CUDA: General GEMV fusion (#16715)

This commit is contained in:
Aman Gupta
2025-10-26 19:28:04 +08:00
committed by GitHub
parent 3cfa9c3f12
commit f77c13b91f
11 changed files with 1096 additions and 166 deletions

View File

@@ -1005,3 +1005,16 @@ struct ggml_backend_cuda_context {
return pool(device);
}
};
struct ggml_cuda_mm_fusion_args_host {
const ggml_tensor * x_bias = nullptr;
const ggml_tensor * gate = nullptr;
const ggml_tensor * gate_bias = nullptr;
ggml_glu_op glu_op;
};
struct ggml_cuda_mm_fusion_args_device {
const void * x_bias = nullptr;
const void * gate = nullptr;
const void * gate_bias = nullptr;
ggml_glu_op glu_op;
};

View File

@@ -1,3 +1,4 @@
#pragma once
#include "common.cuh"
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256

View File

@@ -2007,6 +2007,147 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
}
}
static bool ggml_cuda_should_fuse_mul_mat(const ggml_tensor * ffn_up,
const ggml_tensor * ffn_gate,
const ggml_tensor * glu,
const ggml_tensor * ffn_up_bias = nullptr,
const ggml_tensor * ffn_gate_bias = nullptr) {
const bool has_bias = ffn_up_bias != nullptr || ffn_gate_bias != nullptr;
if (has_bias && (!ffn_up_bias || !ffn_gate_bias)) {
return false;
}
const bool is_mul_mat = ffn_up->op == GGML_OP_MUL_MAT && ffn_gate->op == GGML_OP_MUL_MAT && glu->op == GGML_OP_GLU;
const bool is_mul_mat_id = ffn_up->op == GGML_OP_MUL_MAT_ID && ffn_gate->op == GGML_OP_MUL_MAT_ID && glu->op == GGML_OP_GLU;
GGML_ASSERT(ffn_up && ffn_gate && glu);
if (!is_mul_mat && !is_mul_mat_id) {
return false;
}
const ggml_op expected_bias_op = is_mul_mat ? GGML_OP_ADD : GGML_OP_ADD_ID;
if (has_bias) {
if (ffn_up_bias->op != expected_bias_op || ffn_gate_bias->op != expected_bias_op) {
return false;
}
if (glu->src[0] != ffn_gate_bias || glu->src[1] != ffn_up_bias) {
return false;
}
if (expected_bias_op == GGML_OP_ADD) {
const bool up_has_mul = ffn_up_bias->src[0] == ffn_up || ffn_up_bias->src[1] == ffn_up;
const bool gate_has_mul = ffn_gate_bias->src[0] == ffn_gate || ffn_gate_bias->src[1] == ffn_gate;
if (!up_has_mul || !gate_has_mul) {
return false;
}
} else { // GGML_OP_ADD_ID
if (ffn_up_bias->src[0] != ffn_up || ffn_gate_bias->src[0] != ffn_gate) {
return false;
}
if (ffn_up_bias->src[2] != ffn_up->src[2] || ffn_gate_bias->src[2] != ffn_gate->src[2]) {
return false;
}
}
} else {
if (glu->src[0] != ffn_gate && glu->src[1] != ffn_up) {
return false;
}
}
if (ffn_up->src[0]->type != ffn_gate->src[0]->type || !ggml_are_same_shape(ffn_up->src[0], ffn_gate->src[0]) ||
!ggml_are_same_stride(ffn_up->src[0], ffn_gate->src[0])) {
return false;
}
if (ffn_up->src[1] != ffn_gate->src[1]) {
return false;
}
if (ffn_up->src[2] && (ffn_up->src[2] != ffn_gate->src[2])) {
return false;
}
static constexpr std::array<ggml_glu_op, 3> valid_glu_ops = { GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU, GGML_GLU_OP_SWIGLU_OAI };
if (std::find(valid_glu_ops.begin(), valid_glu_ops.end(), ggml_get_glu_op(glu)) == valid_glu_ops.end()) {
return false;
}
if (const bool swapped = ggml_get_op_params_i32(glu, 1); swapped) {
return false;
}
const bool split = ggml_backend_buft_is_cuda_split(ffn_up->src[0]->buffer->buft) ||
ggml_backend_buft_is_cuda_split(ffn_gate->src[0]->buffer->buft);
//TODO: add support for fusion for split buffers
if (split) {
return false;
}
return true;
}
static bool ggml_cuda_should_fuse_mul_mat_vec_f(const ggml_tensor * tensor) {
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
const ggml_tensor * dst = tensor;
const bool is_mul_mat_id = tensor->op == GGML_OP_MUL_MAT_ID;
bool use_mul_mat_vec_f =
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16) &&
src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, is_mul_mat_id ? src1->ne[2] : src1->ne[1]);
//we only support fusion for ncols_dst = 1
if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) {
return false;
}
if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) {
return false;
}
return use_mul_mat_vec_f;
}
static bool ggml_cuda_should_fuse_mul_mat_vec_q(const ggml_tensor * tensor) {
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
const ggml_tensor * dst = tensor;
const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE &&
ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) &&
src0->view_src;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear && src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
// fusion is not universally faster on Pascal
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (cc <= GGML_CUDA_CC_PASCAL) {
return false;
}
//we only support fusion for ncols_dst = 1
if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) {
return false;
}
if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) {
return false;
}
return use_mul_mat_vec_q;
}
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
@@ -2745,7 +2886,7 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
}
}
if (node->op == GGML_OP_SCALE &&
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
}
@@ -2854,6 +2995,38 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
std::initializer_list<enum ggml_op> mul_mat_bias_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_GLU };
std::initializer_list<enum ggml_op> mul_mat_id_bias_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_GLU };
std::initializer_list<enum ggml_op> mul_mat_id_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_MUL_MAT_ID, GGML_OP_GLU };
std::initializer_list<enum ggml_op> mul_mat_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT, GGML_OP_GLU };
if (ops.size() == 5 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}) ||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}))) {
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
const ggml_tensor * ffn_gate_bias = cgraph->nodes[node_idx + 1];
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 2];
const ggml_tensor * ffn_up_bias = cgraph->nodes[node_idx + 3];
const ggml_tensor * glu = cgraph->nodes[node_idx + 4];
if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu, ffn_up_bias, ffn_gate_bias)) {
return true;
}
}
if (ops.size() == 3 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}) ||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}))) {
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 1];
const ggml_tensor * glu = cgraph->nodes[node_idx + 2];
if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu)) {
return true;
}
}
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
return false;
}
@@ -3004,6 +3177,184 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
}
}
bool fused_mul_mat_vec = false;
int fused_node_count = 0;
for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) {
const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID;
if (ggml_cuda_can_fuse(cgraph, i, { op, bias_op, op, bias_op, GGML_OP_GLU }, {})) {
ggml_tensor * glu = cgraph->nodes[i + 4];
ggml_tensor * gate_bias_n = glu->src[0];
ggml_tensor * up_bias_n = glu->src[1];
//we don't assume the order for {gate, up}. Instead infer it from the bias tensor
ggml_tensor * gate_n = nullptr;
ggml_tensor * up_n = nullptr;
if (gate_bias_n->src[0] == cgraph->nodes[i] || gate_bias_n->src[1] == cgraph->nodes[i]) {
gate_n = cgraph->nodes[i];
up_n = cgraph->nodes[i + 2];
} else if (gate_bias_n->src[0] == cgraph->nodes[i + 2] || gate_bias_n->src[1] == cgraph->nodes[i + 2]) {
gate_n = cgraph->nodes[i + 2];
up_n = cgraph->nodes[i];
} else {
continue;
}
auto get_bias_tensor = [](const ggml_tensor * bias_node, const ggml_tensor * mul_node, ggml_op op_bias) {
if (op_bias == GGML_OP_ADD) {
if (bias_node->src[0] == mul_node) {
return bias_node->src[1];
}
if (bias_node->src[1] == mul_node) {
return bias_node->src[0];
}
return (ggml_tensor *) nullptr;
}
GGML_ASSERT(op_bias == GGML_OP_ADD_ID);
GGML_ASSERT(bias_node->src[0] == mul_node);
return bias_node->src[1];
};
ggml_tensor * up_bias_tensor = get_bias_tensor(up_bias_n, up_n, bias_op);
ggml_tensor * gate_bias_tensor = get_bias_tensor(gate_bias_n, gate_n, bias_op);
if (!up_bias_tensor || !gate_bias_tensor) {
continue;
}
const ggml_tensor * src0 = up_n->src[0];
const ggml_tensor * src1 = up_n->src[1];
const ggml_tensor * ids = up_n->src[2];
if (ggml_cuda_should_fuse_mul_mat_vec_f(up_n)) {
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.gate = gate_n->src[0];
fusion_data.x_bias = up_bias_tensor;
fusion_data.gate_bias = gate_bias_tensor;
fusion_data.glu_op = ggml_get_glu_op(glu);
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 5;
break;
}
if (ggml_cuda_should_fuse_mul_mat_vec_q(up_n)) {
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.gate = gate_n->src[0];
fusion_data.x_bias = up_bias_tensor;
fusion_data.gate_bias = gate_bias_tensor;
fusion_data.glu_op = ggml_get_glu_op(glu);
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 5;
break;
}
} else if (ggml_cuda_can_fuse(cgraph, i, { op, op, GGML_OP_GLU }, {})) {
ggml_tensor * glu = cgraph->nodes[i + 2];
ggml_tensor * gate = glu->src[0];
ggml_tensor * up = glu->src[1];
bool ok = (gate == cgraph->nodes[i] && up == cgraph->nodes[i + 1])
|| (gate == cgraph->nodes[i + 1] && up == cgraph->nodes[i]);
if (!ok) continue;
const ggml_tensor * src0 = up->src[0];
const ggml_tensor * src1 = up->src[1];
const ggml_tensor * ids = up->src[2];
if (ggml_cuda_should_fuse_mul_mat_vec_f(up)) {
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.gate = gate->src[0];
fusion_data.glu_op = ggml_get_glu_op(glu);
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 3;
break;
}
if (ggml_cuda_should_fuse_mul_mat_vec_q(up)) {
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.gate = gate->src[0];
fusion_data.glu_op = ggml_get_glu_op(glu);
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 3;
break;
}
}
}
if (fused_mul_mat_vec) {
i += fused_node_count - 1;
continue;
}
fused_mul_mat_vec = false;
fused_node_count = 0;
for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) {
const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID;
if (!ggml_can_fuse(cgraph, i, { op, bias_op })) {
continue;
}
ggml_tensor * mm_node = cgraph->nodes[i];
ggml_tensor * bias_node = cgraph->nodes[i + 1];
ggml_tensor * bias_tensor = nullptr;
if (bias_op == GGML_OP_ADD) {
if (bias_node->src[0] == mm_node) {
bias_tensor = bias_node->src[1];
} else if (bias_node->src[1] == mm_node) {
bias_tensor = bias_node->src[0];
} else {
continue;
}
} else {
if (bias_node->src[0] != mm_node) {
continue;
}
bias_tensor = bias_node->src[1];
}
const ggml_tensor * src0 = mm_node->src[0];
const ggml_tensor * src1 = mm_node->src[1];
const ggml_tensor * ids = mm_node->src[2];
if (bias_op == GGML_OP_ADD_ID && bias_node->src[2] != ids) {
continue;
}
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.x_bias = bias_tensor;
if (ggml_cuda_should_fuse_mul_mat_vec_f(mm_node)) {
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 2;
break;
}
if (ggml_cuda_should_fuse_mul_mat_vec_q(mm_node)) {
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 2;
break;
}
}
if (fused_mul_mat_vec) {
i += fused_node_count - 1;
continue;
}
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) {
ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);

View File

@@ -1,11 +1,12 @@
#include "ggml.h"
#include "common.cuh"
#include "convert.cuh"
#include "unary.cuh"
#include "mmvf.cuh"
#include "convert.cuh"
template <typename T, typename type_acc, int ncols_dst, int block_size>
template <typename T, typename type_acc, int ncols_dst, int block_size, bool has_fusion = false>
static __global__ void mul_mat_vec_f(
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
@@ -24,58 +25,164 @@ static __global__ void mul_mat_vec_f(
y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y;
dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst;
bool use_gate = false;
bool use_bias = false;
bool use_gate_bias = false;
ggml_glu_op glu_op = ggml_glu_op::GGML_GLU_OP_SWIGLU;
const T * gate_x = nullptr;
const float * x_bias = nullptr;
const float * gate_bias = nullptr;
if constexpr (has_fusion) {
use_gate = fusion.gate != nullptr;
use_bias = fusion.x_bias != nullptr;
use_gate_bias = fusion.gate_bias != nullptr;
glu_op = fusion.glu_op;
if (use_gate) {
gate_x = static_cast<const T *>(fusion.gate);
}
if (use_bias) {
x_bias = static_cast<const float *>(fusion.x_bias);
}
if (use_gate_bias) {
gate_bias = static_cast<const float *>(fusion.gate_bias);
use_gate_bias = use_gate;
} else {
use_gate_bias = false;
}
}
if (use_gate) {
gate_x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
}
if constexpr (has_fusion) {
const int channel_bias = ids ? channel_x : channel_dst;
if (use_bias) {
x_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst;
}
if (use_gate_bias) {
gate_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst;
}
}
const float2 * y2 = (const float2 *) y;
extern __shared__ char data_mmv[];
float * buf_iw = (float *) data_mmv;
float * buf_iw_gate = nullptr;
if constexpr (has_fusion) {
buf_iw_gate = (float *) (data_mmv + warp_size*sizeof(float));
}
if (block_size > warp_size) {
if (tid < warp_size) {
buf_iw[tid] = 0.0f;
if constexpr (has_fusion) {
if (use_gate) {
buf_iw_gate[tid] = 0.0f;
}
}
}
__syncthreads();
}
float sumf[ncols_dst] = {0.0f};
float sumf_gate[ncols_dst];
if constexpr (has_fusion) {
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
sumf_gate[j] = 0.0f;
}
}
if constexpr (std::is_same_v<T, float>) {
const float2 * x2 = (const float2 *) x;
const float2 * gate_x2 = nullptr;
if constexpr (has_fusion) {
if (use_gate) {
gate_x2 = (const float2 *) gate_x;
}
}
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = x2[col2];
float2 tmpx_gate = make_float2(0.0f, 0.0f);
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = gate_x2[col2];
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
ggml_cuda_mad(sumf_gate[j], tmpx_gate.x, tmpy.x);
ggml_cuda_mad(sumf_gate[j], tmpx_gate.y, tmpy.y);
}
}
}
}
} else if constexpr (std::is_same_v<T, half>) {
const half2 * x2 = (const half2 *) x;
const half2 * gate_x2 = nullptr;
if constexpr (has_fusion) {
if (use_gate) {
gate_x2 = (const half2 *) gate_x;
}
}
if (std::is_same_v<type_acc, float>) {
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = __half22float2(x2[col2]);
float2 tmpx_gate = make_float2(0.0f, 0.0f);
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = __half22float2(gate_x2[col2]);
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
ggml_cuda_mad(sumf_gate[j], tmpx_gate.x, tmpy.x);
ggml_cuda_mad(sumf_gate[j], tmpx_gate.y, tmpy.y);
}
}
}
}
} else {
#ifdef FP16_AVAILABLE
half2 sumh2[ncols_dst] = {{0.0f, 0.0f}};
half2 sumh2_gate[ncols_dst] = {{0.0f, 0.0f}};
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const half2 tmpx = x2[col2];
half2 tmpx_gate = make_half2(0.0f, 0.0f);
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = gate_x2[col2];
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
sumh2[j] += tmpx * make_half2(tmpy.x, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
sumh2_gate[j] += tmpx_gate * make_half2(tmpy.x, tmpy.y);
}
}
}
}
@@ -83,6 +190,15 @@ static __global__ void mul_mat_vec_f(
for (int j = 0; j < ncols_dst; ++j) {
sumf[j] = __low2float(sumh2[j]) + __high2float(sumh2[j]);
}
if constexpr (has_fusion) {
if (use_gate) {
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
sumf_gate[j] = __low2float(sumh2_gate[j]) + __high2float(sumh2_gate[j]);
}
}
}
#else
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
@@ -91,8 +207,20 @@ static __global__ void mul_mat_vec_f(
//TODO: add support for ggml_cuda_mad for hip_bfloat162
#if defined(GGML_USE_HIP)
const int * x2 = (const int *) x;
const int * gate_x2 = nullptr;
if constexpr (has_fusion) {
if (use_gate) {
gate_x2 = (const int *) gate_x;
}
}
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const int tmpx = x2[col2];
int tmpx_gate = 0;
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = gate_x2[col2];
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
@@ -100,17 +228,45 @@ static __global__ void mul_mat_vec_f(
const float tmpx1 = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]);
ggml_cuda_mad(sumf[j], tmpx0, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx1, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
const float tmpx0_gate = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx_gate)[0]);
const float tmpx1_gate = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx_gate)[1]);
ggml_cuda_mad(sumf_gate[j], tmpx0_gate, tmpy.x);
ggml_cuda_mad(sumf_gate[j], tmpx1_gate, tmpy.y);
}
}
}
}
#else
const nv_bfloat162 * x2 = (const nv_bfloat162 *) x;
const nv_bfloat162 * gate_x2 = nullptr;
if constexpr (has_fusion) {
if (use_gate) {
gate_x2 = (const nv_bfloat162 *) gate_x;
}
}
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const nv_bfloat162 tmpx = x2[col2];
nv_bfloat162 tmpx_gate;
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = gate_x2[col2];
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
ggml_cuda_mad(sumf_gate[j], tmpx_gate.x, tmpy.x);
ggml_cuda_mad(sumf_gate[j], tmpx_gate.y, tmpy.y);
}
}
}
}
#endif
@@ -122,13 +278,31 @@ static __global__ void mul_mat_vec_f(
for (int j = 0; j < ncols_dst; ++j) {
sumf[j] = warp_reduce_sum<warp_size>(sumf[j]);
if constexpr (has_fusion) {
if (use_gate) {
sumf_gate[j] = warp_reduce_sum<warp_size>(sumf_gate[j]);
}
}
if (block_size > warp_size) {
buf_iw[tid/warp_size] = sumf[j];
if constexpr (has_fusion) {
if (use_gate) {
buf_iw_gate[tid/warp_size] = sumf_gate[j];
}
}
__syncthreads();
if (tid < warp_size) {
sumf[j] = buf_iw[tid];
sumf[j] = warp_reduce_sum<warp_size>(sumf[j]);
if constexpr (has_fusion) {
if (use_gate) {
sumf_gate[j] = buf_iw_gate[tid];
sumf_gate[j] = warp_reduce_sum<warp_size>(sumf_gate[j]);
}
}
}
if (j < ncols_dst) {
__syncthreads();
}
@@ -139,12 +313,70 @@ static __global__ void mul_mat_vec_f(
return;
}
dst[tid*stride_col_dst + row] = sumf[tid];
float value = sumf[tid];
if constexpr (has_fusion) {
if (use_bias) {
value += x_bias[tid*stride_col_dst + row];
}
if (use_gate) {
float gate_value = sumf_gate[tid];
if (use_gate_bias) {
gate_value += gate_bias[tid*stride_col_dst + row];
}
switch (glu_op) {
case GGML_GLU_OP_SWIGLU:
value *= ggml_cuda_op_silu_single(gate_value);
break;
case GGML_GLU_OP_GEGLU:
value *= ggml_cuda_op_gelu_single(gate_value);
break;
case GGML_GLU_OP_SWIGLU_OAI: {
value = ggml_cuda_op_swiglu_oai_single(gate_value, value);
break;
}
default:
break;
}
}
}
dst[tid*stride_col_dst + row] = value;
}
template<typename T, typename type_acc, int ncols_dst, int block_size>
static void mul_mat_vec_f_switch_fusion(
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const cudaStream_t stream) {
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
if constexpr (ncols_dst == 1) {
if (has_fusion) {
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, true><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
return;
}
}
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
mul_mat_vec_f<T, type_acc, ncols_dst, block_size><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
}
template <typename T, typename type_acc, int ncols_dst>
static void launch_mul_mat_vec_f_cuda(
const T * x, const float * y, const int32_t * ids, float * dst,
void launch_mul_mat_vec_f_cuda(
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
@@ -176,57 +408,59 @@ static void launch_mul_mat_vec_f_cuda(
}
}
const int nbytes_shared = warp_size*sizeof(float);
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
const int nbytes_shared = warp_size*sizeof(float) + (has_fusion ? warp_size*sizeof(float) : 0);
const dim3 block_nums(nrows, nchannels_dst, nsamples_dst);
const dim3 block_dims(block_size_best, 1, 1);
switch (block_size_best) {
case 32: {
mul_mat_vec_f<T, type_acc, ncols_dst, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 32>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 64: {
mul_mat_vec_f<T, type_acc, ncols_dst, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 64>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 96: {
mul_mat_vec_f<T, type_acc, ncols_dst, 96><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 96>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 128: {
mul_mat_vec_f<T, type_acc, ncols_dst, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 128>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 160: {
mul_mat_vec_f<T, type_acc, ncols_dst, 160><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 160>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 192: {
mul_mat_vec_f<T, type_acc, ncols_dst, 192><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 192>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 224: {
mul_mat_vec_f<T, type_acc, ncols_dst, 224><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 224>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 256: {
mul_mat_vec_f<T, type_acc, ncols_dst, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 256>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
default: {
GGML_ABORT("fatal error");
@@ -236,7 +470,7 @@ static void launch_mul_mat_vec_f_cuda(
template <typename T, typename type_acc>
static void mul_mat_vec_f_cuda_switch_ncols_dst(
const T * x, const float * y, const int32_t * ids, float * dst,
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t ncols_dst,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
@@ -246,49 +480,49 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst(
switch (ncols_dst) {
case 1:
launch_mul_mat_vec_f_cuda<T, type_acc, 1>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 2:
launch_mul_mat_vec_f_cuda<T, type_acc, 2>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 3:
launch_mul_mat_vec_f_cuda<T, type_acc, 3>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 4:
launch_mul_mat_vec_f_cuda<T, type_acc, 4>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 5:
launch_mul_mat_vec_f_cuda<T, type_acc, 5>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 6:
launch_mul_mat_vec_f_cuda<T, type_acc, 6>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 7:
launch_mul_mat_vec_f_cuda<T, type_acc, 7>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 8:
launch_mul_mat_vec_f_cuda<T, type_acc, 8>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
@@ -300,29 +534,31 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst(
template<typename T>
static void mul_mat_vec_f_cuda(
const T * x, const float * y, const int32_t * ids, float * dst,
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t ncols_dst,
const int64_t stride_row, const int64_t stride_col_y, const int stride_col_dst,
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
enum ggml_prec prec, cudaStream_t stream) {
if constexpr(std::is_same_v<T, half>) {
if (prec == GGML_PREC_DEFAULT) {
mul_mat_vec_f_cuda_switch_ncols_dst<T, half>
(x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
return;
}
}
mul_mat_vec_f_cuda_switch_ncols_dst<T, float>
(x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
}
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
const ggml_cuda_mm_fusion_args_host * fusion) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
@@ -348,6 +584,30 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
ggml_cuda_mm_fusion_args_device fusion_local{};
if (fusion) {
GGML_ASSERT( !ids || dst->ne[2] == 1);
GGML_ASSERT( ids || dst->ne[1] == 1);
if (fusion->x_bias) {
GGML_ASSERT(fusion->x_bias->type == GGML_TYPE_F32);
GGML_ASSERT(fusion->x_bias->ne[0] == dst->ne[0]);
GGML_ASSERT(!ids || fusion->x_bias->ne[1] == src0->ne[2]);
fusion_local.x_bias = fusion->x_bias->data;
}
if (fusion->gate) {
GGML_ASSERT(fusion->gate->type == src0->type && ggml_are_same_stride(fusion->gate, src0));
fusion_local.gate = fusion->gate->data;
}
if (fusion->gate_bias) {
GGML_ASSERT(fusion->gate_bias->type == GGML_TYPE_F32);
GGML_ASSERT(fusion->gate_bias->ne[0] == dst->ne[0]);
GGML_ASSERT(!ids || fusion->gate_bias->ne[1] == src0->ne[2]);
fusion_local.gate_bias = fusion->gate_bias->data;
}
fusion_local.glu_op = fusion->glu_op;
}
const int64_t s01 = src0->nb[1] / ts_src0;
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s1 = dst->nb[1] / ts_dst;
@@ -370,19 +630,19 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0->data;
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0->data;
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
@@ -409,7 +669,6 @@ void ggml_cuda_op_mul_mat_vec_f(
const int cc = ggml_cuda_info().devices[id].cc;
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
// ggml_cuda_op provides single, contiguous matrices
const int64_t stride_row = ne00;
const int64_t stride_col_y = ne10;
@@ -426,22 +685,23 @@ void ggml_cuda_op_mul_mat_vec_f(
const int64_t stride_sample_y = 0;
const int64_t stride_sample_dst = 0;
ggml_cuda_mm_fusion_args_device empty{};
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0_dd_i;
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0_dd_i;
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;

View File

@@ -1,6 +1,7 @@
#include "common.cuh"
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
const ggml_cuda_mm_fusion_args_host * fusion = nullptr);
void ggml_cuda_op_mul_mat_vec_f(
ggml_backend_cuda_context & ctx,

View File

@@ -1,5 +1,6 @@
#include "mmvq.cuh"
#include "quantize.cuh"
#include "unary.cuh"
#include "vecdotq.cuh"
#include <cstdint>
@@ -82,7 +83,7 @@ static __host__ mmvq_parameter_table_id get_device_table_id(int cc) {
return MMVQ_PARAMETERS_GENERIC;
}
static constexpr __host__ __device__ int calc_nwarps(int ncols_dst, mmvq_parameter_table_id table_id) {
static constexpr __host__ __device__ int calc_nwarps(int ncols_dst, mmvq_parameter_table_id table_id) {
if (table_id == MMVQ_PARAMETERS_GENERIC) {
switch (ncols_dst) {
case 1:
@@ -136,11 +137,11 @@ static constexpr __host__ __device__ int calc_rows_per_block(int ncols_dst, int
return 1;
}
template <ggml_type type, int ncols_dst>
// tell the compiler to use as many registers as it wants, see nwarps definition below
template <ggml_type type, int ncols_dst, bool has_fusion>
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
static __global__ void mul_mat_vec_q(
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, float * __restrict__ dst,
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
@@ -169,8 +170,38 @@ static __global__ void mul_mat_vec_q(
const uint32_t sample_x = fastdiv(sample_dst, sample_ratio);
const uint32_t sample_y = sample_dst;
bool use_gate = false;
bool use_bias = false;
bool use_gate_bias = false;
const void * vgate = nullptr;
const float * x_bias = nullptr;
const float * gate_bias = nullptr;
ggml_glu_op active_glu;
if constexpr (has_fusion) {
use_gate = fusion.gate != nullptr;
use_bias = fusion.x_bias != nullptr;
use_gate_bias = fusion.gate_bias != nullptr && use_gate;
vgate = fusion.gate;
x_bias = (const float *) fusion.x_bias;
gate_bias = (const float *) fusion.gate_bias;
active_glu = fusion.glu_op;
}
const uint32_t channel_bias = ids ? channel_x : channel_dst;
if constexpr (has_fusion) {
if (use_bias) {
x_bias = x_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0;
}
if (use_gate_bias) {
gate_bias = gate_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0;
}
}
// partial sum for each thread
float tmp[ncols_dst][rows_per_cuda_block] = {{0.0f}};
float tmp_gate[ncols_dst][rows_per_cuda_block] = {{0.0f}};
const block_q8_1 * y = ((const block_q8_1 *) vy) + sample_y*stride_sample_y + channel_y*stride_channel_y;
const int kbx_offset = sample_x*stride_sample_x + channel_x*stride_channel_x + row0*stride_row_x;
@@ -187,17 +218,35 @@ static __global__ void mul_mat_vec_q(
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp[j][i] += vec_dot_q_cuda(
vx, &y[j*stride_col_y + kby], kbx_offset + i*stride_row_x + kbx, kqs);
if constexpr (has_fusion) {
if (use_gate) {
tmp_gate[j][i] += vec_dot_q_cuda(
vgate, &y[j*stride_col_y + kby], kbx_offset + i*stride_row_x + kbx, kqs);
}
}
}
}
}
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_dst][rows_per_cuda_block][warp_size];
__shared__ float tmp_shared_gate[(has_fusion && (nwarps-1 > 0)) ? nwarps-1 : 1][ncols_dst][rows_per_cuda_block][warp_size];
if constexpr (!has_fusion) {
(void) tmp_shared_gate;
} else if (!use_gate) {
(void) tmp_shared_gate;
}
if (threadIdx.y > 0) {
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
if constexpr (has_fusion) {
if (use_gate) {
tmp_shared_gate[threadIdx.y-1][j][i][threadIdx.x] = tmp_gate[j][i];
}
}
}
}
}
@@ -216,12 +265,49 @@ static __global__ void mul_mat_vec_q(
#pragma unroll
for (int l = 0; l < nwarps-1; ++l) {
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
if constexpr (has_fusion) {
if (use_gate) {
tmp_gate[j][i] += tmp_shared_gate[l][j][i][threadIdx.x];
}
}
}
tmp[j][i] = warp_reduce_sum<warp_size>(tmp[j][i]);
if constexpr (has_fusion) {
if (use_gate) {
tmp_gate[j][i] = warp_reduce_sum<warp_size>(tmp_gate[j][i]);
}
}
}
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || uint32_t(row0 + threadIdx.x) < stride_col_dst)) {
dst[j*stride_col_dst + threadIdx.x] = tmp[j][threadIdx.x];
float result = tmp[j][threadIdx.x];
if constexpr (has_fusion) {
if (use_bias) {
result += x_bias[j*stride_col_dst + threadIdx.x];
}
if (use_gate) {
float gate_value = tmp_gate[j][threadIdx.x];
if (use_gate_bias) {
gate_value += gate_bias[j*stride_col_dst + threadIdx.x];
}
switch (active_glu) {
case GGML_GLU_OP_SWIGLU:
result *= ggml_cuda_op_silu_single(gate_value);
break;
case GGML_GLU_OP_GEGLU:
result *= ggml_cuda_op_gelu_single(gate_value);
break;
case GGML_GLU_OP_SWIGLU_OAI: {
result = ggml_cuda_op_swiglu_oai_single(gate_value, result);
break;
}
default:
result = result * gate_value;
break;
}
}
}
dst[j*stride_col_dst + threadIdx.x] = result;
}
}
}
@@ -235,9 +321,37 @@ static std::pair<dim3, dim3> calc_launch_params(
return {block_nums, block_dims};
}
template<ggml_type type, int c_ncols_dst>
static void mul_mat_vec_q_switch_fusion(
const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst,
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared, cudaStream_t stream) {
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
if constexpr (c_ncols_dst == 1) {
if (has_fusion) {
mul_mat_vec_q<type, c_ncols_dst, true><<<block_nums, block_dims, nbytes_shared, stream>>>
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
return;
}
}
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
mul_mat_vec_q<type, c_ncols_dst, false><<<block_nums, block_dims, nbytes_shared, stream>>>
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
}
template <ggml_type type>
static void mul_mat_vec_q_switch_ncols_dst(
const void * vx, const void * vy, const int32_t * ids, float * dst,
const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int ncols_x, const int nrows_x, const int ncols_dst,
const int stride_row_x, const int stride_col_y, const int stride_col_dst,
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
@@ -256,80 +370,83 @@ static void mul_mat_vec_q_switch_ncols_dst(
const int warp_size = ggml_cuda_info().devices[device].warp_size;
const mmvq_parameter_table_id table_id = get_device_table_id(ggml_cuda_info().devices[device].cc);
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
GGML_ASSERT(!ids || ncols_dst == 1);
switch (ncols_dst) {
case 1: {
constexpr int c_ncols_dst = 1;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 2: {
constexpr int c_ncols_dst = 2;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 3: {
constexpr int c_ncols_dst = 3;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 4: {
constexpr int c_ncols_dst = 4;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 5: {
constexpr int c_ncols_dst = 5;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 6: {
constexpr int c_ncols_dst = 6;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 7: {
constexpr int c_ncols_dst = 7;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 8: {
constexpr int c_ncols_dst = 8;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
default:
GGML_ABORT("fatal error");
break;
}
}
GGML_UNUSED(has_fusion);
}
static void mul_mat_vec_q_switch_type(
const void * vx, const ggml_type type_x, const void * vy, const int32_t * ids, float * dst,
const void * vx, const ggml_type type_x, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int ncols_x, const int nrows_x, const int ncols_dst,
const int stride_row_x, const int stride_col_y, const int stride_col_dst,
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
@@ -339,143 +456,123 @@ static void mul_mat_vec_q_switch_type(
switch (type_x) {
case GGML_TYPE_Q4_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_0>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q4_1:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_1>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q5_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_0>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q5_1:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_1>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q8_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q8_0>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_MXFP4:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_MXFP4>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q2_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q3_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q3_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q4_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q5_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q6_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q6_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ2_XXS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XXS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ2_XS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ2_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_S>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ3_XXS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_XXS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ1_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_S>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ1_M:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_M>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ4_NL:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_NL>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ4_XS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_XS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ3_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_S>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
default:
GGML_ABORT("fatal error");
@@ -484,7 +581,8 @@ static void mul_mat_vec_q_switch_type(
}
void ggml_cuda_mul_mat_vec_q(
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
const ggml_cuda_mm_fusion_args_host * fusion) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32); // Optional, used for batched GGML_MUL_MAT_ID.
@@ -508,6 +606,31 @@ void ggml_cuda_mul_mat_vec_q(
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
ggml_cuda_mm_fusion_args_device fusion_local{};
if (fusion) {
GGML_ASSERT( !ids || dst->ne[2] == 1);
GGML_ASSERT( ids || dst->ne[1] == 1);
if (fusion->x_bias) {
GGML_ASSERT(fusion->x_bias->type == GGML_TYPE_F32);
GGML_ASSERT(fusion->x_bias->ne[0] == dst->ne[0]);
GGML_ASSERT(!ids || fusion->x_bias->ne[1] == src0->ne[2]);
fusion_local.x_bias = fusion->x_bias->data;
}
if (fusion->gate) {
GGML_ASSERT(fusion->gate->type == src0->type && ggml_are_same_stride(fusion->gate, src0));
fusion_local.gate = fusion->gate->data;
}
if (fusion->gate_bias) {
GGML_ASSERT(fusion->gate_bias->type == GGML_TYPE_F32);
GGML_ASSERT(fusion->gate_bias->ne[0] == dst->ne[0]);
GGML_ASSERT(!ids || fusion->gate_bias->ne[1] == src0->ne[2]);
fusion_local.gate_bias = fusion->gate_bias->data;
}
fusion_local.glu_op = fusion->glu_op;
}
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
const size_t size_data = ggml_nbytes(src0);
@@ -549,10 +672,10 @@ void ggml_cuda_mul_mat_vec_q(
const int64_t stride_channel_y = ids ? s11 : s12;
mul_mat_vec_q_switch_type(
src0->data, src0->type, src1_q8_1.get(), ids_d, dst_d, ne00,
src0->data, src0->type, src1_q8_1.get(), ids_d, fusion_local, dst_d, ne00,
ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, stream);
ne03, ne3, s03, s13, s3, stream);
}
void ggml_cuda_op_mul_mat_vec_q(
@@ -578,8 +701,9 @@ void ggml_cuda_op_mul_mat_vec_q(
const int stride_row_x = ne00 / ggml_blck_size(src0->type);
const int stride_col_y = src1_padded_row_size / QK8_1;
ggml_cuda_mm_fusion_args_device fusion_local{};
mul_mat_vec_q_switch_type(
src0_dd_i, src0->type, src1_ddq_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
src0_dd_i, src0->type, src1_ddq_i, nullptr, fusion_local, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, stream);
GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_ncols, src1_padded_row_size);

View File

@@ -3,7 +3,7 @@
#define MMVQ_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVQ kernels.
void ggml_cuda_mul_mat_vec_q(ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, const ggml_cuda_mm_fusion_args_host * fusion = nullptr);
void ggml_cuda_op_mul_mat_vec_q(
ggml_backend_cuda_context & ctx,

View File

@@ -18,10 +18,7 @@ static __device__ __forceinline__ float op_step(float x) {
}
static __device__ __forceinline__ float op_gelu(float x) {
const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
return ggml_cuda_op_gelu_single(x);
}
static __device__ __forceinline__ float op_gelu_erf(float x) {
@@ -37,7 +34,7 @@ static __device__ __forceinline__ float op_gelu_quick(float x) {
}
static __device__ __forceinline__ float op_silu(float x) {
return x / (1.0f + expf(-x));
return ggml_cuda_op_silu_single(x);
}
static __device__ __forceinline__ float op_tanh(float x) {
@@ -317,13 +314,8 @@ static __global__ void swiglu_oai_kernel(const T * x, const T * g, T * dst, cons
float xi = x[j0];
float gi = g[j1];
xi = fminf(xi, limit);
gi = fmaxf(fminf(gi, limit), -limit);
float out_glu = xi / (1.0f + expf(-xi * alpha));
out_glu = out_glu * (1.0f + gi);
dst[i] = out_glu;
dst[i] = ggml_cuda_op_swiglu_oai_single(xi, gi, alpha, limit);
}
template <typename T>

View File

@@ -1,3 +1,4 @@
#pragma once
#include "common.cuh"
#define CUDA_NEG_BLOCK_SIZE 256
@@ -75,3 +76,23 @@ void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_xielu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
__device__ __forceinline__ float ggml_cuda_op_silu_single(float x) {
return x / (1.0f + expf(-x));
}
__device__ __forceinline__ float ggml_cuda_op_gelu_single(float x) {
const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
return 0.5f * x * (1.0f + tanhf(SQRT_2_OVER_PI * x * (1.0f + GELU_COEF_A * x * x)));
}
__device__ __forceinline__ float ggml_cuda_op_swiglu_oai_single(float x, float g, float alpha = 1.702f, float limit = 7.0f) {
x = fminf(x, limit);
g = fmaxf(fminf(g, limit), -limit);
float out_glu = x / (1.0f + expf(-x * alpha));
out_glu = out_glu * (1.0f + g);
return out_glu;
}

View File

@@ -810,6 +810,9 @@ ggml_tensor * llm_graph_context::build_ffn(
GGML_ABORT("fatal error");
}
//expand here so that we can fuse ffn gate
ggml_build_forward_expand(gf, cur);
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
@@ -1091,6 +1094,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
GGML_ABORT("fatal error");
}
//expand here so that we can fuse ffn gate
ggml_build_forward_expand(gf, cur);
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);

View File

@@ -4721,6 +4721,140 @@ struct test_topk_moe: public test_case {
}
};
struct test_mul_mat_vec_fusion : public test_case {
const ggml_type type;
const ggml_glu_op glu_op;
const int64_t m;
const int64_t n;
const int64_t k;
const bool use_id;
const int n_mats;
const int n_used;
const bool b; // broadcast b matrix (only for use_id)
const bool with_bias;
const bool with_gate;
test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true)
: type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate) {
if (use_id) {
GGML_ASSERT(n_used <= n_mats);
}
}
std::string vars() override {
return VARS_TO_STR11(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate);
}
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
return "MUL_MAT_VEC_FUSION";
}
bool run_whole_graph() override { return true; }
ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
ggml_tensor * out = nullptr;
if (with_gate) {
if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
constexpr float alpha = 1.702f;
constexpr float limit = 7.0f;
out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
} else {
out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
}
}
return out;
}
ggml_tensor * build_graph(ggml_context * ctx) override {
if (!use_id) {
std::array<int64_t, 4> ne = {k, m, 1, 1};
std::array<int64_t, 4> ne0 = {k, n, 1, 1};
ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
if (with_bias) {
std::array<int64_t, 4> bias_ne = {ffn_up->ne[0], 1, 1, 1};
ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
ffn_up = ggml_add(ctx, ffn_up, up_bias);
}
ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
if (with_bias && with_gate) {
std::array<int64_t, 4> bias_ne = {ffn_gate->ne[0], 1, 1, 1};
ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
}
ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
ggml_set_name(out, "out");
return out;
} else {
ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
if (n_used != n_mats) {
ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
}
ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
ggml_set_name(cur, "cur");
ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
if (with_bias) {
ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
}
ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
if (with_bias && with_gate) {
ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
}
ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
ggml_set_name(out, "out");
return out;
}
}
void initialize_tensors(ggml_context * ctx) override {
if (!use_id) {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t);
}
} else {
std::random_device rd;
std::default_random_engine rng(rd());
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
if (ggml_is_view_op(t->op)) { continue; }
// ids
for (int64_t r = 0; r < ggml_nrows(t); r++) {
std::vector<int32_t> data(t->ne[0]);
for (int i = 0; i < t->ne[0]; i++) {
data[i] = i % n_mats;
}
std::shuffle(data.begin(), data.end(), rng);
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
}
} else {
init_tensor_uniform(t);
}
}
}
}
double max_nmse_err() override {
return 5e-3;
}
};
// GGML_OP_SUM
struct test_sum : public test_case {
const ggml_type type;
@@ -6983,6 +7117,33 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
for (ggml_type type : base_types) {
for (bool with_gate : {false, true}) {
for (bool use_id : {false, true}) {
for (bool b : {false, true}) {
if (!use_id && b) {
continue;
}
for (bool with_bias : {false, true}) {
if (!with_gate && !with_bias) {
continue;
}
for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
continue;
}
if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
continue;
}
test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
use_id, 16, 8, b, with_bias, with_gate));
}
}
}
}
}
}
for (bool with_norm : {false, true}) {
test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));