mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
This commit is contained in:
		| @@ -11,8 +11,10 @@ from transformers import AutoModelForCausalLM | ||||
| from sentencepiece import SentencePieceProcessor | ||||
|  | ||||
|  | ||||
| NDArray = np.ndarray[Any, Any] | ||||
| #NDArray = np.ndarray[Any, Any] | ||||
|  | ||||
| # compatible with python < 3.9 | ||||
| NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' | ||||
|  | ||||
| def permute(weights: NDArray, n_head: int) -> NDArray: | ||||
|     return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | ||||
| @@ -57,51 +59,36 @@ if hparams["architectures"][0] != "LlamaForCausalLM": | ||||
| model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True) | ||||
| list_vars = model.state_dict() | ||||
|  | ||||
| # count tensors to be converted | ||||
| tensor_count = 0 | ||||
| for name in list_vars.keys(): | ||||
|     # we don't need these | ||||
|     if name.endswith(".rotary_emb.inv_freq"): | ||||
|         continue | ||||
|     tensor_count += 1 | ||||
|  | ||||
| gguf_writer = gguf.GGUFWriter.open(fname_out) | ||||
|  | ||||
| # This must be changed when adding/deleting kv | ||||
| kv_count = 13 | ||||
|  | ||||
| print("tensors " + str(tensor_count) + " kv " + str(kv_count)) | ||||
|  | ||||
| print("write gguf header") | ||||
|  | ||||
| gguf_writer.write_header(tensor_count, kv_count) | ||||
|  | ||||
| print("write gguf hparams") | ||||
| print("gguf: add key-values, metadata") | ||||
|  | ||||
| llm_arch = "llama" | ||||
|  | ||||
| gguf_writer.write_name("llama2-7b") | ||||
| gguf_writer.write_description("gguf test model") | ||||
| gguf_writer.write_architecture(llm_arch) | ||||
| gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"]) | ||||
| gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"]) | ||||
| gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"]) | ||||
| gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"]) | ||||
| gguf_writer.write_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) | ||||
| gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"]) | ||||
| gguf_writer.write_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) | ||||
| gguf_writer.add_name("llama2-7b") | ||||
| gguf_writer.add_description("gguf test model") | ||||
| gguf_writer.add_architecture(llm_arch) | ||||
| gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) | ||||
| gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) | ||||
| gguf_writer.add_layer_count(llm_arch, hparams["num_hidden_layers"]) | ||||
| gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) | ||||
| gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) | ||||
| gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"]) | ||||
| gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) | ||||
|  | ||||
|  | ||||
| # TOKENIZATION | ||||
|  | ||||
| print("write gguf tokenizer") | ||||
| print("gguf: add key-values, tokenizer") | ||||
|  | ||||
| tokens: List[str] = [] | ||||
| scores: List[float] = [] | ||||
|  | ||||
| if Path(dir_model + "/tokenizer.model").is_file(): | ||||
|     # vocab type sentencepiece | ||||
|     print("Adding sentencepiece tokenizer vocab.") | ||||
|     print("gguf: adding sentencepiece tokenizer vocab") | ||||
|  | ||||
|     tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") | ||||
|  | ||||
|     for i in range(tokenizer.vocab_size()): | ||||
| @@ -123,14 +110,52 @@ if Path(dir_model + "/tokenizer.model").is_file(): | ||||
|         tokens.append(text) | ||||
|         scores.append(score) | ||||
|  | ||||
| gguf_writer.write_tokenizer_model("llama") | ||||
| gguf_writer.write_token_list(tokens) | ||||
| gguf_writer.write_token_scores(scores) | ||||
|     gguf_writer.add_tokenizer_model("llama") | ||||
|     gguf_writer.add_token_list(tokens) | ||||
|     gguf_writer.add_token_scores(scores) | ||||
|  | ||||
| if Path(dir_model + "/tokenizer.json").is_file(): | ||||
|     with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: | ||||
|         tokenizer = json.load(f) | ||||
|  | ||||
|     if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): | ||||
|         print("gguf: adding special token ids") | ||||
|  | ||||
|         with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: | ||||
|             tokenizer_config = json.load(f) | ||||
|  | ||||
|         # find special token ids | ||||
|  | ||||
|         if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["bos_token"] or key["content"] == tokenizer_config["bos_token"]["content"]: | ||||
|                     gguf_writer.add_bos_token_id(key["id"]) | ||||
|  | ||||
|         if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["eos_token"] or key["content"] == tokenizer_config["eos_token"]["content"]: | ||||
|                     gguf_writer.add_eos_token_id(key["id"]) | ||||
|  | ||||
|         if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["unk_token"] or key["content"] == tokenizer_config["unk_token"]["content"]: | ||||
|                     gguf_writer.add_unk_token_id(key["id"]) | ||||
|  | ||||
|         if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["sep_token"] or key["content"] == tokenizer_config["sep_token"]["content"]: | ||||
|                     gguf_writer.add_sep_token_id(key["id"]) | ||||
|  | ||||
|         if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["pad_token"] or key["content"] == tokenizer_config["pad_token"]["content"]: | ||||
|                     gguf_writer.add_pad_token_id(key["id"]) | ||||
|  | ||||
|  | ||||
| # TENSORS | ||||
|  | ||||
| # tensor info | ||||
| print("write gguf tensor info") | ||||
| print("gguf: add gguf tensor info") | ||||
|  | ||||
| for name in list_vars.keys(): | ||||
|     data = list_vars[name].squeeze().numpy() | ||||
| @@ -197,24 +222,31 @@ for name in list_vars.keys(): | ||||
|             data = data.astype(np.float32) | ||||
|             ftype_cur = 0 | ||||
|  | ||||
|     gguf_writer.write_tensor_info(name, data) | ||||
|     gguf_writer.add_tensor_info(name, data) | ||||
|  | ||||
|  | ||||
| print("gguf: write header") | ||||
| gguf_writer.write_header_to_file() | ||||
| print("gguf: write key-values") | ||||
| gguf_writer.write_kv_data_to_file() | ||||
| print("gguf: write tensor info") | ||||
| gguf_writer.write_ti_data_to_file() | ||||
|  | ||||
| # tensor data | ||||
| print("write gguf tensor data") | ||||
| print("gguf: write tensor data") | ||||
|  | ||||
| for name in list_vars.keys(): | ||||
|     data = list_vars[name].squeeze().numpy() | ||||
|     print("Process tensor: " + name + " with shape: ", data.shape) | ||||
| #    print("Process tensor: " + name + " with shape: ", data.shape) | ||||
|  | ||||
|     # we don't need these | ||||
|     if name.endswith(".rotary_emb.inv_freq"): | ||||
|         print("  Skip tensor: " + name) | ||||
| #        print("  Skip tensor: " + name) | ||||
|         continue | ||||
|  | ||||
|     # permute these | ||||
|     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): | ||||
|         print("  Permute tensor: " + name) | ||||
| #        print("  Permute tensor: " + name) | ||||
|         data = permute(data, hparams["num_attention_heads"]) | ||||
|  | ||||
|     n_dims = len(data.shape) | ||||
| @@ -223,23 +255,23 @@ for name in list_vars.keys(): | ||||
|     ftype_cur = 0 | ||||
|     if ftype != 0: | ||||
|         if name.endswith(".weight") and n_dims == 2: | ||||
|             print("  Converting to float16") | ||||
| #            print("  Converting to float16") | ||||
|             data = data.astype(np.float16) | ||||
|             ftype_cur = 1 | ||||
|         else: | ||||
|             print("  Converting to float32") | ||||
| #            print("  Converting to float32") | ||||
|             data = data.astype(np.float32) | ||||
|             ftype_cur = 0 | ||||
|     else: | ||||
|         if data.dtype != np.float32: | ||||
|             print("  Converting to float32") | ||||
| #            print("  Converting to float32") | ||||
|             data = data.astype(np.float32) | ||||
|             ftype_cur = 0 | ||||
|  | ||||
|     gguf_writer.write_tensor(data) | ||||
|     gguf_writer.write_tensor_to_file(data) | ||||
|  | ||||
| gguf_writer.close() | ||||
|  | ||||
|  | ||||
| print("Done. Output file: " + fname_out) | ||||
| print("gguf: conversion done, output file: " + fname_out) | ||||
| print("") | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 klosax
					klosax