Commit Graph

6439 Commits

Author SHA1 Message Date
Georgi Gerganov
4efd5a8316 metal : fix checks for available FA kernels (#15700)
* metal : fix checks for available FA kernels

ggml-ci

* cont : fix comment [no ci]
2025-08-31 19:43:30 +03:00
Diego Devesa
274966226f llama : fix fattn reserve call n_seqs parameter (#15699)
ggml-ci
b6335
2025-08-31 18:47:05 +03:00
Diego Devesa
9777032dcc llama : separate compute buffer reserve from fattn check (#15696)
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
b6334
2025-08-31 15:49:03 +02:00
Sigbjørn Skjæret
7d3c9f2b21 ci : explicitly set fa off or on (#15692) 2025-08-31 15:30:20 +02:00
Jeff Bolz
bbbf5ecccb vulkan: handle large sizes for get_rows (#15686) b6332 2025-08-31 10:13:27 +02:00
Jeff Bolz
c37052ab4d vulkan: mul_mat_id coopmat2 optimizations (#15546)
* vulkan: mul_mat_id coopmat2 optimizations

Add a path for when the tile fits in BN/2, similar to what we have for mul_mat.

Only call fetch_scales/store_scales once per QUANT_K block, and once at the
beginning in case start_k is not aligned.

* Also add a path for BN/4 - worth a couple more percent
b6331
2025-08-31 09:06:43 +02:00
Daniel Bevenius
5c16b9c87d vulkan : remove unused portability_enumeration_ext variable (#15679)
This commit removes the portability_enumeration_ext variable from the
ggml_vk_instance_portability_enumeration_ext_available function as it
is initialized to false but never modified, making it redundant.
b6330
2025-08-31 08:46:42 +02:00
Jeff Bolz
b97c9edc59 vulkan: Allow fallback to sysmem memory when vidmem is full (#15649)
* vulkan: Allow fallback to sysmem memory when vidmem is full

* vulkan: Add env var GGML_VK_ALLOW_SYSMEM_FALLBACK
b6329
2025-08-31 08:30:54 +02:00
Jeff Bolz
94e82c7ead vulkan: clamp matmul and FA results to the max finite value (#15652)
* vulkan: clamp matmul and FA results to the max finite value

* only clamp for fp16
b6328
2025-08-31 08:27:57 +02:00
Charles Xu
4d74393bcc ggml: update kleidiai to v1.13.0 (#15663) b6327 2025-08-31 00:03:42 +08:00
Diego Devesa
dd892555b0 Update build.md to remove MSVC arm64 notes (#15684)
Removed information about MSVC compiler limitations for arm64 builds.
2025-08-30 23:51:28 +08:00
Johannes Gäßler
e81b8e4b7f llama: use FA + max. GPU layers by default (#15434)
* llama: use max. GPU layers by default, auto -fa

* ggml-backend: abort instead of segfault
b6325
2025-08-30 16:32:10 +02:00
Johannes Gäßler
38ad381f9f CUDA: use FP32 arithmetic for conv2d (#15683) b6324 2025-08-30 16:20:32 +02:00
Jeff Bolz
696fccf354 vulkan: Skip syncing for prealloc_y when it is reused (#15544) b6323 2025-08-30 11:11:22 +02:00
Chenguang Li
ef476916bb CANN: FIx compiler warnings (#15661)
Signed-off-by: noemotiovon <757486878@qq.com>
b6322
2025-08-30 10:18:35 +08:00
Sergey Alirzaev
d82f6aa34a server : removed obsolete doc (#15670)
completing a4090d1174
2025-08-30 00:12:53 +02:00
Johannes Gäßler
3d16b29c3b scripts: strip "AMD Instinct" from GPU name (#15668) 2025-08-29 22:04:08 +02:00
ExtReMLapin
792b44f2ed server : add documentation for parallel_tool_calls param (#15647)
Co-authored-by: Pierre F <no@p.e>
2025-08-29 20:25:40 +03:00
Aman Gupta
81017865ee CUDA: fix bug in rms_norm fusion (#15660)
* CUDA: fix bug in rms_norm fusion

* Fix bug for OP_REPEAT

* Fix index for add
b6318
2025-08-29 21:30:06 +08:00
Piotr Wilkin (ilintar)
60e5eee31f chat : Seed OSS thinking + tool call support (#15552)
* Reasoning and tool-calling support for Seed OSS

* Fix grammar and partial parsing

* Whitespace

* New chat template

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove unused 'purge_healing_marker' helper

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
b6317
2025-08-29 14:53:41 +02:00
Aman Gupta
009b709d6e CUDA: fuse adds, fuse add with rms norm (#15631)
* CUDA: fused add with rms_norm_mul

* Non-broadcast fuse works

* Add fused adds

* format

* Remove n_fuse from template params

* Address review comments

* Move template inside binbcast
b6316
2025-08-29 11:35:58 +08:00
Gabe Goodhart
e8d99dd0b6 nvidia nemotron nano v2 (nemotronh) (#15507)
* feat: Add NEMOTRONH to python arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to c++ arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to llama-arch layer map

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First pass at conversion for nemotronh

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add a verbose log for each tensor loaded

This is really helpful for diagnosing mismatches between the expected and
received tensors

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at nemotronh model architecture

It generates tokens, just not valid ones!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Explicitly enable add_bos_token during conversion

The `tokenizer.json`/`tokenizer_config.json` in the model are a bit
contradictory. In the config, add_bos_token is set to False, but the
tokenizer model itself has a post_processor that adds the BOS token via
type: TemplateProcessing

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use relu2 (LLM_FFN_RELU_SQR) for activation in FFN layers

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only allocate attention cache for attention layers (not non-recurrent)

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Move residual add to after every block

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the correct norm tensor for the MLP blocks

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Nemotron-H: MLP gate cleanup (pass NULL for unused gate)

This model does not use a gate in MLP blocks; pass NULLs for gate tensors to make intent clear and avoid unused-pointer noise.

* SSM: respect ssm_dt_rank for dt_dim when provided

Use GGUF-provided time_step_rank (ssm_dt_rank) to set dt_dim when > 0; fallback to max(64, n_embd/16).

* fix: plamo2 - revert dt_dim to default (remove ssm_dt_rank usage)

* Rename nemotronh to nemotron_h for consistency

- Update architecture name from NEMOTRONH to NEMOTRON_H in constants.py
- Change architecture string from 'nemotronh' to 'nemotron_h' in all files
- Update enum LLM_ARCH_NEMOTRONH to LLM_ARCH_NEMOTRON_H
- Update class name llm_build_nemotronh to llm_build_nemotron_h
- Consistent naming with underscore convention (nemotron_h vs nemotronh)

* feat: Support conversion for older NemotronH models

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Maicon Domingues <dominguesm@outlook.com>
Co-authored-by: weatherman <fxdstudios@gmail.com>
b6315
2025-08-28 18:39:31 -06:00
Gabe Goodhart
a8bca68f72 fix: Compute the full sum in llama-eval-callback, not just the sum of printed values (#15637)
This makes it much easier to compare between llama.cpp and transformers!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
b6314
2025-08-28 15:27:36 -05:00
mnehete32
c97dc09391 CUDA: add conv2d (#15635)
* CUDA: add conv2d

* CUDA: conv2d - correct formatting and added const
b6313
2025-08-28 20:33:03 +02:00
Aaron Teo
6c442f42ff ggml-cpu: fix invalid hsum build in debug s390x (#15634)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
b6312
2025-08-28 22:39:27 +08:00
compilade
73804145ab ggml : fix SSM_SCAN for n_groups > 1 (#15625) b6311 2025-08-28 10:11:36 -04:00
Georgi Gerganov
c8d0d14e77 kv-cache : fix find_slot to not search for continuous slot (#15638)
ggml-ci
b6310
2025-08-28 17:09:05 +03:00
Sigbjørn Skjæret
84ab83cc0b model : jina-embeddings-v3 support (#13693)
* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* fix vocab parsing with only tokenizer.json

* set mask token lstrip attribute

* additional unk_token_id fallback just in case [no ci]

* revert vocab_size() change [no ci]

* merge tensor loading into general bert

* rope

* add lora embedding and loading (non-functional)

* export separate lora ggufs instead

* add adapter metadata api

* use std::string

* convert_hf_to_lora compatibility

* fix assert

* apply suggestions from review

* apply suggestion from review
b6309
2025-08-28 15:49:50 +02:00
Aman Gupta
55042b3692 scripts: add sqlite3 check for compare-commits.sh (#15633) 2025-08-28 19:23:22 +08:00
Georgi Gerganov
8a4280ce43 kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
b6307
2025-08-28 12:27:02 +03:00
Aleksei Nikiforov
64387f6e95 gguf-py: byteswapping improvements (#12851)
* gguf-py: implement byteswapping for Q4_0

This is needed to byteswap Mistral model.

Also restore original shapes after byteswapping tensors.
It is not needed at the moment, but do it in case
they'd be used in future.

* Rework byteswapping code in gguf-py

Move out details from byteswapping tensor blocks code
2025-08-28 16:56:41 +08:00
Joshua Cogliati
d35a1e8c41 cli : change log to warning to explain reason for stopping (#15604)
* Change to warn instead of debug, to explain reason for stopping.

* Update tools/main/main.cpp

Fix printing --2

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
b6305
2025-08-28 10:48:20 +03:00
Daniel Bevenius
46d9caa27a model-conversion : add mmproj conversion target (#15628)
This commit adds a new target to the Makefile for converting models that
are multimodal. This target will convert the original model and in
addition also create the mmproj GGUF model.

The motivation for this change is that for models that are multimodal,
for example those that contain a vision encoders, we will often want to
upload both the quantized model and the vision encoder model to
HuggingFace.

Example usage:
```console
$ make causal-convert-mm-model MODEL_PATH=~/work/ai/models/gemma-3-4b-it-qat-q4_0-unquantized/
...
The environment variable CONVERTED_MODEL can be set to this path using:
export CONVERTED_MODEL=/home/danbev/work/ai/llama.cpp/models/gemma-3-4b-it-qat-q4_0-unquantized.gguf
The mmproj model was created in /home/danbev/work/ai/llama.cpp/models/mmproj-gemma-3-4b-it-qat-q4_0-unquantized.gguf
```
The converted original model can then be quantized, and after that both
the quantized model and the mmproj file can then be uploaded to
HuggingFace.

Refs: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF/tree/main
2025-08-28 09:26:48 +02:00
matiaslin
5a0e3ef6f0 cuda: Add cublasLt_static linking when GGML_STATIC is enabled (#15622)
Prior to this change, we faced undefined cublasLt references when
attempting to compile 'llama-cli' with GGML_STATIC=ON on Linux.

We add linking with CUDA::cublasLt_static when CUDA version is greater
than 10.1.
b6303
2025-08-28 02:32:36 +02:00
Johannes Gäßler
fbef0fad7a server: higher timeout for tests (#15621) 2025-08-27 20:58:09 +02:00
Georgi Gerganov
da54f9f1a2 presets : add qwen3-30B-a3b FIM (#15616) b6301 2025-08-27 15:48:07 +03:00
uvos
47373271f9 HIP: Enable support for ggml_backend_cuda_register_host_buffer (#15615) b6300 2025-08-27 13:58:54 +02:00
Georgi Gerganov
1bded5a3b3 kv-cache : better estimate of n_kv for multi-sequence batches (#15610)
ggml-ci
b6299
2025-08-27 13:55:12 +03:00
Chenguang Li
1e7489745a CANN: refactor mask handling and improve performance in FA (#15561)
* CANN(flash-attn): refactor mask handling and improve performance

1. Refactored the mask computation in Flash Attention, unified the logic without separating prefill and decode.
2. Optimized performance in non-alibi scenarios by reducing one repeat operation.
3. Updated operator management to explicitly mark unsupported cases on 310P devices and when dim is not divisible by 16.

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: fix review

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: Optimization FA BNSD to BSND

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
b6298
2025-08-27 17:21:41 +08:00
xctan
1cf123a343 ggml-cpu : add basic RVV support for vector f32 ops (#15057)
* ggml-cpu : add basic RVV support for vector f32 ops

* ggml-cpu : add RVV support for f32 softmax
b6297
2025-08-27 16:44:22 +08:00
Daniel Bevenius
fcca2182a1 common : add -m to bash completion for --model [no ci] (#15591)
This commit updates the bash completion script to include the -m
short option for the --model argument.

The motivation for this is that currently tab completion only works the
full --model option, and it is nice to have it work for the short option
as well.
2025-08-27 10:28:53 +02:00
rmatif
86076f92de OpenCL: add fused group_norm/norm, mul, add (#15314)
* add fused group_norm/norm, mul, add

* fix spacing

* revert rms_norm logic

* fix trailing whitespace
b6295
2025-08-26 23:36:05 -07:00
Diego Devesa
bcbddcd54f tests : fix test-opt with GGML_BACKEND_DL (#15599) b6294 2025-08-26 22:14:38 +02:00
Akarshan Biswas
8b69686136 SYCL: fix rms_norm_mul_add for tensor dim not a multiple of sg_size (#15592)
The original implementation unconditionally returned true for this operation, leading to a failure when the tensor's first dimension (ne[0]) was not a multiple of WARP_SIZE. This caused an GGML_ASSERT(ncols % WARP_SIZE == 0) failure in ggml-sycl/norm.cpp.

This change updates the ggml_backend_sycl_device_supports_op check to correctly return true for GGML_OP_RMS_NORM only when the first dimension of the tensor is a multiple of WARP_SIZE, ensuring the operation can be performed without error.
b6293
2025-08-27 00:27:49 +05:30
fidoriel
8ce3ff1d91 mtmd : fix mtmd ios build (#15579) b6292 2025-08-26 20:05:50 +02:00
Eve
44b1efa41a tests: add performance test for mul mat id (#15543) b6291 2025-08-26 15:42:49 +00:00
shalinib-ibm
a6a58d6478 llamafile: PowerPC Sgemm Optimization (#15558)
This patch improves GEMM for FP32 Data Type on PowerPC

Implements GEMM on large blocks with configurable block size mc, nc, kc
(default: 256, 256, 256).
Packing Function optimized to access blocks as per memory layout.
GEMM Optimized to work on larger blocks.
Isolated Packing from GEMM Operations for better MMA utilization.

Verified functionality and correctness uing llama-cli and stand alone
test case (performs matmul and compares final mattrix C result with base).

Minor code refactoring changes:
Replace macro with inline function
Code Indent made consistent with 4 spaces

Performance Testing:

Observed 50% ~ 70% improvement in Prompt Processing Speed mesured using
llama-bench with Meta-Llama3-8B FP32 Model.  Similar gains observed with
Mistral-7b-Instruct-v0.3 Model.

model                   Size                Params     Backend       Threads   Test    Patch   Base
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp512   98.58   60.3
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp1024  95.88   57.36
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp2048  85.46   53.26
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp4096  68.66   45.78
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp6144  57.35   40.44

25 ~ 30% improvement in llama-batched-bench with Metla-Llama3-8B in
Prompt Processing Speed for large prompts (256, 512, 1024, 2048, 4096)tokens with various batch
sizes ( 1, 2, 4, 8, 16)

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
b6290
2025-08-26 23:35:25 +08:00
Georgi Gerganov
0373486dbc graph : fix assert in memory-less build_attn (#15590)
ggml-ci
b6289
2025-08-26 17:45:17 +03:00
Daniel Bevenius
62cef26ac5 model-conversion : add qat-q4 quantization targets (#15588)
This commit adds two targets to the Makefile for quantizing of
Quantization Aware Trained (QAT) models to Q4_0 format.

The motivation for this is that this sets the token embedding and the
output tensors data types to Q8_0 instead of the default Q6_K. This is
someting that we wish to enforce for QAT Q4_0 models that are to be
uploaded to ggml-org on Huggingface to guarantee the best quality.
2025-08-26 16:12:29 +02:00
Johannes Gäßler
8f5afa94c4 CUDA: return -1 for nonexistent compiled arch (#15587) b6287 2025-08-26 16:01:20 +02:00