Commit Graph

471 Commits

Author SHA1 Message Date
Aldehir Rojas
7057faf64b json : support enum values within allOf (#15830) 2025-09-08 16:14:32 -05:00
Jesse
88021565f0 chat : Deepseek V3.1 reasoning and tool calling support (OpenAI Style) (#15533)
* Add DeepSeek V3.1 thinking mode support

- Added COMMON_CHAT_FORMAT_DEEPSEEK_V3_1 enum value
- Created common_chat_params_init_deepseek_v3_1() function (currently uses R1 implementation)
- Created common_chat_parse_deepseek_v3_1() function that handles V3.1 thinking format:
  - Extracts reasoning content before '</think>' tag into reasoning_content
  - Extracts regular content after '</think>' tag into content
  - No opening '<think>' tag in V3.1 format
- Added detection logic for V3.1 templates based on pattern: 'message['prefix'] is defined and message['prefix'] and thinking'
- Added V3.1 case to parsing switch statement

This addresses the issue where V3.1 outputs reasoning content followed by '</think>' and then regular content without the opening '<think>' tag.

* Another attempt by V3.1 non-thinking

* Fix test, but it's not asserting anything.

* Ignore vim swap files in tests dir

* Update the test

* Try using try_find_literal instead of regex

* passing test

* Revert "Try using try_find_literal instead of regex"

This reverts commit c50d887ec2.

* Remove unnecessary change

* Remove comment

* Add code to handle non-thinking mode.

* Try to set message['prefix'] when thinking is enabled.

* This fixes reasoning, but breaks normal content. We need state in the
chat parser.

* DeepSeek V3.1 thinking is now the default. Disable with `--reasoning-budget 0`.

* Simplify (DeepSeek V3.1 reasoning)

* Fix sign inversion bug

* Add some tool calling code (not working).

* Tool calls working in non-reasoning mode.

* Attempt a unit test for tool call parsing.

* Passing test

* Add tests for both happy path and broken fenced DeepSeek V3.1 tool call variants.

* Passing DeepSeek V3.1 tool call tests, but model is not working.

* Revert assistance response prefill change. Not my monkeys.

* Add fenced_thinking unit test variant. Passes, but thinking tool calling
still isn't working for some reason.

* Tests pass in reasoning mode. Also e2e tool test passes.

* Make a copy of the parse_json_tool_calls function for deepseek-v3.1 so
as to not accidentally introduce regressions.

* Fix thinking_forced_open logic. tool calling broken. Need to add another
test case.

* That's what I get for cargo culting a newline.

* Add multi tool call test for deepseek v3.1 non-reasoning

* Move test, remove .gitignore change

* Place deepseek-v3.1 reasoning test directly into existing reasoning
function per CISC's request.

* Address whitespace CI failure.

* Merge two assert_equals per CISC's request.

* Add DeepSeek-V3.1 tests to tests/test-chat.cpp per CISC's request.

* Merge deepseek V3.1 and regular parse_json_tool_calls() function
behaviors by adding optional update_cursor argument.

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* DeepSeek V3.1 fix reasoning_format none

* Strip grammar down to strictly what we expect based on model card. Throw
out parts we cargo culted from R1 that don't make sense.

* Update tests/test-chat-parser.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* DeepSeek V3.1 - Add edge case where thinking is forced open, there is
tool calling in the reasoning content, but then the model just stops the
output without closing the </think> tag, so it's not a partial. In this
case, use the tool call in the reasoning content.

* DeepSeek V3.1 - simplify update_cursor

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix indent

---------

Co-authored-by: openhands <openhands@all-hands.dev>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-08 16:59:48 +02:00
Georgi Gerganov
f28d4f4ac9 metal : refactor + optimize (#15857)
* metal : refactor

ggml-ci

* cont : refactor FA-vec kernel

* cont : print metal library load time

* minor : warn to debug + bettern kernel names

ggml-ci

* metal : optimize mul_mv q8_0

ggml-ci

* metal : simplify FA pipeline creation functions

ggml-ci

* metal : improve naming consistency

* metal : safer function constants offsets

ggml-ci

* metal : comments

ggml-ci
2025-09-08 13:34:56 +03:00
Xuan-Son Nguyen
9fcb29f22f ggml: allow casting between f32 and i32 (#15783)
* ggml: allow casting between f32 and i32

* fix cuda

* add vulkan

* fix CPU non-cont

* add non-cont test case

* add note

* extend test number range

* correct note

* add cont version for vulkan
2025-09-08 12:33:01 +02:00
Jeff Bolz
d413dca003 tests: large sizes for get_rows (#15687) 2025-09-07 23:23:41 -05:00
Jeff Bolz
3976dfbe00 vulkan: support im2col_3d (#15795) 2025-09-07 13:50:26 -05:00
Jeff Bolz
c97b5e5854 vulkan: Support pad_ext (#15794) 2025-09-07 19:00:49 +02:00
Daniel Bevenius
3a550b5ca4 tests : add --list-ops and --show-coverage options (#15745)
This commit adds two new command-line options to the
test-backend-ops.cpp that allow users to list all available GGML
operations and to show test coverage of these operations.

The motivation for this is that it can be useful to quickly see which
operations are currently covered by tests and which are not. Also it
migth be useful when using the `support` mode.
2025-09-05 13:49:21 +01:00
Piotr Wilkin (ilintar)
b2426e469e chat : nemotron thinking & toolcalling support (#15676)
* feat: nemotron thinking & toolcalling support

* Trailing whitespaces

* Corrected template for Nemotron

* Template and parser fixes

* Final template and grammar changes

* Whitespace

* Always do lazy grammar processing since </think> tag will always be there.

* Allow extra content after toolcall

* Whitespace

* New tests: thinking + tools, tools + content, thinking + tools + content (new!)

* Whitespace

* Remove cURL test script
2025-09-05 01:22:22 +02:00
leejet
0a1b3982cd ggml: add ops for WAN video model (cuda && cpu) (#15669)
* add conv3d support

* add ggml_pad_ext for cpu & cuda backend

* cuda/cpu: add im2col_3d support

* cuda: make im2col a little faster

* fix cuda pad/scale/im2col3d

* make im2col_3d faster

* gguf: support loading tensors which n_dims > GGML_MAX_DIMS

* fix cuda get_rows

* avoid ggml_conv_3d conflict

* correct GGML_OP_COUNT assertion

* avoid build failure

* avoid build failure on MacOS

* cuda: remove unnecessary MIN define

* fix cpu im2col_3d

* adjust the code style

* cuda: use simpler loop in get_rows

* add test_im2col_3d to test-backend-ops

* test-backend-ops.cpp: remove trailing whitespace

* cpu: im2col_3d support non continuous src

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* fix test_im2col_3d

* remove unused variables

* cuda: get_rows: dfloat2 -> float2

* add test_pad_ext to test-backend-ops.cpp

* add gguf_init_from_file_ext impl

* Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS"

This reverts commit d8377a0a37.

* Revert "add gguf_init_from_file_ext impl"

This reverts commit d9f1d13208.

* update ggml_backend_vk_device_supports_op

* fix ggml_backend_vk_device_supports_op

* update other backend supports op for ggml_pad_ext

* metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-04 10:38:49 +02:00
Georgi Gerganov
e92d53b29e sampling : optimize samplers by reusing bucket sort (#15665)
* sampling : optimize sorting using bucket sort in more places

ggml-ci

* sampling : do not sort in dist sampler

ggml-ci

* sampling : avoid heap allocations for sort buffers

ggml-ci

* common : add option to sort sampling candidates by probability

ggml-ci

* sampling : revert the change for preserving sort buffers

* sampling : use std::copy instead of memcpy

* sampling : clarify purpose of partial sort helpers

ggml-ci

* cont : remove wrong comment [no ci]

* common : update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-31 20:41:02 +03:00
Piotr Wilkin (ilintar)
60e5eee31f chat : Seed OSS thinking + tool call support (#15552)
* Reasoning and tool-calling support for Seed OSS

* Fix grammar and partial parsing

* Whitespace

* New chat template

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove unused 'purge_healing_marker' helper

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-29 14:53:41 +02:00
rmatif
86076f92de OpenCL: add fused group_norm/norm, mul, add (#15314)
* add fused group_norm/norm, mul, add

* fix spacing

* revert rms_norm logic

* fix trailing whitespace
2025-08-26 23:36:05 -07:00
Diego Devesa
bcbddcd54f tests : fix test-opt with GGML_BACKEND_DL (#15599) 2025-08-26 22:14:38 +02:00
Eve
44b1efa41a tests: add performance test for mul mat id (#15543) 2025-08-26 15:42:49 +00:00
Georgi Gerganov
1d8d83deaa metal : improve MUL_MAT_ID (#15541)
* metal : mul_mm_id remove hdst

* metal : remove mul_mm_id hsrc1

* metal : mul_mm_id simplify + add test

* metal : opt mul_mm_id map0

* metal : optimize mul_mm_id id gathering

* metal : mul/div opt

* metal : optimize mul_mm_id_map0

ggml-ci
2025-08-26 12:46:15 +03:00
Jeff Bolz
34bdbbd7c2 vulkan: Remove splitting for mul_mat_id (#15568)
row_ids only needs to hold the BN rows for the current tile.
2025-08-26 06:42:44 +02:00
Jeff Bolz
886b97a5d6 tests: Generate unique input values for count_equal (#15487)
This avoids backend-dependent behavior for argmax that leads to intermittent failures.
2025-08-25 10:47:16 -05:00
Jeff Bolz
c9a24fb932 vulkan: Support FA with any multiple of 8 head sizes (#15537)
The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.

Store the FA pipelines in a map, indexed by the pipeline state.
2025-08-24 11:24:25 +02:00
Jeff Bolz
611f419cff vulkan: optimize rms_norm, and allow the work to spread across multiple SMs (#15281)
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs

There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.

The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.

* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.

* complete rebase against fused adds - multi_add shader can also compute partial sums

* fix validation errors

* disable add_rms_fusion for Intel due to possible driver bug

* resolve against #15489, sync after clearing partial sums
2025-08-23 13:16:17 -05:00
Piotr Wilkin (ilintar)
b1afcab804 model : add support for Seed-OSS (#15490)
* First draft

* Fix linter errors

* Added missing sinks nullptr

* Don't forget the llama-arch!

* We're through to the generation stage.

* Fix post-attention norm

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix RoPE type

* Fix tensor name and reorder llm_types

* Update gguf-py/gguf/constants.py

Remove nonexistent FFN_POST_NORM tensor

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add basic chat template

* Add chat template tests

* Remake chat template test

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Reorder llm type descriptions

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-23 15:21:52 +02:00
Acly
0a9b43e507 vulkan : support ggml_mean (#15393)
* vulkan : support ggml_mean

* vulkan : support sum, sum_rows and mean with non-contiguous tensors

* vulkan : fix subbuffer size not accounting for misalign offset

* tests : add backend-op tests for non-contiguous sum_rows

* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support

* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
2025-08-23 08:35:21 +02:00
Johannes Gäßler
e92734d51b test-opt: allow slight inprecision (#15503) 2025-08-22 23:47:01 +02:00
rmatif
92f7f0a53c ggml: add conv3d op (#15182)
* add conv3d

* bump GGML_OP_COUNT
2025-08-22 15:33:15 +02:00
Jeff Bolz
96452a3fa4 vulkan: Reuse conversion results in prealloc_y (#15410)
* vulkan: Reuse conversion results in prealloc_y

Cache the pipeline and tensor that were most recently used to fill prealloc_y,
and skip the conversion if the current pipeline/tensor match.

* don't use shared pointer for prealloc_y_last_pipeline_used
2025-08-21 16:55:00 +02:00
Xuan-Son Nguyen
e9288e8869 chat : clarify the meaning of reasoning_format (#15408)
* chat : clarify the meaning of reasoning_format

* add link to this PR
2025-08-19 10:29:36 +02:00
Jeff Bolz
de5627910d vulkan: Optimize argsort (#15354)
- Launch an appropriate number of invocations (next larger power of two).
32 invocations is common and the barrier is much cheaper there.
- Specialize for "needs bounds checking" vs not.
- Make the code less branchy and [[unroll]] the loops. In the final code,
I see no branches inside the main loop (only predicated stores) when
needs_bounds_check is false.
- Always sort ascending, then apply the ascending vs descending option when
doing the final stores to memory.
- Copy the values into shared memory, makes them slightly cheaper to access.
2025-08-17 10:41:45 +02:00
Jeff Bolz
1fe00296f5 vulkan: fuse adds (#15252)
* vulkan: fuse adds

Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.

* check runtimeDescriptorArray feature

* disable multi_add for Intel due to likely driver bug
2025-08-16 11:48:22 -05:00
Jeff Bolz
2e2b22ba66 vulkan: Add missing bounds checking to scalar/coopmat1 mul_mat_id (#15334) 2025-08-16 10:58:38 +02:00
Georgi Gerganov
5edf1592fd vulkan : fix out-of-bounds access in argmax kernel (#15342)
ggml-ci
2025-08-15 16:16:36 +02:00
Johannes Gäßler
b07791aa1d test-opt: fix backend support check (#15317)
* test-opt: fix backend support check

* Update tests/test-opt.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-08-15 11:23:17 +02:00
Aldehir Rojas
b204a5a234 gpt-oss: implement harmony parsing (#15181)
* model : add harmony parser for gpt-oss

* gpt-oss : fix grammar trigger from causing empty stack

* gpt-oss: tweak the grammar trigger again

* gpt-oss : add support for recipient in role header

* gpt-oss : fix ungrouped tool calls in grammar

* gpt-oss : loosen function name matching during parse

* gpt-oss : clean up workarounds

* gpt-oss : add template tests

* gpt-oss : simulate thinking and tool call tags

* gpt-oss : undo think tags when reasoning_format is none

* gpt-oss : set special tokens back to user defined

* gpt-oss : update openai-gpt-oss template

* server : filter out harmony thought messages

* gpt-oss : simplify parsing
2025-08-14 17:23:11 +03:00
Georgi Gerganov
8b2483730f tests : remove unused includes (ggml/0) 2025-08-14 14:59:27 +03:00
Jonathan Graehl
5cdb27e091 finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
Oliver Simons
6028bf7435 CUDA: Optimize reduce_rows_f32 kernel, leading up to 25x perf improvement on kernel-level and 10% perf increase for Gemma3n (#15132)
* Factor out `reduce_rows_f32` from common.cuh

This increases iteration cycle speed by not having to recompile
every kernel all the time

* Hide memory-latency by loop unrolling in reduce_rows_f32

* Further optimizations to `reduce_rows_f32`

1. Increase threadblock size to better hide latency of memory requests.
   As a consequence of bigger threadblocks, do 2-step summation, using
   shared memory to communicate results between invocations
2. Use sum_temp array to reduce waits on sum
3. Adjust num_unroll to reflext bigger threadblock
4. Improve default block_dims, increase support for more block_dims

* Add perf tests for `reduce_rows_f32` kernel

* Add heuristic to toggle 128/512 threads based on sm count

Break even point was the minimum of the following multiples.

| GPU Model                     | Nrow SM Count Multiple |
| -----------                   | -----------            |
| RTX 4000 SFF ADA              | 2.0x                   |
| RTX 6000 ADA                  | 2.5x                   |
| RTX PRO 6000 Blackwell Max-Q  | 3.04x                  |
| RTX PRO 4500 Blackwell	| 3.15x                  |

* Ensure perf gains also for small ncols and large nrows

Alternative to this, one could have also made the number of unrollings
template-able, but that would require compiling the kernel multiple
times, increasing binary size unnecessarily

* Modify perf and unit-tests

* Apply auto-formatting by clang

* Fix CI build failure

See https://github.com/ggml-org/llama.cpp/actions/runs/16798370266/job/47573716079?pr=15132#step:7:486
Building with VS generator worked though.

* Remove sm_count property from `ggml_backend_cuda_context`

Requested by @JohannesGaessler, and should fix remaining CI issues as a
side-effect

* Add CUB-based implementation for GGML_OP_MEAN

Currently this branch is only executed for nrows==1

* Add heuristics to execute CUB branch only when it brings perf

Heuristics were determined on the following HW:

* RTX 4000 SFF ADA
* RTX 6000 ADA
* RTX PRO 6000 Blackwell Max-Q
* RTX PRO 4500 Blackwell

* Add unit-test for CUB-based mean

Tests should run with CUDA Graphs enabled per default on NVGPUs

* Rename `USE_CUB` to `GGML_CUDA_USE_CUB`

Suggested by @JohannesGaessler

* Unindent Preprocessor directives

See
https://github.com/ggml-org/llama.cpp/pull/15132#discussion_r2269213506
2025-08-13 10:04:46 +02:00
Sachin Desai
3db4da56a5 chat : support Granite model reasoning and tool call (#14864) 2025-08-06 20:27:30 +02:00
Sigbjørn Skjæret
65c797c4fa chat : fix yandex chat template (#15116) 2025-08-06 13:26:49 +02:00
Georgi Gerganov
fd1234cb46 llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Sigbjørn Skjæret
f324a3b715 chat : only remove double bos/eos if added (#15086)
* only remove double bos/eos if added

* fix tests
2025-08-05 20:43:36 +02:00
Jhen-Jie Hong
f738989dcb chat : fix multiple tool_calls on hermes-2-pro (#14962) 2025-08-02 18:04:48 +08:00
Jeff Bolz
ec0b18802c vulkan: Support ne[3]>1 in noncontig matrix-vector multiply (#15015) 2025-08-02 10:48:30 +02:00
Georgi Gerganov
00131d6eaf tests : update for LLAMA_SET_ROWS=1 (#14961)
* test-thread-safety : each context uses a single sequence

* embedding : handle --parallel argument

ggml-ci

* save-load : handle -np 1

ggml-ci

* thread-safety : avoid overriding threads, reduce test case arg

ggml-ci
2025-07-30 15:12:02 +03:00
Sigbjørn Skjæret
138b288b59 cuda : add softcap fusion (#14907) 2025-07-29 14:22:03 +02:00
Leonard Mosescu
bda62193b2 test-backend-ops : extend test case filtering (#14865)
* Extend test case filtering

1. Allow passing multiple (comma-separated?) ops to test-backend-ops. This can be convenient when working on a set of ops, when you'd want to test them together (but without having to run every single op). For example:

`test-backend-ops.exe test -o "ADD,RMS_NORM,ROPE,SILU,SOFT_MAX"`

2. Support full test-case variation string in addition to basic op names. This would make it easy to select a single variation, either for testing or for benchmarking. It can be particularly useful for profiling a particular variation (ex. a CUDA kernel), for example:

`test-backend-ops.exe perf -b CUDA0 -o "MUL_MAT(type_a=f16,type_b=f32,m=4096,n=512,k=14336,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=2)"`

These two can be combined. As the current `-o`, this change doesn't try to detect/report an error if an filter doesn't name existing ops (ex. misspelled)

* Updating the usage help text

* Update tests/test-backend-ops.cpp
2025-07-28 18:04:27 +02:00
Erik Scholz
89d1029559 vulkan : add fp16 support for the conv_2d kernel (#14872)
* add f16 to conv_2d testing
* weaken conv2d test error threshold
2025-07-27 12:04:33 +02:00
Aman Gupta
446595b9b3 Docs: add instructions for adding backends (#14889) 2025-07-27 09:36:43 +08:00
Georgi Gerganov
18f3b5ff9e tests : add non-cont K,V FA tests
ggml-ci
2025-07-23 14:08:09 +03:00
Aman Gupta
8c988fa41d CUDA: add fused rms norm (#14800) 2025-07-23 09:25:42 +08:00
Jeff Bolz
c2e058f1b4 vulkan/cuda: Fix im2col when KW!=KH (#14789)
The tid is decomposed into "ow + ky*OW + kx*OW*KH". Change "ksize" to match.
2025-07-21 13:35:40 +02:00
Ervin Áron Tasnádi
a979ca22db ggml: adds CONV_2D op and direct GEMM Vulkan implementation (#14316)
* ggml/ggml-vulkan/test-backend-ops: adds CONV_2D for Vulkan

* ggml-vulkan: adds f32 scalar shader to compute 2D convolution directly
with gemm (no need for im2col),

* test-backend-ops: adds test_case_ref to check the validity/performance of ops
against reference implementations having different graphs, adds tests

* * Performance fixes: minimized branch divergence, uses collectives to
  eliminate redundant calculation, macros removed.

* Kernel shared memory size check

* Updates test-backend-ops to support graphs for performance
  measurement.

* * Apple/Win32 compile errors fixed

* Subgroup size used to determine tile size -> fixes llvmpipe errors.

* Collectives disabled by default.

* Intel support is disabled as the performance is poor.

* Conv2d enabled for Intel with disabled collectives, disabled for Apple

* test-backend-ops modifications are reverted

* Trailing spaces and missing override fixed.

* Triggering pipeline relaunch.

* Code formatted with .clang-format.
2025-07-19 21:59:08 +02:00