mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : require first token to be BOS (#1303)
* llama : require first token to be BOS * scripts : add ppl-run-all.sh * perplexity : add BOS for each chunk * readme : update perplexity values after BOS fix * perplexity : add clarifying comments
This commit is contained in:
		
							
								
								
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -43,5 +43,6 @@ zig-out/ | ||||
| zig-cache/ | ||||
|  | ||||
| ppl-*.txt | ||||
| qnt-*.txt | ||||
|  | ||||
| examples/jeopardy/results.txt | ||||
|   | ||||
							
								
								
									
										32
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										32
									
								
								README.md
									
									
									
									
									
								
							| @@ -298,17 +298,25 @@ Several quantization methods are supported. They differ in the resulting model d | ||||
|  | ||||
| | Model | Measure      | F16    | Q4_0   | Q4_1   | Q4_2   | Q5_0   | Q5_1   | Q8_0   | | ||||
| |------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|-------:| | ||||
| |    7B | perplexity   | 5.9565 | 6.2103 | 6.1286 | 6.1698 | 6.0139 | 5.9934 | 5.9571 | | ||||
| |    7B | perplexity   | 5.9066 | 6.1620 | 6.0910 | 6.1466 | 5.9862 | 5.9481 | 5.9069 | | ||||
| |    7B | file size    |  13.0G |   4.0G |   4.8G |   4.0G |   4.4G |   4.8G |   7.1G | | ||||
| |    7B | ms/tok @ 4th |    128 |     56 |     61 |     84 |     91 |     95 |     75 | | ||||
| |    7B | ms/tok @ 8th |    128 |     47 |     55 |     48 |     53 |     59 |     75 | | ||||
| |    7B | bits/weight  |   16.0 |    5.0 |    6.0 |    5.0 |    5.5 |    6.0 |    9.0 | | ||||
| |   13B | perplexity   | 5.2455 | 5.3748 | 5.3471 | 5.3433 | 5.2768 | 5.2582 | 5.2458 | | ||||
| |   13B | perplexity   | 5.2543 | 5.3863 | 5.3607 | 5.3513 | 5.2856 | 5.2706 | 5.2548 | | ||||
| |   13B | file size    |  25.0G |   7.6G |   9.1G |   7.6G |   8.4G |   9.1G |    14G | | ||||
| |   13B | ms/tok @ 4th |    239 |    104 |    113 |    160 |    176 |    185 |    141 | | ||||
| |   13B | ms/tok @ 8th |    240 |     85 |     99 |     97 |    108 |    117 |    147 | | ||||
| |   13B | bits/weight  |   16.0 |    5.0 |    6.0 |    5.0 |    5.5 |    6.0 |    9.0 | | ||||
|  | ||||
| ### Perplexity (measuring model quality) | ||||
|  | ||||
| You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better). | ||||
| For more information, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity). | ||||
|  | ||||
| The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512. | ||||
| The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads. | ||||
|  | ||||
| ### Interactive mode | ||||
|  | ||||
| If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter. | ||||
| @@ -407,26 +415,6 @@ If your issue is with model generation quality, then please at least scan the fo | ||||
|     - [Aligning language models to follow instructions](https://openai.com/research/instruction-following) | ||||
|     - [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155) | ||||
|  | ||||
| ### Perplexity (measuring model quality) | ||||
|  | ||||
| You can use the `perplexity` example to measure perplexity over the given prompt. For more background, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity). However, in general, lower perplexity is better for LLMs. | ||||
|  | ||||
| #### Latest measurements | ||||
|  | ||||
| The latest perplexity scores for the various model sizes and quantizations are being tracked in [discussion #406](https://github.com/ggerganov/llama.cpp/discussions/406). `llama.cpp` is measuring very well compared to the baseline implementations. Quantization has a small negative impact on quality, but, as you can see, running | ||||
| 13B at q4_0 beats the 7B f16 model by a significant amount. | ||||
|  | ||||
| All measurements are done against the wikitext2 test dataset (https://paperswithcode.com/dataset/wikitext-2), with default options (512 length context). | ||||
| Note that changing the context length will have a significant impact on perplexity (longer context = better perplexity). | ||||
| ``` | ||||
| Perplexity - model options | ||||
| 5.5985 - 13B, q4_0 | ||||
| 5.9565 - 7B, f16 | ||||
| 6.3001 - 7B, q4_1 | ||||
| 6.5949 - 7B, q4_0 | ||||
| 6.5995 - 7B, q4_0, --memory_f16 | ||||
| ``` | ||||
|  | ||||
| #### How to run | ||||
|  | ||||
| 1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research | ||||
|   | ||||
| @@ -438,8 +438,8 @@ std::string gpt_random_prompt(std::mt19937 & rng) { | ||||
| // TODO: not great allocating this every time | ||||
| std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) { | ||||
|     // initialize to prompt numer of chars, since n_tokens <= n_prompt_chars | ||||
|     std::vector<llama_token> res(text.size() + (int)add_bos); | ||||
|     int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos); | ||||
|     std::vector<llama_token> res(text.size() + (int) add_bos); | ||||
|     const int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos); | ||||
|     assert(n >= 0); | ||||
|     res.resize(n); | ||||
|  | ||||
|   | ||||
| @@ -313,7 +313,8 @@ int main(int argc, char ** argv) { | ||||
|             if (n_past + (int) embd.size() > n_ctx) { | ||||
|                 const int n_left = n_past - params.n_keep; | ||||
|  | ||||
|                 n_past = params.n_keep; | ||||
|                 // always keep the first token - BOS | ||||
|                 n_past = std::max(1, params.n_keep); | ||||
|  | ||||
|                 // insert n_left/2 tokens at the start of embd from last_n_tokens | ||||
|                 embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size()); | ||||
| @@ -331,7 +332,6 @@ int main(int argc, char ** argv) { | ||||
|             } | ||||
|  | ||||
|             // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past) | ||||
|             // REVIEW | ||||
|             if (n_session_consumed < (int) session_tokens.size()) { | ||||
|                 size_t i = 0; | ||||
|                 for ( ; i < embd.size(); i++) { | ||||
|   | ||||
| @@ -25,46 +25,68 @@ void perplexity(llama_context * ctx, const gpt_params & params) { | ||||
|     // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research | ||||
|     // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` | ||||
|     // Output: `perplexity: 13.5106 [114/114]` | ||||
|     // BOS tokens will be added for each chunk before eval | ||||
|     auto tokens = ::llama_tokenize(ctx, params.prompt, true); | ||||
|  | ||||
|     int count = 0; | ||||
|     int seq_count = tokens.size() / params.n_ctx; | ||||
|     int n_vocab = llama_n_vocab(ctx); | ||||
|     int count   = 0; | ||||
|  | ||||
|     const int n_chunk = tokens.size() / params.n_ctx; | ||||
|     const int n_vocab = llama_n_vocab(ctx); | ||||
|     const int n_batch = params.n_batch; | ||||
|  | ||||
|     double nll = 0.0; | ||||
|     fprintf(stderr, "%s : calculating perplexity over %d chunks, batch_size=%d\n", __func__, seq_count, params.n_batch); | ||||
|     fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); | ||||
|  | ||||
|     for (int i = 0; i < seq_count; ++i) { | ||||
|         int start = i * params.n_ctx; | ||||
|         int end = start + params.n_ctx; | ||||
|     for (int i = 0; i < n_chunk; ++i) { | ||||
|         const int start =     i * params.n_ctx; | ||||
|         const int end   = start + params.n_ctx; | ||||
|  | ||||
|         const int num_batches = (params.n_ctx + n_batch - 1) / n_batch; | ||||
|  | ||||
|         std::vector<float> logits; | ||||
|         int num_batches = (params.n_ctx + params.n_batch - 1) / params.n_batch; | ||||
|         auto start_t = std::chrono::high_resolution_clock::now(); | ||||
|  | ||||
|         const auto t_start = std::chrono::high_resolution_clock::now(); | ||||
|  | ||||
|         for (int j = 0; j < num_batches; ++j) { | ||||
|             int batch_start = start + j * params.n_batch; | ||||
|             int batch_size = std::min(end - batch_start, params.n_batch); | ||||
|             if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * params.n_batch, params.n_threads)) { | ||||
|             const int batch_start = start + j * n_batch; | ||||
|             const int batch_size  = std::min(end - batch_start, n_batch); | ||||
|  | ||||
|             // save original token and restore it after eval | ||||
|             const auto token_org = tokens[batch_start]; | ||||
|  | ||||
|             // add BOS token for the first batch of each chunk | ||||
|             if (j == 0) { | ||||
|                 tokens[batch_start] = llama_token_bos(); | ||||
|             } | ||||
|  | ||||
|             if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) { | ||||
|                 fprintf(stderr, "%s : failed to eval\n", __func__); | ||||
|                 return; | ||||
|             } | ||||
|             auto batch_logits = llama_get_logits(ctx); | ||||
|  | ||||
|             // restore the original token in case it was set to BOS | ||||
|             tokens[batch_start] = token_org; | ||||
|  | ||||
|             const auto batch_logits = llama_get_logits(ctx); | ||||
|             logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); | ||||
|         } | ||||
|         auto end_t = std::chrono::high_resolution_clock::now(); | ||||
|  | ||||
|         const auto t_end = std::chrono::high_resolution_clock::now(); | ||||
|  | ||||
|         if (i == 0) { | ||||
|             const float seconds = std::chrono::duration<float>(end_t - start_t).count(); | ||||
|             printf("%.2f seconds per pass - ETA ", seconds); | ||||
|             int total_seconds = (int)(seconds * seq_count); | ||||
|             const float t_total = std::chrono::duration<float>(t_end - t_start).count(); | ||||
|             fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); | ||||
|             int total_seconds = (int)(t_total * n_chunk); | ||||
|             if (total_seconds >= 60*60) { | ||||
|                 printf("%d hours ", total_seconds / (60*60)); | ||||
|                 fprintf(stderr, "%d hours ", total_seconds / (60*60)); | ||||
|                 total_seconds = total_seconds % (60*60); | ||||
|             } | ||||
|             printf("%d minutes\n", total_seconds / 60); | ||||
|             fprintf(stderr, "%d minutes\n", total_seconds / 60); | ||||
|         } | ||||
|  | ||||
|         // We get the logits for all the tokens in the context window (params.n_ctx) | ||||
|         // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity, | ||||
|         // calculate the perplexity over the last half the window (so the model always has | ||||
|         // calculate the perplexity over the last half of the window (so the model always has | ||||
|         // some context to predict the token). | ||||
|         // | ||||
|         // We rely on the fact that attention in the forward pass only looks at previous | ||||
| @@ -76,10 +98,12 @@ void perplexity(llama_context * ctx, const gpt_params & params) { | ||||
|         // process the entire prompt. | ||||
|         for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { | ||||
|             // Calculate probability of next token, given the previous ones. | ||||
|             std::vector<float> tok_logits( | ||||
|                 logits.begin() + j * n_vocab, | ||||
|             const std::vector<float> tok_logits( | ||||
|                 logits.begin() + (j + 0) * n_vocab, | ||||
|                 logits.begin() + (j + 1) * n_vocab); | ||||
|             float prob = softmax(tok_logits)[tokens[start + j + 1]]; | ||||
|  | ||||
|             const float prob = softmax(tok_logits)[tokens[start + j + 1]]; | ||||
|  | ||||
|             nll += -std::log(prob); | ||||
|             ++count; | ||||
|         } | ||||
|   | ||||
							
								
								
									
										12
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										12
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -1052,6 +1052,13 @@ static bool llama_eval_internal( | ||||
|             const int   n_tokens, | ||||
|             const int   n_past, | ||||
|             const int   n_threads) { | ||||
|  | ||||
|     // enforce that the first token is BOS | ||||
|     if (n_past == 0 && tokens[0] != llama_token_bos()) { | ||||
|         fprintf(stderr, "%s: first token must be BOS\n", __func__); | ||||
|         return false; | ||||
|     } | ||||
|  | ||||
|     const int64_t t_start_us = ggml_time_us(); | ||||
|  | ||||
|     const int N = n_tokens; | ||||
| @@ -1482,7 +1489,7 @@ static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, co | ||||
|     } | ||||
|  | ||||
|     if (bos) { | ||||
|         output.push_back(1); | ||||
|         output.push_back(llama_token_bos()); | ||||
|     } | ||||
|  | ||||
|     tokenizer.tokenize(text, output); | ||||
| @@ -2727,11 +2734,14 @@ int llama_eval( | ||||
|         fprintf(stderr, "%s: failed to eval\n", __func__); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     // get a more accurate load time, upon first eval | ||||
|     // TODO: fix this | ||||
|     if (!ctx->has_evaluated_once) { | ||||
|         ctx->t_load_us = ggml_time_us() - ctx->t_start_us; | ||||
|         ctx->has_evaluated_once = true; | ||||
|     } | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
|   | ||||
							
								
								
									
										43
									
								
								scripts/ppl-run-all.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										43
									
								
								scripts/ppl-run-all.sh
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,43 @@ | ||||
| #!/bin/bash | ||||
|  | ||||
| # | ||||
| # quantize | ||||
| # | ||||
|  | ||||
| # 7B | ||||
| time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-7b-q4_0.txt | ||||
| time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-7b-q4_1.txt | ||||
| time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_2.bin q4_2 2>&1 | tee ../qnt-7b-q4_2.txt | ||||
| time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-7b-q5_0.txt | ||||
| time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-7b-q5_1.txt | ||||
| time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-7b-q8_0.txt | ||||
|  | ||||
| # 13B | ||||
| time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-13b-q4_0.txt | ||||
| time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-13b-q4_1.txt | ||||
| time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_2.bin q4_2 2>&1 | tee ../qnt-13b-q4_2.txt | ||||
| time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-13b-q5_0.txt | ||||
| time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-13b-q5_1.txt | ||||
| time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-13b-q8_0.txt | ||||
|  | ||||
| # | ||||
| # perplexity | ||||
| # | ||||
|  | ||||
| # 7B | ||||
| time ./bin/perplexity -m ../models/7B/ggml-model-f16.bin  -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-f16.txt | ||||
| time ./bin/perplexity -m ../models/7B/ggml-model-q4_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q4_0.txt | ||||
| time ./bin/perplexity -m ../models/7B/ggml-model-q4_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q4_1.txt | ||||
| time ./bin/perplexity -m ../models/7B/ggml-model-q4_2.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q4_2.txt | ||||
| time ./bin/perplexity -m ../models/7B/ggml-model-q5_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q5_0.txt | ||||
| time ./bin/perplexity -m ../models/7B/ggml-model-q5_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q5_1.txt | ||||
| time ./bin/perplexity -m ../models/7B/ggml-model-q8_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q8_0.txt | ||||
|  | ||||
| # 13B | ||||
| time ./bin/perplexity -m ../models/13B/ggml-model-f16.bin  -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-f16.txt | ||||
| time ./bin/perplexity -m ../models/13B/ggml-model-q4_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q4_0.txt | ||||
| time ./bin/perplexity -m ../models/13B/ggml-model-q4_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q4_1.txt | ||||
| time ./bin/perplexity -m ../models/13B/ggml-model-q4_2.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q4_2.txt | ||||
| time ./bin/perplexity -m ../models/13B/ggml-model-q5_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q5_0.txt | ||||
| time ./bin/perplexity -m ../models/13B/ggml-model-q5_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q5_1.txt | ||||
| time ./bin/perplexity -m ../models/13B/ggml-model-q8_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q8_0.txt | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov