examples : add compare-mlx

This commit is contained in:
Georgi Gerganov
2025-08-30 16:08:00 +03:00
parent e92d53b29e
commit d8c17629ac
4 changed files with 1133 additions and 0 deletions

View File

@@ -0,0 +1,305 @@
# Copyright © 2025 Apple Inc.
# modified: https://github.com/ml-explore/mlx-lm/blob/60320dc2347d45dc3ca08be90e5255fb9424bb09/mlx_lm/perplexity.py
"""
Evaluate perplexity (PPL) of pre-trained MLX models in the same way as llama.cpp's llama-perplexity.
"""
import argparse
import math
import os
import time
import types
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx_lm.tuner.datasets import load_dataset
from mlx_lm.tuner.utils import get_total_parameters
from mlx_lm.utils import load
def load_data(
tokenizer,
data_path: str,
num_samples: int,
sequence_length: int,
):
"""
Load a HuggingFace dataset (via mlxlms dataset utilities) and convert it
into a token tensor of shape (N, sequence_length).
"""
args = types.SimpleNamespace(
hf_dataset={
"path": data_path,
"train_split": "train",
"valid_split": "train[:1]",
},
train=True,
test=False,
)
dataset = load_dataset(args, tokenizer)[0]
perm = np.random.permutation(len(dataset)).tolist()
num_tokens = sequence_length * num_samples if num_samples > 0 else float("inf")
data = []
i = 0
while len(data) < num_tokens:
tokens, _ = dataset.process(dataset[perm[i]])
i += 1
data.extend(tokens)
# Convert to MX array, truncate to a multiple of `sequence_length`
data = mx.array(data[: (len(data) // sequence_length) * sequence_length])
data = data.reshape(-1, sequence_length)
if num_samples > 0:
data = data[:num_samples]
return data
def _tokenize_text(tokenizer, text: str):
"""
Helper that tokenises a string using the MLXLM tokenizer.
Supports the common `encode` method or a callable tokenizer.
"""
# Most mlxlm tokenizers expose an `encode` method.
if hasattr(tokenizer, "encode"):
tokens = tokenizer.encode(text)
elif callable(tokenizer):
tokens = tokenizer(text)
else:
raise AttributeError(
"Tokenizer does not have an `encode` method nor is it callable."
)
# Normalise the output to a Python list of ints.
if isinstance(tokens, mx.array):
tokens = tokens.tolist()
return tokens
# load a raw text file and tokenize it
# generated with gpt-oss-120b
def load_raw_data(
tokenizer,
raw_path: str,
num_samples: int,
sequence_length: int,
):
"""
Load a raw text file, tokenize it, and reshape into a (N, sequence_length)
tensor suitable for perplexity evaluation.
"""
if not os.path.isfile(raw_path):
raise FileNotFoundError(f"Raw text file not found: {raw_path}")
# Read the whole file (UTF8). Users can supply any plaintext corpus.
with open(raw_path, "r", encoding="utf-8") as fp:
raw_text = fp.read()
# Tokenise the complete text.
token_list = _tokenize_text(tokenizer, raw_text)
if len(token_list) == 0:
raise ValueError("Tokenisation of the raw file produced no tokens.")
# Convert to MX array (int32 is sufficient for token IDs).
token_array = mx.array(token_list, dtype=mx.int32)
# Trim to a length that is an exact multiple of `sequence_length`.
total_len = (token_array.shape[0] // sequence_length) * sequence_length
token_array = token_array[:total_len]
# Reshape into (num_sequences, sequence_length)
data = token_array.reshape(-1, sequence_length)
if num_samples > 0:
data = data[:num_samples]
#print(f"First 4 samples of the data:")
#for j in range(min(4, len(data))):
# print(f" Sample {j}: {tokenizer.decode(data[j].tolist())}\n\n-------------------\n\n")
return data
def eval_ppl(model, tokenizer, data, batch_size=8):
"""
Evaluate perplexity on a dataset with standard error calculation.
Args:
model: The model to evaluate.
data: Tokenized data tensor (shape: N x L).
batch_size: Batch size for evaluation.
Returns:
tuple: (perplexity, standard_error_of_perplexity)
"""
all_losses = []
num_batches = (len(data) + batch_size - 1) // batch_size
for i, s in enumerate(range(0, len(data), batch_size)):
batch = data[s : s + batch_size]
# Set the first token of all samples to the BOS token
if tokenizer.bos_token_id:
batch[:, 0] = tokenizer.bos_token_id
# compute cross entropy only with the second half of the sequence to match llama.cpp behavior
# ref: https://github.com/ggml-org/llama.cpp/blob/696fccf354e9dbdfbce135bc40b44c9dcc64dda9/tools/perplexity/perplexity.cpp#L527-L541
#
#start = 0
start = batch.shape[1] // 2
# Forward pass: get logits for all tokens except last
logits = model(batch[:, :-1]).astype(mx.float32)
# Calculate crossentropy loss with next tokens
#losses = nn.losses.cross_entropy(logits, batch[:, 1:], reduction="none")
losses = nn.losses.cross_entropy(logits[:, start:, :], batch[:, start+1:], reduction="none")
mx.eval(losses)
# Store individual token losses
all_losses.append(losses.flatten())
# Progress indicator
if (i + 1) % 1 == 0 or (i + 1) == num_batches:
print(f" Processed {i + 1}/{num_batches} batches...", end="\r")
print() # New line after progress
# Concatenate all losses into a single array
all_losses = mx.concatenate(all_losses)
# Calculate mean loss and perplexity
mean_loss = all_losses.mean().item()
ppl = math.exp(mean_loss)
# Calculate standard error
std_dev = mx.sqrt(mx.var(all_losses, ddof=1)).item()
num_tokens = all_losses.size
standard_error = std_dev / math.sqrt(num_tokens)
# Delta approximation for standard error of perplexity
standard_error_ppl = ppl * standard_error
return ppl, standard_error_ppl
def main():
parser = argparse.ArgumentParser(description="Evaluate perplexity of MLX models")
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to model or Hugging Face model ID",
)
parser.add_argument(
"--batch-size", type=int, default=8, help="Batch size for evaluation"
)
parser.add_argument(
"--sequence-length",
type=int,
default=512,
help="Sequence length for evaluation",
)
parser.add_argument(
"--num-samples",
type=int,
default=256,
help="Number of samples to use (-1 for all available)",
)
parser.add_argument(
"--data-path",
type=str,
default="allenai/tulu-3-sft-mixture",
help=(
"A Hugging Face dataset compatible with mlxlm. "
"Ignored if --raw-path is provided."
),
)
parser.add_argument(
"--raw-path",
type=str,
default=None,
help=(
"Path to a local rawtext file to use for evaluation. "
"If specified, the script skips loading a HF dataset."
),
)
parser.add_argument(
"--seed", type=int, default=123, help="Random seed for data sampling"
)
args = parser.parse_args()
# Set random seed (used for HF dataset shuffling)
mx.random.seed(args.seed)
# Load model
print(f"Loading model from {args.model}...")
model, tokenizer = load(args.model)
# Count parameters
total_params = get_total_parameters(model)
print(f"Model loaded: {total_params/1e6:.1f}M parameters")
# ----------------------------------------------------------------------
# Load evaluation data (raw file vs. HF dataset)
# ----------------------------------------------------------------------
print("\nLoading dataset...")
print(f" Sequence length: {args.sequence_length}")
if args.raw_path:
print(f" Using raw text file: {args.raw_path}")
data = load_raw_data(
tokenizer,
raw_path=args.raw_path,
num_samples=args.num_samples,
sequence_length=args.sequence_length,
)
else:
print(f" Using HF dataset: {args.data_path}")
data = load_data(
tokenizer,
data_path=args.data_path,
num_samples=args.num_samples,
sequence_length=args.sequence_length,
)
print(f" Loaded {len(data)} samples")
# ----------------------------------------------------------------------
# Evaluate perplexity
# ----------------------------------------------------------------------
print(f"\nEvaluating perplexity with batch size {args.batch_size}...")
start_time = time.time()
ppl, se = eval_ppl(model, tokenizer, data, batch_size=args.batch_size)
eval_time = time.time() - start_time
tokens_evaluated = data.shape[0] * (data.shape[1] - 1) # B * (L - 1)
# Print results
print("\n" + "=" * 60)
print("EVALUATION RESULTS")
print("=" * 60)
print(f"Model: {args.model}")
print(f"Perplexity: {ppl:.3f} ± {se:.3f}")
print(f"Evaluation time: {eval_time:.2f} seconds")
print(f"Peak memory: {mx.get_peak_memory() / 1e9:.2f} GB")
print(f"Tokens per second: {tokens_evaluated / eval_time:.0f}")
# Additional statistics
print(f"\nDataset statistics:")
print(f" Total samples: {len(data)}")
print(f" Total tokens: {data.size}")
# ----------------------------------------------------------------------
# Done
# ----------------------------------------------------------------------
if __name__ == "__main__":
main()