mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
This commit is contained in:
		| @@ -11,8 +11,10 @@ from transformers import AutoModelForCausalLM | |||||||
| from sentencepiece import SentencePieceProcessor | from sentencepiece import SentencePieceProcessor | ||||||
|  |  | ||||||
|  |  | ||||||
| NDArray = np.ndarray[Any, Any] | #NDArray = np.ndarray[Any, Any] | ||||||
|  |  | ||||||
|  | # compatible with python < 3.9 | ||||||
|  | NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' | ||||||
|  |  | ||||||
| def permute(weights: NDArray, n_head: int) -> NDArray: | def permute(weights: NDArray, n_head: int) -> NDArray: | ||||||
|     return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |     return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | ||||||
| @@ -57,51 +59,36 @@ if hparams["architectures"][0] != "LlamaForCausalLM": | |||||||
| model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True) | model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True) | ||||||
| list_vars = model.state_dict() | list_vars = model.state_dict() | ||||||
|  |  | ||||||
| # count tensors to be converted |  | ||||||
| tensor_count = 0 |  | ||||||
| for name in list_vars.keys(): |  | ||||||
|     # we don't need these |  | ||||||
|     if name.endswith(".rotary_emb.inv_freq"): |  | ||||||
|         continue |  | ||||||
|     tensor_count += 1 |  | ||||||
|  |  | ||||||
| gguf_writer = gguf.GGUFWriter.open(fname_out) | gguf_writer = gguf.GGUFWriter.open(fname_out) | ||||||
|  |  | ||||||
| # This must be changed when adding/deleting kv |  | ||||||
| kv_count = 13 |  | ||||||
|  |  | ||||||
| print("tensors " + str(tensor_count) + " kv " + str(kv_count)) | print("gguf: add key-values, metadata") | ||||||
|  |  | ||||||
| print("write gguf header") |  | ||||||
|  |  | ||||||
| gguf_writer.write_header(tensor_count, kv_count) |  | ||||||
|  |  | ||||||
| print("write gguf hparams") |  | ||||||
|  |  | ||||||
| llm_arch = "llama" | llm_arch = "llama" | ||||||
|  |  | ||||||
| gguf_writer.write_name("llama2-7b") | gguf_writer.add_name("llama2-7b") | ||||||
| gguf_writer.write_description("gguf test model") | gguf_writer.add_description("gguf test model") | ||||||
| gguf_writer.write_architecture(llm_arch) | gguf_writer.add_architecture(llm_arch) | ||||||
| gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"]) | gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) | ||||||
| gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"]) | gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) | ||||||
| gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"]) | gguf_writer.add_layer_count(llm_arch, hparams["num_hidden_layers"]) | ||||||
| gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"]) | gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) | ||||||
| gguf_writer.write_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) | gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) | ||||||
| gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"]) | gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"]) | ||||||
| gguf_writer.write_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) | gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) | ||||||
|  |  | ||||||
|  |  | ||||||
| # TOKENIZATION | # TOKENIZATION | ||||||
|  |  | ||||||
| print("write gguf tokenizer") | print("gguf: add key-values, tokenizer") | ||||||
|  |  | ||||||
| tokens: List[str] = [] | tokens: List[str] = [] | ||||||
| scores: List[float] = [] | scores: List[float] = [] | ||||||
|  |  | ||||||
| if Path(dir_model + "/tokenizer.model").is_file(): | if Path(dir_model + "/tokenizer.model").is_file(): | ||||||
|     # vocab type sentencepiece |     # vocab type sentencepiece | ||||||
|     print("Adding sentencepiece tokenizer vocab.") |     print("gguf: adding sentencepiece tokenizer vocab") | ||||||
|  |  | ||||||
|     tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") |     tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") | ||||||
|  |  | ||||||
|     for i in range(tokenizer.vocab_size()): |     for i in range(tokenizer.vocab_size()): | ||||||
| @@ -123,14 +110,52 @@ if Path(dir_model + "/tokenizer.model").is_file(): | |||||||
|         tokens.append(text) |         tokens.append(text) | ||||||
|         scores.append(score) |         scores.append(score) | ||||||
|  |  | ||||||
| gguf_writer.write_tokenizer_model("llama") |     gguf_writer.add_tokenizer_model("llama") | ||||||
| gguf_writer.write_token_list(tokens) |     gguf_writer.add_token_list(tokens) | ||||||
| gguf_writer.write_token_scores(scores) |     gguf_writer.add_token_scores(scores) | ||||||
|  |  | ||||||
|  | if Path(dir_model + "/tokenizer.json").is_file(): | ||||||
|  |     with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: | ||||||
|  |         tokenizer = json.load(f) | ||||||
|  |  | ||||||
|  |     if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): | ||||||
|  |         print("gguf: adding special token ids") | ||||||
|  |  | ||||||
|  |         with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: | ||||||
|  |             tokenizer_config = json.load(f) | ||||||
|  |  | ||||||
|  |         # find special token ids | ||||||
|  |  | ||||||
|  |         if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None: | ||||||
|  |             for key in tokenizer["added_tokens"]: | ||||||
|  |                 if key["content"] == tokenizer_config["bos_token"] or key["content"] == tokenizer_config["bos_token"]["content"]: | ||||||
|  |                     gguf_writer.add_bos_token_id(key["id"]) | ||||||
|  |  | ||||||
|  |         if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None: | ||||||
|  |             for key in tokenizer["added_tokens"]: | ||||||
|  |                 if key["content"] == tokenizer_config["eos_token"] or key["content"] == tokenizer_config["eos_token"]["content"]: | ||||||
|  |                     gguf_writer.add_eos_token_id(key["id"]) | ||||||
|  |  | ||||||
|  |         if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None: | ||||||
|  |             for key in tokenizer["added_tokens"]: | ||||||
|  |                 if key["content"] == tokenizer_config["unk_token"] or key["content"] == tokenizer_config["unk_token"]["content"]: | ||||||
|  |                     gguf_writer.add_unk_token_id(key["id"]) | ||||||
|  |  | ||||||
|  |         if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None: | ||||||
|  |             for key in tokenizer["added_tokens"]: | ||||||
|  |                 if key["content"] == tokenizer_config["sep_token"] or key["content"] == tokenizer_config["sep_token"]["content"]: | ||||||
|  |                     gguf_writer.add_sep_token_id(key["id"]) | ||||||
|  |  | ||||||
|  |         if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None: | ||||||
|  |             for key in tokenizer["added_tokens"]: | ||||||
|  |                 if key["content"] == tokenizer_config["pad_token"] or key["content"] == tokenizer_config["pad_token"]["content"]: | ||||||
|  |                     gguf_writer.add_pad_token_id(key["id"]) | ||||||
|  |  | ||||||
|  |  | ||||||
| # TENSORS | # TENSORS | ||||||
|  |  | ||||||
| # tensor info | # tensor info | ||||||
| print("write gguf tensor info") | print("gguf: add gguf tensor info") | ||||||
|  |  | ||||||
| for name in list_vars.keys(): | for name in list_vars.keys(): | ||||||
|     data = list_vars[name].squeeze().numpy() |     data = list_vars[name].squeeze().numpy() | ||||||
| @@ -197,24 +222,31 @@ for name in list_vars.keys(): | |||||||
|             data = data.astype(np.float32) |             data = data.astype(np.float32) | ||||||
|             ftype_cur = 0 |             ftype_cur = 0 | ||||||
|  |  | ||||||
|     gguf_writer.write_tensor_info(name, data) |     gguf_writer.add_tensor_info(name, data) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | print("gguf: write header") | ||||||
|  | gguf_writer.write_header_to_file() | ||||||
|  | print("gguf: write key-values") | ||||||
|  | gguf_writer.write_kv_data_to_file() | ||||||
|  | print("gguf: write tensor info") | ||||||
|  | gguf_writer.write_ti_data_to_file() | ||||||
|  |  | ||||||
| # tensor data | # tensor data | ||||||
| print("write gguf tensor data") | print("gguf: write tensor data") | ||||||
|  |  | ||||||
| for name in list_vars.keys(): | for name in list_vars.keys(): | ||||||
|     data = list_vars[name].squeeze().numpy() |     data = list_vars[name].squeeze().numpy() | ||||||
|     print("Process tensor: " + name + " with shape: ", data.shape) | #    print("Process tensor: " + name + " with shape: ", data.shape) | ||||||
|  |  | ||||||
|     # we don't need these |     # we don't need these | ||||||
|     if name.endswith(".rotary_emb.inv_freq"): |     if name.endswith(".rotary_emb.inv_freq"): | ||||||
|         print("  Skip tensor: " + name) | #        print("  Skip tensor: " + name) | ||||||
|         continue |         continue | ||||||
|  |  | ||||||
|     # permute these |     # permute these | ||||||
|     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): |     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): | ||||||
|         print("  Permute tensor: " + name) | #        print("  Permute tensor: " + name) | ||||||
|         data = permute(data, hparams["num_attention_heads"]) |         data = permute(data, hparams["num_attention_heads"]) | ||||||
|  |  | ||||||
|     n_dims = len(data.shape) |     n_dims = len(data.shape) | ||||||
| @@ -223,23 +255,23 @@ for name in list_vars.keys(): | |||||||
|     ftype_cur = 0 |     ftype_cur = 0 | ||||||
|     if ftype != 0: |     if ftype != 0: | ||||||
|         if name.endswith(".weight") and n_dims == 2: |         if name.endswith(".weight") and n_dims == 2: | ||||||
|             print("  Converting to float16") | #            print("  Converting to float16") | ||||||
|             data = data.astype(np.float16) |             data = data.astype(np.float16) | ||||||
|             ftype_cur = 1 |             ftype_cur = 1 | ||||||
|         else: |         else: | ||||||
|             print("  Converting to float32") | #            print("  Converting to float32") | ||||||
|             data = data.astype(np.float32) |             data = data.astype(np.float32) | ||||||
|             ftype_cur = 0 |             ftype_cur = 0 | ||||||
|     else: |     else: | ||||||
|         if data.dtype != np.float32: |         if data.dtype != np.float32: | ||||||
|             print("  Converting to float32") | #            print("  Converting to float32") | ||||||
|             data = data.astype(np.float32) |             data = data.astype(np.float32) | ||||||
|             ftype_cur = 0 |             ftype_cur = 0 | ||||||
|  |  | ||||||
|     gguf_writer.write_tensor(data) |     gguf_writer.write_tensor_to_file(data) | ||||||
|  |  | ||||||
| gguf_writer.close() | gguf_writer.close() | ||||||
|  |  | ||||||
|  |  | ||||||
| print("Done. Output file: " + fname_out) | print("gguf: conversion done, output file: " + fname_out) | ||||||
| print("") | print("") | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 klosax
					klosax