* Add DeepSeek V3.1 thinking mode support
- Added COMMON_CHAT_FORMAT_DEEPSEEK_V3_1 enum value
- Created common_chat_params_init_deepseek_v3_1() function (currently uses R1 implementation)
- Created common_chat_parse_deepseek_v3_1() function that handles V3.1 thinking format:
- Extracts reasoning content before '</think>' tag into reasoning_content
- Extracts regular content after '</think>' tag into content
- No opening '<think>' tag in V3.1 format
- Added detection logic for V3.1 templates based on pattern: 'message['prefix'] is defined and message['prefix'] and thinking'
- Added V3.1 case to parsing switch statement
This addresses the issue where V3.1 outputs reasoning content followed by '</think>' and then regular content without the opening '<think>' tag.
* Another attempt by V3.1 non-thinking
* Fix test, but it's not asserting anything.
* Ignore vim swap files in tests dir
* Update the test
* Try using try_find_literal instead of regex
* passing test
* Revert "Try using try_find_literal instead of regex"
This reverts commit c50d887ec2.
* Remove unnecessary change
* Remove comment
* Add code to handle non-thinking mode.
* Try to set message['prefix'] when thinking is enabled.
* This fixes reasoning, but breaks normal content. We need state in the
chat parser.
* DeepSeek V3.1 thinking is now the default. Disable with `--reasoning-budget 0`.
* Simplify (DeepSeek V3.1 reasoning)
* Fix sign inversion bug
* Add some tool calling code (not working).
* Tool calls working in non-reasoning mode.
* Attempt a unit test for tool call parsing.
* Passing test
* Add tests for both happy path and broken fenced DeepSeek V3.1 tool call variants.
* Passing DeepSeek V3.1 tool call tests, but model is not working.
* Revert assistance response prefill change. Not my monkeys.
* Add fenced_thinking unit test variant. Passes, but thinking tool calling
still isn't working for some reason.
* Tests pass in reasoning mode. Also e2e tool test passes.
* Make a copy of the parse_json_tool_calls function for deepseek-v3.1 so
as to not accidentally introduce regressions.
* Fix thinking_forced_open logic. tool calling broken. Need to add another
test case.
* That's what I get for cargo culting a newline.
* Add multi tool call test for deepseek v3.1 non-reasoning
* Move test, remove .gitignore change
* Place deepseek-v3.1 reasoning test directly into existing reasoning
function per CISC's request.
* Address whitespace CI failure.
* Merge two assert_equals per CISC's request.
* Add DeepSeek-V3.1 tests to tests/test-chat.cpp per CISC's request.
* Merge deepseek V3.1 and regular parse_json_tool_calls() function
behaviors by adding optional update_cursor argument.
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* DeepSeek V3.1 fix reasoning_format none
* Strip grammar down to strictly what we expect based on model card. Throw
out parts we cargo culted from R1 that don't make sense.
* Update tests/test-chat-parser.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* DeepSeek V3.1 - Add edge case where thinking is forced open, there is
tool calling in the reasoning content, but then the model just stops the
output without closing the </think> tag, so it's not a partial. In this
case, use the tool call in the reasoning content.
* DeepSeek V3.1 - simplify update_cursor
* Update common/chat.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update common/chat.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update common/chat.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Fix indent
---------
Co-authored-by: openhands <openhands@all-hands.dev>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* ggml: allow casting between f32 and i32
* fix cuda
* add vulkan
* fix CPU non-cont
* add non-cont test case
* add note
* extend test number range
* correct note
* add cont version for vulkan
This commit adds two new command-line options to the
test-backend-ops.cpp that allow users to list all available GGML
operations and to show test coverage of these operations.
The motivation for this is that it can be useful to quickly see which
operations are currently covered by tests and which are not. Also it
migth be useful when using the `support` mode.
* sampling : optimize sorting using bucket sort in more places
ggml-ci
* sampling : do not sort in dist sampler
ggml-ci
* sampling : avoid heap allocations for sort buffers
ggml-ci
* common : add option to sort sampling candidates by probability
ggml-ci
* sampling : revert the change for preserving sort buffers
* sampling : use std::copy instead of memcpy
* sampling : clarify purpose of partial sort helpers
ggml-ci
* cont : remove wrong comment [no ci]
* common : update comment
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* metal : mul_mm_id remove hdst
* metal : remove mul_mm_id hsrc1
* metal : mul_mm_id simplify + add test
* metal : opt mul_mm_id map0
* metal : optimize mul_mm_id id gathering
* metal : mul/div opt
* metal : optimize mul_mm_id_map0
ggml-ci
The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.
Store the FA pipelines in a map, indexed by the pipeline state.
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs
There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.
The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.
* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.
* complete rebase against fused adds - multi_add shader can also compute partial sums
* fix validation errors
* disable add_rms_fusion for Intel due to possible driver bug
* resolve against #15489, sync after clearing partial sums
* vulkan : support ggml_mean
* vulkan : support sum, sum_rows and mean with non-contiguous tensors
* vulkan : fix subbuffer size not accounting for misalign offset
* tests : add backend-op tests for non-contiguous sum_rows
* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support
* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
* vulkan: Reuse conversion results in prealloc_y
Cache the pipeline and tensor that were most recently used to fill prealloc_y,
and skip the conversion if the current pipeline/tensor match.
* don't use shared pointer for prealloc_y_last_pipeline_used
- Launch an appropriate number of invocations (next larger power of two).
32 invocations is common and the barrier is much cheaper there.
- Specialize for "needs bounds checking" vs not.
- Make the code less branchy and [[unroll]] the loops. In the final code,
I see no branches inside the main loop (only predicated stores) when
needs_bounds_check is false.
- Always sort ascending, then apply the ascending vs descending option when
doing the final stores to memory.
- Copy the values into shared memory, makes them slightly cheaper to access.
* vulkan: fuse adds
Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.
* check runtimeDescriptorArray feature
* disable multi_add for Intel due to likely driver bug
* model : add harmony parser for gpt-oss
* gpt-oss : fix grammar trigger from causing empty stack
* gpt-oss: tweak the grammar trigger again
* gpt-oss : add support for recipient in role header
* gpt-oss : fix ungrouped tool calls in grammar
* gpt-oss : loosen function name matching during parse
* gpt-oss : clean up workarounds
* gpt-oss : add template tests
* gpt-oss : simulate thinking and tool call tags
* gpt-oss : undo think tags when reasoning_format is none
* gpt-oss : set special tokens back to user defined
* gpt-oss : update openai-gpt-oss template
* server : filter out harmony thought messages
* gpt-oss : simplify parsing
* examples/finetune -opt SGD (stochastic gradient descent) memory opt
add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.
support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)
llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)
(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val: [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00
SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val: [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)
note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')
-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.
note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence
new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)
cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)
since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)
test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values); tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)
* Vulkan: Implement GGML_OP_OPT_STEP_SGD
* tests: Fix OPT_STEP_SGD test-backend-ops
* SGD op param store weight-decay and not 1-alpha*wd
* minor + cosmetic changes
* fix vulkan sgd
* try CI fix
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Factor out `reduce_rows_f32` from common.cuh
This increases iteration cycle speed by not having to recompile
every kernel all the time
* Hide memory-latency by loop unrolling in reduce_rows_f32
* Further optimizations to `reduce_rows_f32`
1. Increase threadblock size to better hide latency of memory requests.
As a consequence of bigger threadblocks, do 2-step summation, using
shared memory to communicate results between invocations
2. Use sum_temp array to reduce waits on sum
3. Adjust num_unroll to reflext bigger threadblock
4. Improve default block_dims, increase support for more block_dims
* Add perf tests for `reduce_rows_f32` kernel
* Add heuristic to toggle 128/512 threads based on sm count
Break even point was the minimum of the following multiples.
| GPU Model | Nrow SM Count Multiple |
| ----------- | ----------- |
| RTX 4000 SFF ADA | 2.0x |
| RTX 6000 ADA | 2.5x |
| RTX PRO 6000 Blackwell Max-Q | 3.04x |
| RTX PRO 4500 Blackwell | 3.15x |
* Ensure perf gains also for small ncols and large nrows
Alternative to this, one could have also made the number of unrollings
template-able, but that would require compiling the kernel multiple
times, increasing binary size unnecessarily
* Modify perf and unit-tests
* Apply auto-formatting by clang
* Fix CI build failure
See https://github.com/ggml-org/llama.cpp/actions/runs/16798370266/job/47573716079?pr=15132#step:7:486
Building with VS generator worked though.
* Remove sm_count property from `ggml_backend_cuda_context`
Requested by @JohannesGaessler, and should fix remaining CI issues as a
side-effect
* Add CUB-based implementation for GGML_OP_MEAN
Currently this branch is only executed for nrows==1
* Add heuristics to execute CUB branch only when it brings perf
Heuristics were determined on the following HW:
* RTX 4000 SFF ADA
* RTX 6000 ADA
* RTX PRO 6000 Blackwell Max-Q
* RTX PRO 4500 Blackwell
* Add unit-test for CUB-based mean
Tests should run with CUDA Graphs enabled per default on NVGPUs
* Rename `USE_CUB` to `GGML_CUDA_USE_CUB`
Suggested by @JohannesGaessler
* Unindent Preprocessor directives
See
https://github.com/ggml-org/llama.cpp/pull/15132#discussion_r2269213506
* Extend test case filtering
1. Allow passing multiple (comma-separated?) ops to test-backend-ops. This can be convenient when working on a set of ops, when you'd want to test them together (but without having to run every single op). For example:
`test-backend-ops.exe test -o "ADD,RMS_NORM,ROPE,SILU,SOFT_MAX"`
2. Support full test-case variation string in addition to basic op names. This would make it easy to select a single variation, either for testing or for benchmarking. It can be particularly useful for profiling a particular variation (ex. a CUDA kernel), for example:
`test-backend-ops.exe perf -b CUDA0 -o "MUL_MAT(type_a=f16,type_b=f32,m=4096,n=512,k=14336,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=2)"`
These two can be combined. As the current `-o`, this change doesn't try to detect/report an error if an filter doesn't name existing ops (ex. misspelled)
* Updating the usage help text
* Update tests/test-backend-ops.cpp
* ggml/ggml-vulkan/test-backend-ops: adds CONV_2D for Vulkan
* ggml-vulkan: adds f32 scalar shader to compute 2D convolution directly
with gemm (no need for im2col),
* test-backend-ops: adds test_case_ref to check the validity/performance of ops
against reference implementations having different graphs, adds tests
* * Performance fixes: minimized branch divergence, uses collectives to
eliminate redundant calculation, macros removed.
* Kernel shared memory size check
* Updates test-backend-ops to support graphs for performance
measurement.
* * Apple/Win32 compile errors fixed
* Subgroup size used to determine tile size -> fixes llvmpipe errors.
* Collectives disabled by default.
* Intel support is disabled as the performance is poor.
* Conv2d enabled for Intel with disabled collectives, disabled for Apple
* test-backend-ops modifications are reverted
* Trailing spaces and missing override fixed.
* Triggering pipeline relaunch.
* Code formatted with .clang-format.