mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-01 09:01:57 +00:00
examples : add compare-mlx
This commit is contained in:
305
examples/compare-mlx/mlx-ppl.py
Normal file
305
examples/compare-mlx/mlx-ppl.py
Normal file
@@ -0,0 +1,305 @@
|
||||
# Copyright © 2025 Apple Inc.
|
||||
# modified: https://github.com/ml-explore/mlx-lm/blob/60320dc2347d45dc3ca08be90e5255fb9424bb09/mlx_lm/perplexity.py
|
||||
"""
|
||||
Evaluate perplexity (PPL) of pre-trained MLX models in the same way as llama.cpp's llama-perplexity.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import time
|
||||
import types
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from mlx_lm.tuner.datasets import load_dataset
|
||||
from mlx_lm.tuner.utils import get_total_parameters
|
||||
from mlx_lm.utils import load
|
||||
|
||||
|
||||
def load_data(
|
||||
tokenizer,
|
||||
data_path: str,
|
||||
num_samples: int,
|
||||
sequence_length: int,
|
||||
):
|
||||
"""
|
||||
Load a Hugging‑Face dataset (via mlx‑lm’s dataset utilities) and convert it
|
||||
into a token tensor of shape (N, sequence_length).
|
||||
"""
|
||||
args = types.SimpleNamespace(
|
||||
hf_dataset={
|
||||
"path": data_path,
|
||||
"train_split": "train",
|
||||
"valid_split": "train[:1]",
|
||||
},
|
||||
train=True,
|
||||
test=False,
|
||||
)
|
||||
dataset = load_dataset(args, tokenizer)[0]
|
||||
|
||||
perm = np.random.permutation(len(dataset)).tolist()
|
||||
|
||||
num_tokens = sequence_length * num_samples if num_samples > 0 else float("inf")
|
||||
data = []
|
||||
i = 0
|
||||
while len(data) < num_tokens:
|
||||
tokens, _ = dataset.process(dataset[perm[i]])
|
||||
i += 1
|
||||
data.extend(tokens)
|
||||
|
||||
# Convert to MX array, truncate to a multiple of `sequence_length`
|
||||
data = mx.array(data[: (len(data) // sequence_length) * sequence_length])
|
||||
data = data.reshape(-1, sequence_length)
|
||||
if num_samples > 0:
|
||||
data = data[:num_samples]
|
||||
return data
|
||||
|
||||
|
||||
def _tokenize_text(tokenizer, text: str):
|
||||
"""
|
||||
Helper that tokenises a string using the MLX‑LM tokenizer.
|
||||
Supports the common `encode` method or a callable tokenizer.
|
||||
"""
|
||||
# Most mlx‑lm tokenizers expose an `encode` method.
|
||||
if hasattr(tokenizer, "encode"):
|
||||
tokens = tokenizer.encode(text)
|
||||
elif callable(tokenizer):
|
||||
tokens = tokenizer(text)
|
||||
else:
|
||||
raise AttributeError(
|
||||
"Tokenizer does not have an `encode` method nor is it callable."
|
||||
)
|
||||
# Normalise the output to a Python list of ints.
|
||||
if isinstance(tokens, mx.array):
|
||||
tokens = tokens.tolist()
|
||||
return tokens
|
||||
|
||||
|
||||
# load a raw text file and tokenize it
|
||||
# generated with gpt-oss-120b
|
||||
def load_raw_data(
|
||||
tokenizer,
|
||||
raw_path: str,
|
||||
num_samples: int,
|
||||
sequence_length: int,
|
||||
):
|
||||
"""
|
||||
Load a raw text file, tokenize it, and reshape into a (N, sequence_length)
|
||||
tensor suitable for perplexity evaluation.
|
||||
"""
|
||||
if not os.path.isfile(raw_path):
|
||||
raise FileNotFoundError(f"Raw text file not found: {raw_path}")
|
||||
|
||||
# Read the whole file (UTF‑8). Users can supply any plain‑text corpus.
|
||||
with open(raw_path, "r", encoding="utf-8") as fp:
|
||||
raw_text = fp.read()
|
||||
|
||||
# Tokenise the complete text.
|
||||
token_list = _tokenize_text(tokenizer, raw_text)
|
||||
|
||||
if len(token_list) == 0:
|
||||
raise ValueError("Tokenisation of the raw file produced no tokens.")
|
||||
|
||||
# Convert to MX array (int32 is sufficient for token IDs).
|
||||
token_array = mx.array(token_list, dtype=mx.int32)
|
||||
|
||||
# Trim to a length that is an exact multiple of `sequence_length`.
|
||||
total_len = (token_array.shape[0] // sequence_length) * sequence_length
|
||||
token_array = token_array[:total_len]
|
||||
|
||||
# Reshape into (num_sequences, sequence_length)
|
||||
data = token_array.reshape(-1, sequence_length)
|
||||
|
||||
if num_samples > 0:
|
||||
data = data[:num_samples]
|
||||
|
||||
#print(f"First 4 samples of the data:")
|
||||
#for j in range(min(4, len(data))):
|
||||
# print(f" Sample {j}: {tokenizer.decode(data[j].tolist())}\n\n-------------------\n\n")
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def eval_ppl(model, tokenizer, data, batch_size=8):
|
||||
"""
|
||||
Evaluate perplexity on a dataset with standard error calculation.
|
||||
|
||||
Args:
|
||||
model: The model to evaluate.
|
||||
data: Tokenized data tensor (shape: N x L).
|
||||
batch_size: Batch size for evaluation.
|
||||
|
||||
Returns:
|
||||
tuple: (perplexity, standard_error_of_perplexity)
|
||||
"""
|
||||
all_losses = []
|
||||
|
||||
num_batches = (len(data) + batch_size - 1) // batch_size
|
||||
for i, s in enumerate(range(0, len(data), batch_size)):
|
||||
batch = data[s : s + batch_size]
|
||||
|
||||
# Set the first token of all samples to the BOS token
|
||||
if tokenizer.bos_token_id:
|
||||
batch[:, 0] = tokenizer.bos_token_id
|
||||
|
||||
# compute cross entropy only with the second half of the sequence to match llama.cpp behavior
|
||||
# ref: https://github.com/ggml-org/llama.cpp/blob/696fccf354e9dbdfbce135bc40b44c9dcc64dda9/tools/perplexity/perplexity.cpp#L527-L541
|
||||
#
|
||||
#start = 0
|
||||
start = batch.shape[1] // 2
|
||||
|
||||
# Forward pass: get logits for all tokens except last
|
||||
logits = model(batch[:, :-1]).astype(mx.float32)
|
||||
|
||||
# Calculate cross‑entropy loss with next tokens
|
||||
#losses = nn.losses.cross_entropy(logits, batch[:, 1:], reduction="none")
|
||||
losses = nn.losses.cross_entropy(logits[:, start:, :], batch[:, start+1:], reduction="none")
|
||||
|
||||
mx.eval(losses)
|
||||
# Store individual token losses
|
||||
all_losses.append(losses.flatten())
|
||||
|
||||
# Progress indicator
|
||||
if (i + 1) % 1 == 0 or (i + 1) == num_batches:
|
||||
print(f" Processed {i + 1}/{num_batches} batches...", end="\r")
|
||||
|
||||
print() # New line after progress
|
||||
|
||||
# Concatenate all losses into a single array
|
||||
all_losses = mx.concatenate(all_losses)
|
||||
|
||||
# Calculate mean loss and perplexity
|
||||
mean_loss = all_losses.mean().item()
|
||||
ppl = math.exp(mean_loss)
|
||||
|
||||
# Calculate standard error
|
||||
std_dev = mx.sqrt(mx.var(all_losses, ddof=1)).item()
|
||||
num_tokens = all_losses.size
|
||||
standard_error = std_dev / math.sqrt(num_tokens)
|
||||
|
||||
# Delta approximation for standard error of perplexity
|
||||
standard_error_ppl = ppl * standard_error
|
||||
|
||||
return ppl, standard_error_ppl
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Evaluate perplexity of MLX models")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to model or Hugging Face model ID",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-size", type=int, default=8, help="Batch size for evaluation"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sequence-length",
|
||||
type=int,
|
||||
default=512,
|
||||
help="Sequence length for evaluation",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-samples",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Number of samples to use (-1 for all available)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--data-path",
|
||||
type=str,
|
||||
default="allenai/tulu-3-sft-mixture",
|
||||
help=(
|
||||
"A Hugging Face dataset compatible with mlx‑lm. "
|
||||
"Ignored if --raw-path is provided."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--raw-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"Path to a local raw‑text file to use for evaluation. "
|
||||
"If specified, the script skips loading a HF dataset."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed", type=int, default=123, help="Random seed for data sampling"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Set random seed (used for HF dataset shuffling)
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
# Load model
|
||||
print(f"Loading model from {args.model}...")
|
||||
model, tokenizer = load(args.model)
|
||||
|
||||
# Count parameters
|
||||
total_params = get_total_parameters(model)
|
||||
print(f"Model loaded: {total_params/1e6:.1f}M parameters")
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Load evaluation data (raw file vs. HF dataset)
|
||||
# ----------------------------------------------------------------------
|
||||
print("\nLoading dataset...")
|
||||
print(f" Sequence length: {args.sequence_length}")
|
||||
|
||||
if args.raw_path:
|
||||
print(f" Using raw text file: {args.raw_path}")
|
||||
data = load_raw_data(
|
||||
tokenizer,
|
||||
raw_path=args.raw_path,
|
||||
num_samples=args.num_samples,
|
||||
sequence_length=args.sequence_length,
|
||||
)
|
||||
else:
|
||||
print(f" Using HF dataset: {args.data_path}")
|
||||
data = load_data(
|
||||
tokenizer,
|
||||
data_path=args.data_path,
|
||||
num_samples=args.num_samples,
|
||||
sequence_length=args.sequence_length,
|
||||
)
|
||||
|
||||
print(f" Loaded {len(data)} samples")
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Evaluate perplexity
|
||||
# ----------------------------------------------------------------------
|
||||
print(f"\nEvaluating perplexity with batch size {args.batch_size}...")
|
||||
start_time = time.time()
|
||||
|
||||
ppl, se = eval_ppl(model, tokenizer, data, batch_size=args.batch_size)
|
||||
|
||||
eval_time = time.time() - start_time
|
||||
tokens_evaluated = data.shape[0] * (data.shape[1] - 1) # B * (L - 1)
|
||||
|
||||
# Print results
|
||||
print("\n" + "=" * 60)
|
||||
print("EVALUATION RESULTS")
|
||||
print("=" * 60)
|
||||
print(f"Model: {args.model}")
|
||||
print(f"Perplexity: {ppl:.3f} ± {se:.3f}")
|
||||
print(f"Evaluation time: {eval_time:.2f} seconds")
|
||||
print(f"Peak memory: {mx.get_peak_memory() / 1e9:.2f} GB")
|
||||
print(f"Tokens per second: {tokens_evaluated / eval_time:.0f}")
|
||||
|
||||
# Additional statistics
|
||||
print(f"\nDataset statistics:")
|
||||
print(f" Total samples: {len(data)}")
|
||||
print(f" Total tokens: {data.size}")
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Done
|
||||
# ----------------------------------------------------------------------
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user