1.z);
|
||||
buf_a[buf_idx + 7] = db * FLOAT_TYPE((sign & 128) != 0 ? -grid1.w : grid1.w);
|
||||
#elif defined(DATA_A_IQ3_XXS)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 64; // 4 values per idx
|
||||
const uint iqs = idx % 64; // 0..63
|
||||
const uint is = QUANT_K / 4 + 4 * (iqs / 8); // 8 values
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint qs = data_a[ib].qs[iqs];
|
||||
const uint signs = pack32(u8vec4(
|
||||
data_a[ib].qs[is+0],
|
||||
data_a[ib].qs[is+1],
|
||||
data_a[ib].qs[is+2],
|
||||
data_a[ib].qs[is+3]
|
||||
));
|
||||
const float db = d * 0.5 * (0.5 + (signs >> 28));
|
||||
const uint32_t sign7 = bitfieldExtract(signs, 7 * (int(iqs / 2) % 4), 7);
|
||||
const uint sign = (sign7 | (bitCount(sign7) << 7)) >> (4 * (idx % 2));
|
||||
const uint grid = iq3xxs_grid[qs];
|
||||
const vec4 v = db * vec4(unpack8(grid));
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE((sign & 1) != 0 ? -v.x : v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE((sign & 2) != 0 ? -v.y : v.y);
|
||||
buf_a[buf_idx + 2] = FLOAT_TYPE((sign & 4) != 0 ? -v.z : v.z);
|
||||
buf_a[buf_idx + 3] = FLOAT_TYPE((sign & 8) != 0 ? -v.w : v.w);
|
||||
#elif defined(DATA_A_IQ3_S)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 64; // 4 values per idx
|
||||
const uint iqs = idx % 64; // 0..63
|
||||
const uint iqh = iqs / 8;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint qs = data_a[ib].qs[iqs];
|
||||
const uint qh = data_a[ib].qh[iqh];
|
||||
const int8_t sign = int8_t(data_a[ib].signs[iqs / 2] >> (4 * (idx % 2)));
|
||||
const uint scale = data_a[ib].scales[iqs / 16];
|
||||
const i8vec2 sign01 = i8vec2(1 - (2 & i8vec2(sign << 1, sign)));
|
||||
const float db = d * (1 + 2 * ((scale >> (4 * (iqh & 1))) & 0xf));
|
||||
const uint32_t grid = iq3s_grid[qs | ((qh << (8 - (iqs % 8))) & 256)];
|
||||
const vec4 v = db * vec4(unpack8(grid));
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE((sign & 1) != 0 ? -v.x : v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE((sign & 2) != 0 ? -v.y : v.y);
|
||||
buf_a[buf_idx + 2] = FLOAT_TYPE((sign & 4) != 0 ? -v.z : v.z);
|
||||
buf_a[buf_idx + 3] = FLOAT_TYPE((sign & 8) != 0 ? -v.w : v.w);
|
||||
#elif defined(DATA_A_IQ4_XS)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint ib32 = (idx % 128) / 16; // 0..7
|
||||
const uint iq = 16 * ib32 + 2 * (idx % 8);
|
||||
|
||||
const uint sl = (data_a[ib].scales_l[ib32/2] >> (4 * (ib32 & 1))) & 0xF;
|
||||
const uint sh = ((data_a[ib].scales_h) >> (2 * ib32)) & 3;
|
||||
const uint qshift = (idx & 8) >> 1;
|
||||
u8vec2 qs = u8vec2(data_a[ib].qs[iq], data_a[ib].qs[iq + 1]);
|
||||
qs = (qs >> qshift) & uint8_t(0xF);
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const vec2 v = d * float(int(sl | (sh << 4)) - 32) * vec2(kvalues_iq4nl[qs.x], kvalues_iq4nl[qs.y]);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
|
||||
#elif defined(DATA_A_IQ4_NL)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + 2 * row;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = idx & 0x07;
|
||||
|
||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a_packed16[ib].d);
|
||||
const uint vui = uint(data_a_packed16[ib].qs[iqs]);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(kvalues_iq4nl[vui & 0xF]) * d;
|
||||
buf_a[buf_idx + 1 ] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 8, 4)]) * d;
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 4, 4)]) * d;
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(kvalues_iq4nl[vui >> 12]) * d;
|
||||
#elif defined(DATA_A_MXFP4)
|
||||
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + 2 * row;
|
||||
|
||||
const uint ib = idx / 8;
|
||||
const uint iqs = (idx & 0x07) * 2;
|
||||
|
||||
const float d = e8m0_to_fp32(data_a[ib].e);
|
||||
const uint vui = uint(data_a[ib].qs[iqs]);
|
||||
const uint vui2 = uint(data_a[ib].qs[iqs+1]);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(kvalues_mxfp4[vui & 0xF] * d);
|
||||
buf_a[buf_idx + 16] = FLOAT_TYPE(kvalues_mxfp4[vui >> 4] * d);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(kvalues_mxfp4[vui2 & 0xF] * d);
|
||||
buf_a[buf_idx + 17] = FLOAT_TYPE(kvalues_mxfp4[vui2 >> 4] * d);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if !defined(MUL_MAT_ID)
|
||||
void load_b_to_shmem(const uint pos_b, const uint row, const uint col, const uint idx_n, const uint idx_k, const uint end_k) {
|
||||
#if LOAD_VEC_B == 8
|
||||
// Not supported for b_type bf16 because bf16mat2x4 does not exist
|
||||
const uint idx = pos_b + col * p.stride_b / LOAD_VEC_B + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_B;
|
||||
FLOAT_TYPE_VEC8 bb = FLOAT_TYPE_VEC8(data_b[idx]);
|
||||
buf_b[buf_idx + 0] = bb[0].x;
|
||||
buf_b[buf_idx + 1] = bb[0].y;
|
||||
buf_b[buf_idx + 2] = bb[0].z;
|
||||
buf_b[buf_idx + 3] = bb[0].w;
|
||||
buf_b[buf_idx + 4] = bb[1].x;
|
||||
buf_b[buf_idx + 5] = bb[1].y;
|
||||
buf_b[buf_idx + 6] = bb[1].z;
|
||||
buf_b[buf_idx + 7] = bb[1].w;
|
||||
#elif LOAD_VEC_B == 4
|
||||
const uint idx = pos_b + col * p.stride_b / LOAD_VEC_B + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_B;
|
||||
#if defined(DATA_B_BF16)
|
||||
FLOAT_TYPE_VEC4 bb = FLOAT_TYPE_VEC4(TO_FLOAT_TYPE(data_b[idx]));
|
||||
#else
|
||||
FLOAT_TYPE_VEC4 bb = FLOAT_TYPE_VEC4(data_b[idx]);
|
||||
#endif
|
||||
buf_b[buf_idx + 0] = bb.x;
|
||||
buf_b[buf_idx + 1] = bb.y;
|
||||
buf_b[buf_idx + 2] = bb.z;
|
||||
buf_b[buf_idx + 3] = bb.w;
|
||||
#else // LOAD_VEC_B == 1
|
||||
if (idx_n < p.N && idx_k < end_k) {
|
||||
buf_b[col * SHMEM_STRIDE + row] = TO_FLOAT_TYPE(data_b[pos_b + col * p.stride_b + row]);
|
||||
} else {
|
||||
buf_b[col * SHMEM_STRIDE + row] = FLOAT_TYPE(0.0f);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
void load_b_to_shmem(const uint pos_b, const uint row, const uint col, const uint ic, const uint _ne1, const uint idx_k, const uint end_k) {
|
||||
#if LOAD_VEC_B == 8
|
||||
// Not supported for b_type bf16 because bf16mat2x4 does not exist
|
||||
const u16vec2 row_idx = row_ids[col];
|
||||
const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_B;
|
||||
FLOAT_TYPE_VEC8 bb = FLOAT_TYPE_VEC8(data_b[idx]);
|
||||
buf_b[buf_idx + 0] = bb[0].x;
|
||||
buf_b[buf_idx + 1] = bb[0].y;
|
||||
buf_b[buf_idx + 2] = bb[0].z;
|
||||
buf_b[buf_idx + 3] = bb[0].w;
|
||||
buf_b[buf_idx + 4] = bb[1].x;
|
||||
buf_b[buf_idx + 5] = bb[1].y;
|
||||
buf_b[buf_idx + 6] = bb[1].z;
|
||||
buf_b[buf_idx + 7] = bb[1].w;
|
||||
#elif LOAD_VEC_B == 4
|
||||
const u16vec2 row_idx = row_ids[col];
|
||||
const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + row;
|
||||
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_B;
|
||||
#if defined(DATA_B_BF16)
|
||||
FLOAT_TYPE_VEC4 bb = FLOAT_TYPE_VEC4(TO_FLOAT_TYPE(data_b[idx]));
|
||||
#else
|
||||
FLOAT_TYPE_VEC4 bb = FLOAT_TYPE_VEC4(data_b[idx]);
|
||||
#endif
|
||||
buf_b[buf_idx + 0] = bb.x;
|
||||
buf_b[buf_idx + 1] = bb.y;
|
||||
buf_b[buf_idx + 2] = bb.z;
|
||||
buf_b[buf_idx + 3] = bb.w;
|
||||
#else // LOAD_VEC_B == 1
|
||||
const uint row_i = ic * BN + col;
|
||||
if (row_i < _ne1 && idx_k < end_k) {
|
||||
const u16vec2 row_idx = row_ids[col];
|
||||
buf_b[col * SHMEM_STRIDE + row] = TO_FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + row]);
|
||||
} else {
|
||||
buf_b[col * SHMEM_STRIDE + row] = FLOAT_TYPE(0.0f);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
@@ -13,13 +13,10 @@
|
||||
|
||||
#if !defined(LOAD_VEC_A) || LOAD_VEC_A == 1
|
||||
#define A_TYPE float
|
||||
#define A_TYPE32 float
|
||||
#elif LOAD_VEC_A == 4
|
||||
#define A_TYPE vec4
|
||||
#define A_TYPE32 vec4
|
||||
#elif LOAD_VEC_A == 8
|
||||
#define A_TYPE mat2x4
|
||||
#define A_TYPE32 mat2x4
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@@ -29,13 +26,10 @@
|
||||
|
||||
#if !defined(LOAD_VEC_A) || LOAD_VEC_A == 1
|
||||
#define A_TYPE float16_t
|
||||
#define A_TYPE32 float
|
||||
#elif LOAD_VEC_A == 4
|
||||
#define A_TYPE f16vec4
|
||||
#define A_TYPE32 vec4
|
||||
#elif LOAD_VEC_A == 8
|
||||
#define A_TYPE f16mat2x4
|
||||
#define A_TYPE32 mat2x4
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
@@ -320,9 +320,7 @@ void matmul_shaders(bool fp16, MatMulIdType matmul_id_type, bool coopmat, bool c
|
||||
std::string aligned_b_type_f32 = coopmat2 ? "float" : fp16 ? "mat2x4" : "vec4";
|
||||
std::string aligned_b_type_f16 = coopmat2 ? "float16_t" : fp16 ? "f16mat2x4" : "f16vec4";
|
||||
|
||||
std::map<std::string, std::string> base_dict = {
|
||||
{"FLOAT_TYPE_VEC2", (coopmat2 || fp16) ? "f16vec2" : "vec2"},
|
||||
};
|
||||
std::map<std::string, std::string> base_dict;
|
||||
std::string shader_name = "matmul";
|
||||
|
||||
if (matmul_id_type == MatMulIdType::DEFAULT) {
|
||||
@@ -349,26 +347,74 @@ void matmul_shaders(bool fp16, MatMulIdType matmul_id_type, bool coopmat, bool c
|
||||
|
||||
const std::string source_name = coopmat2 ? "mul_mm_cm2.comp" : "mul_mm.comp";
|
||||
|
||||
auto const &FLOAT_TYPE = [&](const std::string &t) -> std::string {
|
||||
if (t == "bf16") {
|
||||
// scalar path promotes to float
|
||||
if (!coopmat && !coopmat2) {
|
||||
return "float";
|
||||
auto const &FLOAT_TYPE = [&](int vec, const std::string &t) -> std::string {
|
||||
switch (vec) {
|
||||
case 1:
|
||||
if (t == "bf16") {
|
||||
// scalar path promotes to float
|
||||
if (!coopmat && !coopmat2) {
|
||||
return "float";
|
||||
}
|
||||
return "bfloat16_t";
|
||||
}
|
||||
return "bfloat16_t";
|
||||
if (coopmat2 || fp16) {
|
||||
return "float16_t";
|
||||
}
|
||||
return "float";
|
||||
case 2:
|
||||
if (t == "bf16") {
|
||||
// scalar path promotes to float
|
||||
if (!coopmat && !coopmat2) {
|
||||
return "vec2";
|
||||
}
|
||||
return "bf16vec2";
|
||||
}
|
||||
if (coopmat2 || fp16) {
|
||||
return "f16vec2";
|
||||
}
|
||||
return "vec2";
|
||||
case 4:
|
||||
if (t == "bf16") {
|
||||
// scalar path promotes to float
|
||||
if (!coopmat && !coopmat2) {
|
||||
return "vec4";
|
||||
}
|
||||
return "bf16vec4";
|
||||
}
|
||||
if (coopmat2 || fp16) {
|
||||
return "f16vec4";
|
||||
}
|
||||
return "vec4";
|
||||
case 8:
|
||||
if (t == "bf16") {
|
||||
// scalar path promotes to float
|
||||
if (!coopmat && !coopmat2) {
|
||||
return "mat2x4";
|
||||
}
|
||||
throw std::runtime_error("bf16 vec8 not supported");
|
||||
}
|
||||
if (coopmat2 || fp16) {
|
||||
return "f16mat2x4";
|
||||
}
|
||||
return "mat2x4";
|
||||
default:
|
||||
throw std::runtime_error("invalid vector size");
|
||||
}
|
||||
if (coopmat2 || fp16) {
|
||||
return "float16_t";
|
||||
}
|
||||
return "float";
|
||||
};
|
||||
|
||||
const std::map<std::string, std::string> float_type_dict_f16 = {
|
||||
{"FLOAT_TYPE", FLOAT_TYPE(1, "f16")},
|
||||
{"FLOAT_TYPE_VEC2", FLOAT_TYPE(2, "f16")},
|
||||
{"FLOAT_TYPE_VEC4", FLOAT_TYPE(4, "f16")},
|
||||
{"FLOAT_TYPE_VEC8", FLOAT_TYPE(8, "f16")},
|
||||
};
|
||||
|
||||
// Shaders with f16 B_TYPE
|
||||
string_to_spv(shader_name + "_f32_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, }), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f32_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F32", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"B_TYPE32", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f32_f16", source_name, merge_maps(merge_maps(base_dict, float_type_dict_f16), {{"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, }), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f32_f16_aligned", source_name, merge_maps(merge_maps(base_dict, float_type_dict_f16), {{"DATA_A_F32", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
|
||||
string_to_spv(shader_name + "_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F16", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"B_TYPE32", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F16", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f16", source_name, merge_maps(merge_maps(base_dict, float_type_dict_f16), {{"DATA_A_F16", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_f16_aligned", source_name, merge_maps(merge_maps(base_dict, float_type_dict_f16), {{"DATA_A_F16", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
|
||||
// bf16
|
||||
{
|
||||
@@ -379,13 +425,19 @@ void matmul_shaders(bool fp16, MatMulIdType matmul_id_type, bool coopmat, bool c
|
||||
// scalar path promotes to float
|
||||
std::string to_float_type = (coopmat || coopmat2) ? "uintBitsToBFloat16EXT" : "bf16_to_fp32";
|
||||
|
||||
const std::map<std::string, std::string> float_type_dict_bf16 = {
|
||||
{"FLOAT_TYPE", FLOAT_TYPE(1, "bf16")},
|
||||
{"FLOAT_TYPE_VEC2", FLOAT_TYPE(2, "bf16")},
|
||||
{"FLOAT_TYPE_VEC4", FLOAT_TYPE(4, "bf16")},
|
||||
};
|
||||
|
||||
// If bfloat16 is not supported, then only compile the scalar (promote to fp32) shader
|
||||
#if !defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
|
||||
if (!(coopmat || coopmat2))
|
||||
#endif
|
||||
{
|
||||
string_to_spv(shader_name + "_bf16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("bf16")}, {"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", "4"}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "u16vec4"}, {"B_TYPE32", "vec4"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"DATA_B_BF16", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_bf16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("bf16")}, {"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "uint16_t"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"DATA_B_BF16", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_bf16_aligned", source_name, merge_maps(merge_maps(base_dict, float_type_dict_bf16), {{"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", "4"}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "u16vec4"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"DATA_B_BF16", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_bf16", source_name, merge_maps(merge_maps(base_dict, float_type_dict_bf16), {{"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "uint16_t"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"DATA_B_BF16", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -406,20 +458,27 @@ void matmul_shaders(bool fp16, MatMulIdType matmul_id_type, bool coopmat, bool c
|
||||
// For aligned matmul loads
|
||||
std::string load_vec_a = (coopmat2 || tname == "f32" || tname == "f16" || tname == "bf16") ? load_vec : load_vec_quant;
|
||||
|
||||
const std::map<std::string, std::string> float_type_dict = {
|
||||
{"FLOAT_TYPE", FLOAT_TYPE(1, tname)},
|
||||
{"FLOAT_TYPE_VEC2", FLOAT_TYPE(2, tname)},
|
||||
{"FLOAT_TYPE_VEC4", FLOAT_TYPE(4, tname)},
|
||||
{"FLOAT_TYPE_VEC8", FLOAT_TYPE(8, tname)},
|
||||
};
|
||||
|
||||
// don't generate f32 variants for coopmat2
|
||||
if (!coopmat2) {
|
||||
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"B_TYPE32", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(merge_maps(base_dict, float_type_dict), {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(merge_maps(base_dict, float_type_dict), {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
}
|
||||
|
||||
if (tname != "f16" && tname != "f32") {
|
||||
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"B_TYPE32", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(merge_maps(base_dict, float_type_dict), {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(merge_maps(base_dict, float_type_dict), {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
|
||||
}
|
||||
|
||||
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
if (!coopmat && !coopmat2 && matmul_id_type == MatMulIdType::NONE && is_legacy_quant(tname)) {
|
||||
string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc);
|
||||
string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(merge_maps(base_dict, float_type_dict), {{data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user