The original implementation unconditionally returned true for this operation, leading to a failure when the tensor's first dimension (ne[0]) was not a multiple of WARP_SIZE. This caused an GGML_ASSERT(ncols % WARP_SIZE == 0) failure in ggml-sycl/norm.cpp.
This change updates the ggml_backend_sycl_device_supports_op check to correctly return true for GGML_OP_RMS_NORM only when the first dimension of the tensor is a multiple of WARP_SIZE, ensuring the operation can be performed without error.
This patch improves GEMM for FP32 Data Type on PowerPC
Implements GEMM on large blocks with configurable block size mc, nc, kc
(default: 256, 256, 256).
Packing Function optimized to access blocks as per memory layout.
GEMM Optimized to work on larger blocks.
Isolated Packing from GEMM Operations for better MMA utilization.
Verified functionality and correctness uing llama-cli and stand alone
test case (performs matmul and compares final mattrix C result with base).
Minor code refactoring changes:
Replace macro with inline function
Code Indent made consistent with 4 spaces
Performance Testing:
Observed 50% ~ 70% improvement in Prompt Processing Speed mesured using
llama-bench with Meta-Llama3-8B FP32 Model. Similar gains observed with
Mistral-7b-Instruct-v0.3 Model.
model Size Params Backend Threads Test Patch Base
llama 8B all F32 29.92 GiB 8.03 B CPU 20 pp512 98.58 60.3
llama 8B all F32 29.92 GiB 8.03 B CPU 20 pp1024 95.88 57.36
llama 8B all F32 29.92 GiB 8.03 B CPU 20 pp2048 85.46 53.26
llama 8B all F32 29.92 GiB 8.03 B CPU 20 pp4096 68.66 45.78
llama 8B all F32 29.92 GiB 8.03 B CPU 20 pp6144 57.35 40.44
25 ~ 30% improvement in llama-batched-bench with Metla-Llama3-8B in
Prompt Processing Speed for large prompts (256, 512, 1024, 2048, 4096)tokens with various batch
sizes ( 1, 2, 4, 8, 16)
Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
This commit adds two targets to the Makefile for quantizing of
Quantization Aware Trained (QAT) models to Q4_0 format.
The motivation for this is that this sets the token embedding and the
output tensors data types to Q8_0 instead of the default Q6_K. This is
someting that we wish to enforce for QAT Q4_0 models that are to be
uploaded to ggml-org on Huggingface to guarantee the best quality.
* metal : optmize FA vec for large heads and sequences
* metal : adjust small-batch mul mv kernels
ggml-ci
* batched-bench : fix total speed computation
ggml-ci
* cont : add comments
ggml-ci
* convert : fix tensor naming conflict for llama 4 vision
* convert ok
* support kimi vision model
* clean up
* fix style
* fix calc number of output tokens
* refactor resize_position_embeddings
* add test case
* rename build fn
* correct a small bug
* metal : mul_mm_id remove hdst
* metal : remove mul_mm_id hsrc1
* metal : mul_mm_id simplify + add test
* metal : opt mul_mm_id map0
* metal : optimize mul_mm_id id gathering
* metal : mul/div opt
* metal : optimize mul_mm_id_map0
ggml-ci
* CUDA: optimize get_int_from_table_16
* CUDA: use v_perm_b32 to replace byte_perm on AMD GPUs
* revise documentation
---------
Co-authored-by: xix <xiapc@outlook.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit explicitly sets the pooling type to 'none' in the logits.cpp
to support models that have a pooling type specified.
The motivation for this is that some models may have a pooling type set
in the model file (.gguf file) and for this specific case where we only
want to extract logits, we need to ensure that no pooling is used to
so that we are comparing raw logits and not pooled embeddings.
* model-conversion: add model card template for embeddings [no ci]
This commit adds a separate model card template (model repository
README.md template) for embedding models.
The motivation for this is that there server command for the embedding
model is a little different and some addition information can be useful
in the model card for embedding models which might not be directly
relevant for causal models.
* squash! model-conversion: add model card template for embeddings [no ci]
Fix pyright lint error.
* remove --pooling override and clarify embd_normalize usage
* vulkan: use subgroup function for mul_mat_id shader even without coopmat
* vulkan: fix compile warnings
* vulkan: properly check for subgroup size control and require full subgroups for subgroup mul_mat_id
* vulkan: disable subgroup mul_mat_id on devices with subgroups < 16
The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.
Store the FA pipelines in a map, indexed by the pipeline state.
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs
There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.
The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.
* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.
* complete rebase against fused adds - multi_add shader can also compute partial sums
* fix validation errors
* disable add_rms_fusion for Intel due to possible driver bug
* resolve against #15489, sync after clearing partial sums
Track a list of nodes that need synchronization, and only sync if the new node
depends on them (or overwrites them). This allows some overlap which can
improve performance, and centralizes a big chunk of the synchronization logic.
The remaining synchronization logic involves writes to memory other than the
nodes, e.g. for dequantization or split_k. Each of these allocations has a bool
indicating whether they were in use and need to be synced. This should be
checked before they are written to, and set to true after they are done being
consumed.
* vulkan : support ggml_mean
* vulkan : support sum, sum_rows and mean with non-contiguous tensors
* vulkan : fix subbuffer size not accounting for misalign offset
* tests : add backend-op tests for non-contiguous sum_rows
* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support
* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
- Spread the work across the whole workgroup. Using more threads seems to
far outweigh the synchronization overhead.
- Specialize the code for when the division is by a power of two.
* Begin work on set_rows
* Work on set rows
* Add error buffers for reporting unsupported SET_ROWS indices
* Remove extra comments
* Work on templating for different types in shaders
* Work on shader type generation
* Working q4_0 mul_mat and some templating for different types
* Add q4_0_f16 matmul and fix device init
* Add matmul support for basic quantization types
* Add q2_k and q3_k quantization
* Add rest of k-quants
* Get firt i-quant working
* Closer to supporting all i-quants
* Support rest of i-quants
* Cleanup code
* Fix python formatting
* debug
* Bugfix for memset
* Add padding to end of buffers on creation
* Simplify bit-shifting
* Update usage of StringView
* Add Pad Reflect 1D CUDA support
* Update ggml/src/ggml-cuda/pad_reflect_1d.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>