ggml-cpu : add basic RVV support for vector f32 ops (#15057)

* ggml-cpu : add basic RVV support for vector f32 ops

* ggml-cpu : add RVV support for f32 softmax
This commit is contained in:
xctan
2025-08-27 16:44:22 +08:00
committed by GitHub
parent fcca2182a1
commit 1cf123a343
5 changed files with 168 additions and 19 deletions

View File

@@ -435,7 +435,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
)
if (GGML_RVV)
if (GGML_XTHEADVECTOR)
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
list(APPEND ARCH_FLAGS -march=rv64gc_zfhmin_xtheadvector -mabi=lp64d)
elseif (GGML_RV_ZFH)
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
else()

View File

@@ -9072,6 +9072,9 @@ static void ggml_compute_forward_ssm_scan_f32(
}
sumf = GGML_F32xt_REDUCE_ONE(sum);
#elif defined(__riscv_v_intrinsic)
// todo: RVV implementation
const int np = 0;
#else
const int np = (nc & ~(GGML_F32_STEP - 1));
@@ -10023,8 +10026,8 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
int64_t h_stride_2d = head_size * head_size;
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
#if defined(__ARM_FEATURE_SVE) || defined(__riscv_v_intrinsic)
// scalar Route to scalar implementation //TODO: Write SVE code and RVV code
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));

View File

@@ -18,6 +18,10 @@
#include <immintrin.h>
#endif
#if defined(__riscv_v_intrinsic)
#include <riscv_vector.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
@@ -94,24 +98,15 @@ extern "C" {
}
#elif defined(__riscv) && defined(__riscv_zfhmin)
static inline float riscv_compute_fp16_to_fp32(ggml_fp16_t h) {
float f;
__asm__(
"fmv.h.x %[f], %[h]\n\t"
"fcvt.s.h %[f], %[f]"
: [f] "=&f" (f)
: [h] "r" (h)
);
return f;
_Float16 hf;
memcpy(&hf, &h, sizeof(ggml_fp16_t));
return hf;
}
static inline ggml_fp16_t riscv_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
__asm__(
"fcvt.h.s %[f], %[f]\n\t"
"fmv.x.h %[h], %[f]"
: [h] "=&r" (res)
: [f] "f" (f)
);
_Float16 hf = (_Float16)f;
memcpy(&res, &hf, sizeof(ggml_fp16_t));
return res;
}
@@ -1170,6 +1165,36 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
#elif defined(__riscv_v_intrinsic)
// compatible with vlen >= 128
#define GGML_SIMD
// F32
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 vfloat32m1_t
#define GGML_F32x4_ZERO __riscv_vfmv_v_f_f32m1(0.0f, GGML_F32_EPR)
#define GGML_F32x4_SET1(x) __riscv_vfmv_v_f_f32m1(x, GGML_F32_EPR)
#define GGML_F32x4_LOAD(x) __riscv_vle32_v_f32m1(x, GGML_F32_EPR)
#define GGML_F32x4_STORE(b, v) __riscv_vse32_v_f32m1(b, v, GGML_F32_EPR)
#define GGML_F32x4_FMA(a, b, c) __riscv_vfmacc_vv_f32m1(a, b, c, GGML_F32_EPR)
#define GGML_F32x4_ADD(a, b) __riscv_vfadd_vv_f32m1(a, b, GGML_F32_EPR)
#define GGML_F32x4_MUL(a, b) __riscv_vfmul_vv_f32m1(a, b, GGML_F32_EPR)
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
#endif
// GGML_F32_ARR / GGML_F16_ARR

View File

@@ -84,6 +84,16 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
}
// reduce sum1,sum2 to sum1
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
#elif defined(__riscv_v_intrinsic)
vfloat32m1_t vsum = __riscv_vfmv_v_f_f32m1(0.0f, 1);
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
vfloat32m8_t prod = __riscv_vfmul_vv_f32m8(ax, ay, avl);
vsum = __riscv_vfredusum_vs_f32m8_f32m1(prod, vsum, avl);
}
sumf += __riscv_vfmv_f_s_f32m1_f32(vsum);
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -197,7 +207,7 @@ void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * G
ggml_float sumf = 0.0;
#if defined(GGML_SIMD)
#if defined(GGML_SIMD) && !defined(__riscv_v_intrinsic)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
@@ -325,6 +335,15 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float
vst1q_f32(y + i, val);
sum += (ggml_float)vaddvq_f32(val);
}
#elif defined(__riscv_v_intrinsic)
vfloat64m1_t vsum = __riscv_vfmv_v_f_f64m1(0, 1);
for (int avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m2(n - i);
vfloat32m2_t val = ggml_v_expf_m2(__riscv_vfsub_vf_f32m2(__riscv_vle32_v_f32m2(&x[i], avl), max, avl), avl);
__riscv_vse32_v_f32m2(&y[i], val, avl);
vsum = __riscv_vfwredusum_vs_f32m2_f64m1(val, vsum, avl);
}
return (ggml_float)__riscv_vfmv_f_s_f64m1_f64(vsum);
#endif
for (; i < n; ++i) {
float val = expf(x[i] - max);

View File

@@ -119,6 +119,14 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
}
#if defined(GGML_SIMD)
#if defined(__riscv_v_intrinsic)
// todo: RVV impl
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
@@ -149,6 +157,7 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
}
#endif
#else
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
@@ -243,6 +252,14 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
svst1_f32(pg, y + np2, ay1);
}
#elif defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
vfloat32m8_t ny = __riscv_vfmadd_vf_f32m8(ax, v, ay, avl);
__riscv_vse32_v_f32m8(&y[i], ny, avl);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -276,6 +293,13 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
#if defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
@@ -297,6 +321,7 @@ inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y,
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@@ -324,6 +349,16 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
y[i] += x[k][i]*v[k][0];
}
}
#elif defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; k++) {
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[k][i], avl);
ay = __riscv_vfmadd_vf_f32m8(ax, v[k][0], ay, avl);
}
__riscv_vse32_v_f32m8(&y[i], ay, avl);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -375,6 +410,14 @@ inline static void ggml_vec_mad1_f32(const int n, float * y, const float * x, co
for (int i = 0; i < n; ++i) {
y[i] = x[i]*s + b;
}
#elif defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
vfloat32m8_t vb = __riscv_vfmv_v_f_f32m8(b, avl);
vfloat32m8_t ny = __riscv_vfmadd_vf_f32m8(ax, s, vb, avl);
__riscv_vse32_v_f32m8(&y[i], ny, avl);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -436,6 +479,13 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
ay1 = svmul_f32_m(pg, ay1, vx);
svst1_f32(pg, y + np, ay1);
}
#elif defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
vfloat32m8_t ny = __riscv_vfmul_vf_f32m8(ay, v, avl);
__riscv_vse32_v_f32m8(&y[i], ny, avl);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -467,6 +517,13 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
#if defined(GGML_SIMD)
#if defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
@@ -486,6 +543,7 @@ inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@@ -928,7 +986,51 @@ inline static __m128 ggml_v_silu(__m128 x) {
return _mm_div_ps(x, one_plus_exp_neg_x);
}
#endif // __ARM_NEON / __AVX2__ / __SSE2__
#elif defined(__riscv_v_intrinsic)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static vfloat32m2_t ggml_v_expf_m2(vfloat32m2_t x, int vl) {
const vfloat32m2_t r = __riscv_vfmv_v_f_f32m2(0x1.8p23f, vl);
#ifdef __riscv_xtheadvector
// workaround for compiler bug (gcc 14.3.0: Error: unrecognized opcode `th.vmv1r.v v2,v4')
vfloat32m2_t z = __riscv_vfadd_vf_f32m2(r, 0.0f, vl);
z = __riscv_vfmacc_vf_f32m2(z, 0x1.715476p+0f, x, vl);
#else
const vfloat32m2_t z = __riscv_vfmacc_vf_f32m2(r, 0x1.715476p+0f, x, vl);
#endif
const vfloat32m2_t n = __riscv_vfsub_vv_f32m2(z, r, vl);
const vfloat32m2_t b = __riscv_vfnmsac_vf_f32m2(__riscv_vfnmsac_vf_f32m2(x, 0x1.62e4p-1f, n, vl),
0x1.7f7d1cp-20f, n, vl);
const vuint32m2_t e = __riscv_vsll_vx_u32m2(__riscv_vreinterpret_v_f32m2_u32m2(z), 23, vl);
const vfloat32m2_t k = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vadd_vx_u32m2(e, 0x3f800000, vl)); // 1.0f
const vbool16_t c = __riscv_vmfgt_vf_f32m2_b16(__riscv_vfabs_v_f32m2(n, vl), 126.0f, vl);
const vfloat32m2_t u = __riscv_vfmul_vv_f32m2(b, b, vl);
const vfloat32m2_t j = __riscv_vfmacc_vv_f32m2(
__riscv_vfmul_vf_f32m2(b, 0x1.ffffecp-1f, vl),
__riscv_vfmacc_vv_f32m2(
__riscv_vfmacc_vf_f32m2(__riscv_vfmv_v_f_f32m2(0x1.fffdb6p-2f, vl), 0x1.555e66p-3f, b, vl),
__riscv_vfmacc_vf_f32m2(__riscv_vfmv_v_f_f32m2(0x1.573e2ep-5f, vl), 0x1.0e4020p-7f, b, vl),
u, vl), u, vl);
if (!__riscv_vcpop_m_b16(c, vl))
return __riscv_vfmacc_vv_f32m2(k, j, k, vl);
const vbool16_t dm = __riscv_vmfle_vf_f32m2_b16(n, 0.0f, vl);
const vuint32m2_t d = __riscv_vmerge_vxm_u32m2(__riscv_vmv_v_x_u32m2(0, vl), 0x82000000, dm, vl);
const vfloat32m2_t s1 = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vadd_vx_u32m2(d, 0x7f000000, vl));
const vfloat32m2_t s2 = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vsub_vv_u32m2(e, d, vl));
const vfloat32m2_t r1 = __riscv_vmerge_vvm_f32m2(
__riscv_vfmacc_vv_f32m2(k, k, j, vl),
__riscv_vfmul_vv_f32m2(__riscv_vfmacc_vv_f32m2(s2, s2, j, vl), s1, vl),
c, vl);
return __riscv_vmerge_vvm_f32m2(
r1, __riscv_vfmul_vv_f32m2(s1, s1, vl),
__riscv_vmfgt_vf_f32m2_b16(__riscv_vfabs_v_f32m2(n, vl), 192.0f, vl),
vl);
}
#endif // __ARM_NEON / __AVX2__ / __SSE2__ / __riscv_v_intrinsic
inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {