ggml: add ops for WAN video model (cuda && cpu) (#15669)

* add conv3d support

* add ggml_pad_ext for cpu & cuda backend

* cuda/cpu: add im2col_3d support

* cuda: make im2col a little faster

* fix cuda pad/scale/im2col3d

* make im2col_3d faster

* gguf: support loading tensors which n_dims > GGML_MAX_DIMS

* fix cuda get_rows

* avoid ggml_conv_3d conflict

* correct GGML_OP_COUNT assertion

* avoid build failure

* avoid build failure on MacOS

* cuda: remove unnecessary MIN define

* fix cpu im2col_3d

* adjust the code style

* cuda: use simpler loop in get_rows

* add test_im2col_3d to test-backend-ops

* test-backend-ops.cpp: remove trailing whitespace

* cpu: im2col_3d support non continuous src

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* fix test_im2col_3d

* remove unused variables

* cuda: get_rows: dfloat2 -> float2

* add test_pad_ext to test-backend-ops.cpp

* add gguf_init_from_file_ext impl

* Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS"

This reverts commit d8377a0a37.

* Revert "add gguf_init_from_file_ext impl"

This reverts commit d9f1d13208.

* update ggml_backend_vk_device_supports_op

* fix ggml_backend_vk_device_supports_op

* update other backend supports op for ggml_pad_ext

* metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
This commit is contained in:
leejet
2025-09-04 16:38:49 +08:00
committed by GitHub
parent 5421f63ab0
commit 0a1b3982cd
17 changed files with 759 additions and 90 deletions

View File

@@ -297,6 +297,8 @@ static std::string var_to_str(ggml_scale_mode mode) {
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
#define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
#define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
#define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
#ifdef GGML_USE_SYCL
static bool inline _isinf(float f) {
@@ -4023,6 +4025,56 @@ struct test_im2col : public test_case {
}
};
// GGML_OP_IM2COL_3D
struct test_im2col_3d : public test_case {
const ggml_type type_input;
const ggml_type type_kernel;
const ggml_type dst_type;
const std::array<int64_t, 4> ne_input;
const std::array<int64_t, 4> ne_kernel;
// stride
const int s0;
const int s1;
const int s2;
// padding
const int p0;
const int p1;
const int p2;
// dilation
const int d0;
const int d1;
const int d2;
const int64_t IC;
std::string vars() override {
return VARS_TO_STR15(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2);
}
test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
int64_t IC = 3,
int s0 = 1, int s1 = 1, int s2 = 1,
int p0 = 1, int p1 = 1, int p2 = 1,
int d0 = 1, int d1 = 1, int d2 = 1)
: type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
ggml_set_param(input);
ggml_set_name(input, "input");
ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
ggml_set_name(kernel, "kernel");
ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
ggml_set_name(out, "out");
return out;
}
};
// CONV_2D
struct test_conv_2d : public test_case {
const std::array<int64_t, 4> ne_input;
@@ -4221,7 +4273,7 @@ struct test_conv_3d : public test_case {
ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
ggml_set_name(kernel, "kernel");
ggml_tensor * out = ggml_conv_3d(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
ggml_set_name(out, "out");
return out;
}
@@ -4640,6 +4692,39 @@ struct test_pad : public test_case {
}
};
struct test_pad_ext : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const int lp0;
const int rp0;
const int lp1;
const int rp1;
const int lp2;
const int rp2;
const int lp3;
const int rp3;
std::string vars() override {
return VARS_TO_STR10(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
}
test_pad_ext(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1)
: type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_set_name(a, "a");
ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_PAD_REFLECT_1D
struct test_pad_reflect_1d : public test_case {
const ggml_type type;
@@ -5623,6 +5708,32 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
// im2col 3D
test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
for (int s0 : {1, 3}) {
for (int s1 : {1, 3}) {
for (int s2 : {1, 3}) {
for (int p0 : {0, 3}) {
for (int p1 : {0, 3}) {
for (int p2 : {0, 3}) {
for (int d0 : {1, 3}) {
for (int d1 : {1, 3}) {
for (int d2 : {1, 3}) {
test_cases.emplace_back(new test_im2col_3d(
GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
3, s0, s1, s2, p0, p1, p2, d0, d1, d2));
}
}
}
}
}
}
}
}
}
// Conv_2D test cases
#ifdef DETAILED_TESTS
// Probably we do not have enough time to execute these in the pipeline.
@@ -6340,6 +6451,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
test_cases.emplace_back(new test_acc());
test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_pad_ext());
test_cases.emplace_back(new test_pad_reflect_1d());
test_cases.emplace_back(new test_roll());
test_cases.emplace_back(new test_arange());