mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-13 10:57:15 +00:00
CUDA: General GEMV fusion (#16715)
This commit is contained in:
@@ -2007,6 +2007,147 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_cuda_should_fuse_mul_mat(const ggml_tensor * ffn_up,
|
||||
const ggml_tensor * ffn_gate,
|
||||
const ggml_tensor * glu,
|
||||
const ggml_tensor * ffn_up_bias = nullptr,
|
||||
const ggml_tensor * ffn_gate_bias = nullptr) {
|
||||
const bool has_bias = ffn_up_bias != nullptr || ffn_gate_bias != nullptr;
|
||||
|
||||
if (has_bias && (!ffn_up_bias || !ffn_gate_bias)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const bool is_mul_mat = ffn_up->op == GGML_OP_MUL_MAT && ffn_gate->op == GGML_OP_MUL_MAT && glu->op == GGML_OP_GLU;
|
||||
const bool is_mul_mat_id = ffn_up->op == GGML_OP_MUL_MAT_ID && ffn_gate->op == GGML_OP_MUL_MAT_ID && glu->op == GGML_OP_GLU;
|
||||
|
||||
GGML_ASSERT(ffn_up && ffn_gate && glu);
|
||||
|
||||
if (!is_mul_mat && !is_mul_mat_id) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const ggml_op expected_bias_op = is_mul_mat ? GGML_OP_ADD : GGML_OP_ADD_ID;
|
||||
|
||||
if (has_bias) {
|
||||
if (ffn_up_bias->op != expected_bias_op || ffn_gate_bias->op != expected_bias_op) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (glu->src[0] != ffn_gate_bias || glu->src[1] != ffn_up_bias) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (expected_bias_op == GGML_OP_ADD) {
|
||||
const bool up_has_mul = ffn_up_bias->src[0] == ffn_up || ffn_up_bias->src[1] == ffn_up;
|
||||
const bool gate_has_mul = ffn_gate_bias->src[0] == ffn_gate || ffn_gate_bias->src[1] == ffn_gate;
|
||||
if (!up_has_mul || !gate_has_mul) {
|
||||
return false;
|
||||
}
|
||||
} else { // GGML_OP_ADD_ID
|
||||
if (ffn_up_bias->src[0] != ffn_up || ffn_gate_bias->src[0] != ffn_gate) {
|
||||
return false;
|
||||
}
|
||||
if (ffn_up_bias->src[2] != ffn_up->src[2] || ffn_gate_bias->src[2] != ffn_gate->src[2]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (glu->src[0] != ffn_gate && glu->src[1] != ffn_up) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (ffn_up->src[0]->type != ffn_gate->src[0]->type || !ggml_are_same_shape(ffn_up->src[0], ffn_gate->src[0]) ||
|
||||
!ggml_are_same_stride(ffn_up->src[0], ffn_gate->src[0])) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ffn_up->src[1] != ffn_gate->src[1]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ffn_up->src[2] && (ffn_up->src[2] != ffn_gate->src[2])) {
|
||||
return false;
|
||||
}
|
||||
|
||||
static constexpr std::array<ggml_glu_op, 3> valid_glu_ops = { GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU, GGML_GLU_OP_SWIGLU_OAI };
|
||||
|
||||
if (std::find(valid_glu_ops.begin(), valid_glu_ops.end(), ggml_get_glu_op(glu)) == valid_glu_ops.end()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (const bool swapped = ggml_get_op_params_i32(glu, 1); swapped) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const bool split = ggml_backend_buft_is_cuda_split(ffn_up->src[0]->buffer->buft) ||
|
||||
ggml_backend_buft_is_cuda_split(ffn_gate->src[0]->buffer->buft);
|
||||
|
||||
//TODO: add support for fusion for split buffers
|
||||
if (split) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool ggml_cuda_should_fuse_mul_mat_vec_f(const ggml_tensor * tensor) {
|
||||
ggml_tensor * src0 = tensor->src[0];
|
||||
ggml_tensor * src1 = tensor->src[1];
|
||||
const ggml_tensor * dst = tensor;
|
||||
|
||||
const bool is_mul_mat_id = tensor->op == GGML_OP_MUL_MAT_ID;
|
||||
|
||||
bool use_mul_mat_vec_f =
|
||||
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16) &&
|
||||
src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, is_mul_mat_id ? src1->ne[2] : src1->ne[1]);
|
||||
|
||||
//we only support fusion for ncols_dst = 1
|
||||
if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
return use_mul_mat_vec_f;
|
||||
}
|
||||
|
||||
static bool ggml_cuda_should_fuse_mul_mat_vec_q(const ggml_tensor * tensor) {
|
||||
ggml_tensor * src0 = tensor->src[0];
|
||||
ggml_tensor * src1 = tensor->src[1];
|
||||
const ggml_tensor * dst = tensor;
|
||||
|
||||
const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE &&
|
||||
ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) &&
|
||||
src0->view_src;
|
||||
|
||||
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear && src1->type == GGML_TYPE_F32 &&
|
||||
dst->type == GGML_TYPE_F32 && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
|
||||
|
||||
// fusion is not universally faster on Pascal
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
if (cc <= GGML_CUDA_CC_PASCAL) {
|
||||
return false;
|
||||
}
|
||||
//we only support fusion for ncols_dst = 1
|
||||
if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return use_mul_mat_vec_q;
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
|
||||
|
||||
@@ -2745,7 +2886,7 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
|
||||
}
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_SCALE &&
|
||||
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
|
||||
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
|
||||
return false;
|
||||
}
|
||||
@@ -2854,6 +2995,38 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
}
|
||||
}
|
||||
|
||||
std::initializer_list<enum ggml_op> mul_mat_bias_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_GLU };
|
||||
std::initializer_list<enum ggml_op> mul_mat_id_bias_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_GLU };
|
||||
|
||||
std::initializer_list<enum ggml_op> mul_mat_id_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_MUL_MAT_ID, GGML_OP_GLU };
|
||||
std::initializer_list<enum ggml_op> mul_mat_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT, GGML_OP_GLU };
|
||||
|
||||
if (ops.size() == 5 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}) ||
|
||||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}))) {
|
||||
|
||||
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
|
||||
const ggml_tensor * ffn_gate_bias = cgraph->nodes[node_idx + 1];
|
||||
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 2];
|
||||
const ggml_tensor * ffn_up_bias = cgraph->nodes[node_idx + 3];
|
||||
const ggml_tensor * glu = cgraph->nodes[node_idx + 4];
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu, ffn_up_bias, ffn_gate_bias)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (ops.size() == 3 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}) ||
|
||||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}))) {
|
||||
|
||||
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
|
||||
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 1];
|
||||
const ggml_tensor * glu = cgraph->nodes[node_idx + 2];
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
|
||||
return false;
|
||||
}
|
||||
@@ -3004,6 +3177,184 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
}
|
||||
}
|
||||
|
||||
bool fused_mul_mat_vec = false;
|
||||
int fused_node_count = 0;
|
||||
|
||||
for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) {
|
||||
const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID;
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { op, bias_op, op, bias_op, GGML_OP_GLU }, {})) {
|
||||
ggml_tensor * glu = cgraph->nodes[i + 4];
|
||||
ggml_tensor * gate_bias_n = glu->src[0];
|
||||
ggml_tensor * up_bias_n = glu->src[1];
|
||||
|
||||
//we don't assume the order for {gate, up}. Instead infer it from the bias tensor
|
||||
ggml_tensor * gate_n = nullptr;
|
||||
ggml_tensor * up_n = nullptr;
|
||||
|
||||
if (gate_bias_n->src[0] == cgraph->nodes[i] || gate_bias_n->src[1] == cgraph->nodes[i]) {
|
||||
gate_n = cgraph->nodes[i];
|
||||
up_n = cgraph->nodes[i + 2];
|
||||
} else if (gate_bias_n->src[0] == cgraph->nodes[i + 2] || gate_bias_n->src[1] == cgraph->nodes[i + 2]) {
|
||||
gate_n = cgraph->nodes[i + 2];
|
||||
up_n = cgraph->nodes[i];
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto get_bias_tensor = [](const ggml_tensor * bias_node, const ggml_tensor * mul_node, ggml_op op_bias) {
|
||||
if (op_bias == GGML_OP_ADD) {
|
||||
if (bias_node->src[0] == mul_node) {
|
||||
return bias_node->src[1];
|
||||
}
|
||||
if (bias_node->src[1] == mul_node) {
|
||||
return bias_node->src[0];
|
||||
}
|
||||
return (ggml_tensor *) nullptr;
|
||||
}
|
||||
GGML_ASSERT(op_bias == GGML_OP_ADD_ID);
|
||||
GGML_ASSERT(bias_node->src[0] == mul_node);
|
||||
return bias_node->src[1];
|
||||
};
|
||||
|
||||
ggml_tensor * up_bias_tensor = get_bias_tensor(up_bias_n, up_n, bias_op);
|
||||
ggml_tensor * gate_bias_tensor = get_bias_tensor(gate_bias_n, gate_n, bias_op);
|
||||
|
||||
if (!up_bias_tensor || !gate_bias_tensor) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const ggml_tensor * src0 = up_n->src[0];
|
||||
const ggml_tensor * src1 = up_n->src[1];
|
||||
const ggml_tensor * ids = up_n->src[2];
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_f(up_n)) {
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.gate = gate_n->src[0];
|
||||
fusion_data.x_bias = up_bias_tensor;
|
||||
fusion_data.gate_bias = gate_bias_tensor;
|
||||
fusion_data.glu_op = ggml_get_glu_op(glu);
|
||||
|
||||
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 5;
|
||||
break;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_q(up_n)) {
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.gate = gate_n->src[0];
|
||||
fusion_data.x_bias = up_bias_tensor;
|
||||
fusion_data.gate_bias = gate_bias_tensor;
|
||||
fusion_data.glu_op = ggml_get_glu_op(glu);
|
||||
|
||||
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 5;
|
||||
break;
|
||||
}
|
||||
} else if (ggml_cuda_can_fuse(cgraph, i, { op, op, GGML_OP_GLU }, {})) {
|
||||
ggml_tensor * glu = cgraph->nodes[i + 2];
|
||||
ggml_tensor * gate = glu->src[0];
|
||||
ggml_tensor * up = glu->src[1];
|
||||
|
||||
bool ok = (gate == cgraph->nodes[i] && up == cgraph->nodes[i + 1])
|
||||
|| (gate == cgraph->nodes[i + 1] && up == cgraph->nodes[i]);
|
||||
|
||||
if (!ok) continue;
|
||||
|
||||
const ggml_tensor * src0 = up->src[0];
|
||||
const ggml_tensor * src1 = up->src[1];
|
||||
const ggml_tensor * ids = up->src[2];
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_f(up)) {
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.gate = gate->src[0];
|
||||
fusion_data.glu_op = ggml_get_glu_op(glu);
|
||||
|
||||
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 3;
|
||||
break;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_q(up)) {
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.gate = gate->src[0];
|
||||
fusion_data.glu_op = ggml_get_glu_op(glu);
|
||||
|
||||
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 3;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (fused_mul_mat_vec) {
|
||||
i += fused_node_count - 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
fused_mul_mat_vec = false;
|
||||
fused_node_count = 0;
|
||||
|
||||
for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) {
|
||||
const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID;
|
||||
|
||||
if (!ggml_can_fuse(cgraph, i, { op, bias_op })) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_tensor * mm_node = cgraph->nodes[i];
|
||||
ggml_tensor * bias_node = cgraph->nodes[i + 1];
|
||||
|
||||
ggml_tensor * bias_tensor = nullptr;
|
||||
if (bias_op == GGML_OP_ADD) {
|
||||
if (bias_node->src[0] == mm_node) {
|
||||
bias_tensor = bias_node->src[1];
|
||||
} else if (bias_node->src[1] == mm_node) {
|
||||
bias_tensor = bias_node->src[0];
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
if (bias_node->src[0] != mm_node) {
|
||||
continue;
|
||||
}
|
||||
bias_tensor = bias_node->src[1];
|
||||
}
|
||||
|
||||
const ggml_tensor * src0 = mm_node->src[0];
|
||||
const ggml_tensor * src1 = mm_node->src[1];
|
||||
const ggml_tensor * ids = mm_node->src[2];
|
||||
|
||||
if (bias_op == GGML_OP_ADD_ID && bias_node->src[2] != ids) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.x_bias = bias_tensor;
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_f(mm_node)) {
|
||||
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 2;
|
||||
break;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_q(mm_node)) {
|
||||
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 2;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (fused_mul_mat_vec) {
|
||||
i += fused_node_count - 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) {
|
||||
ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
|
||||
|
||||
Reference in New Issue
Block a user