examples : add compare-mlx

This commit is contained in:
Georgi Gerganov
2025-08-30 16:08:00 +03:00
parent e92d53b29e
commit d8c17629ac
4 changed files with 1133 additions and 0 deletions

2
examples/compare-mlx/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
*.txt
*/

View File

@@ -0,0 +1,706 @@
#!/bin/bash
# a script to compare MLX and GGUF models
#
# usage:
# ./compare-mlx.sh --raw-path wiki.test.raw --no-keep
#
# TODOs
# - add QAT evals
# check if LLAMA_HOME_DIR is set
if [[ -z "$LLAMA_HOME_DIR" ]]; then
lcpp_dir=$(cd "$(dirname "${BASH_SOURCE[0]}")"/../../ && pwd)
else
lcpp_dir="${LLAMA_HOME_DIR}"
fi
echo "Using llama.cpp directory: ${lcpp_dir}"
# check for convert_hf_to_gguf.py
if [[ ! -f "${lcpp_dir}/convert_hf_to_gguf.py" ]]; then
echo "convert_hf_to_gguf.py not found in ${lcpp_dir}"
echo "Set a LLAMA_HOME_DIR environment variable to point to your llama.cpp directory"
exit 1
fi
set -x
# sanity checks that all Python dependencies are installed
if ! python -c "import mlx.core"; then
echo "MLX not found. Please install MLX"
exit 1
fi
if ! python ${lcpp_dir}/convert_hf_to_gguf.py --help; then
echo "convert_hf_to_gguf.py not working. Please install llama.cpp python requirements"
exit 1
fi
# by default use the system binaries (for example from brew)
llama_perplexity="llama-perplexity"
if [[ ! -z "$LLAMA_PERPLEXITY" ]]; then
llama_perplexity="$LLAMA_PERPLEXITY"
fi
echo "Using llama-perplexity: ${llama_perplexity}"
if ! command -v "$llama_perplexity" &> /dev/null; then
echo "llama-perplexity not found. Please install it."
exit 1
fi
llama_quantize="llama-quantize"
if [[ ! -z "$LLAMA_QUANTIZE" ]]; then
llama_quantize="$LLAMA_QUANTIZE"
fi
echo "Using llama-quantize: ${llama_quantize}"
if ! command -v "$llama_quantize" &> /dev/null; then
echo "llama-quantize not found. Please install it."
exit 1
fi
llama_batched_bench="llama-batched-bench"
if [[ ! -z "$LLAMA_BATCHED_BENCH" ]]; then
llama_batched_bench="$LLAMA_BATCHED_BENCH"
fi
echo "Using llama-batched-bench: ${llama_batched_bench}"
if ! command -v "$llama_batched_bench" &> /dev/null; then
echo "llama-batched-bench not found. Please install it."
exit 1
fi
# get the size in GiB
get_size() {
local path="$1"
local bytes=$(du -s "$path" | awk '{print $1}')
local res=$(echo "scale=3; ($bytes*512)/1024/1024/1024" | bc)
echo "$res"
}
# parameters:
# --no-compute : do not compute anything, just summarize the existing results
# --no-ppl : do not compute ppl
# --no-perf : do not compute performance (speed) metrics
# --no-keep : delete intermediate model files
# --num-samples : number of text samples to evaluate (default: 512)
# --sequence-length : sequence length of the samples in tokens (default: 512)
# --raw-path : file with raw text (such as wikitext)
# extra agruments
args_lcpp="-t 1"
num_samples=512
sequence_length=512
raw_path=""
no_compute=false
no_ppl=false
no_perf=false
no_keep=false
while [[ $# -gt 0 ]]; do
case $1 in
--no-compute)
no_compute=true
shift
;;
--no-ppl)
no_ppl=true
shift
;;
--no-perf)
no_perf=true
shift
;;
--no-keep)
no_keep=true
shift
;;
--num-samples)
num_samples="$2"
shift 2
;;
--sequence-length)
sequence_length="$2"
shift 2
;;
--raw-path)
raw_path="$2"
shift 2
;;
*)
echo "Unknown parameter: $1"
exit 1
;;
esac
done
if [[ -z "$raw_path" ]]; then
echo "No raw path provided"
echo "Recommended to use the test set of WikiText from here: https://github.com/ggml-org/llama.cpp/blob/master/scripts/get-wikitext-2.sh"
exit 1
fi
eval_model() {
org="$1"
mid="$2"
echo "Evaluating ${org}/${mid}"
huggingface-cli download ${org}/${mid} --local-dir ${org}/${mid}
# generate and process MLX models
if [[ "$no_compute" == true ]]; then
echo "Skipping computation"
else
rm -rfv ./${mid}-f32-mlx
mlx_lm.convert --hf ./${org}/${mid} --mlx-path ./${mid}-f32-mlx --dtype float32
get_size ./${mid}-f32-mlx > ./${mid}-f32-mlx-size.txt
if [[ "$no_ppl" == false ]]; then
python ./mlx-ppl.py --model ./${mid}-f32-mlx --raw-path "$raw_path" --num-samples "$num_samples" --sequence-length "$sequence_length" 2>&1 | tee ./${mid}-f32-mlx-ppl.txt
fi
# no need for F32 perf benchmarks
#if [[ "$no_perf" == false ]]; then
# mlx_lm.benchmark --model ./${mid}-f32-mlx -p 2048 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f32-mlx-perf-2048.txt
# mlx_lm.benchmark --model ./${mid}-f32-mlx -p 4096 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f32-mlx-perf-4096.txt
# mlx_lm.benchmark --model ./${mid}-f32-mlx -p 8192 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f32-mlx-perf-8192.txt
# mlx_lm.benchmark --model ./${mid}-f32-mlx -p 16384 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f32-mlx-perf-16384.txt
# mlx_lm.benchmark --model ./${mid}-f32-mlx -p 32768 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f32-mlx-perf-32768.txt
#fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-f32-mlx
fi
rm -rfv ./${mid}-bf16-mlx
mlx_lm.convert --hf ./${org}/${mid} --mlx-path ./${mid}-bf16-mlx --dtype bfloat16
get_size ./${mid}-bf16-mlx > ./${mid}-bf16-mlx-size.txt
if [[ "$no_ppl" == false ]]; then
python ./mlx-ppl.py --model ./${mid}-bf16-mlx --raw-path "$raw_path" --num-samples "$num_samples" --sequence-length "$sequence_length" 2>&1 | tee ./${mid}-bf16-mlx-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
mlx_lm.benchmark --model ./${mid}-bf16-mlx -p 2048 -g 128 --num-trials 1 2>&1 | tee ./${mid}-bf16-mlx-perf-2048.txt
mlx_lm.benchmark --model ./${mid}-bf16-mlx -p 4096 -g 128 --num-trials 1 2>&1 | tee ./${mid}-bf16-mlx-perf-4096.txt
mlx_lm.benchmark --model ./${mid}-bf16-mlx -p 8192 -g 128 --num-trials 1 2>&1 | tee ./${mid}-bf16-mlx-perf-8192.txt
mlx_lm.benchmark --model ./${mid}-bf16-mlx -p 16384 -g 128 --num-trials 1 2>&1 | tee ./${mid}-bf16-mlx-perf-16384.txt
mlx_lm.benchmark --model ./${mid}-bf16-mlx -p 32768 -g 128 --num-trials 1 2>&1 | tee ./${mid}-bf16-mlx-perf-32768.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-bf16-mlx
fi
rm -rfv ./${mid}-f16-mlx
mlx_lm.convert --hf ./${org}/${mid} --mlx-path ./${mid}-f16-mlx --dtype float16
get_size ./${mid}-f16-mlx > ./${mid}-f16-mlx-size.txt
if [[ "$no_ppl" == false ]]; then
python ./mlx-ppl.py --model ./${mid}-f16-mlx --raw-path "$raw_path" --num-samples "$num_samples" --sequence-length "$sequence_length" 2>&1 | tee ./${mid}-f16-mlx-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
mlx_lm.benchmark --model ./${mid}-f16-mlx -p 2048 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f16-mlx-perf-2048.txt
mlx_lm.benchmark --model ./${mid}-f16-mlx -p 4096 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f16-mlx-perf-4096.txt
mlx_lm.benchmark --model ./${mid}-f16-mlx -p 8192 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f16-mlx-perf-8192.txt
mlx_lm.benchmark --model ./${mid}-f16-mlx -p 16384 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f16-mlx-perf-16384.txt
mlx_lm.benchmark --model ./${mid}-f16-mlx -p 32768 -g 128 --num-trials 1 2>&1 | tee ./${mid}-f16-mlx-perf-32768.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-f16-mlx
fi
rm -rfv ./${mid}-q8-mlx
mlx_lm.convert --hf ./${org}/${mid} --mlx-path ./${mid}-q8-mlx --quantize --q-bits 8
get_size ./${mid}-q8-mlx > ./${mid}-q8-mlx-size.txt
if [[ "$no_ppl" == false ]]; then
python ./mlx-ppl.py --model ./${mid}-q8-mlx --raw-path "$raw_path" --num-samples "$num_samples" --sequence-length "$sequence_length" 2>&1 | tee ./${mid}-q8-mlx-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
mlx_lm.benchmark --model ./${mid}-q8-mlx -p 2048 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q8-mlx-perf-2048.txt
mlx_lm.benchmark --model ./${mid}-q8-mlx -p 4096 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q8-mlx-perf-4096.txt
mlx_lm.benchmark --model ./${mid}-q8-mlx -p 8192 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q8-mlx-perf-8192.txt
mlx_lm.benchmark --model ./${mid}-q8-mlx -p 16384 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q8-mlx-perf-16384.txt
mlx_lm.benchmark --model ./${mid}-q8-mlx -p 32768 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q8-mlx-perf-32768.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q8-mlx
fi
rm -rfv ./${mid}-q6-mlx
mlx_lm.convert --hf ./${org}/${mid} --mlx-path ./${mid}-q6-mlx --quantize --q-bits 6
get_size ./${mid}-q6-mlx > ./${mid}-q6-mlx-size.txt
if [[ "$no_ppl" == false ]]; then
python ./mlx-ppl.py --model ./${mid}-q6-mlx --raw-path "$raw_path" --num-samples "$num_samples" --sequence-length "$sequence_length" 2>&1 | tee ./${mid}-q6-mlx-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
mlx_lm.benchmark --model ./${mid}-q6-mlx -p 2048 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q6-mlx-perf-2048.txt
mlx_lm.benchmark --model ./${mid}-q6-mlx -p 4096 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q6-mlx-perf-4096.txt
mlx_lm.benchmark --model ./${mid}-q6-mlx -p 8192 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q6-mlx-perf-8192.txt
mlx_lm.benchmark --model ./${mid}-q6-mlx -p 16384 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q6-mlx-perf-16384.txt
mlx_lm.benchmark --model ./${mid}-q6-mlx -p 32768 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q6-mlx-perf-32768.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q6-mlx
fi
rm -rfv ./${mid}-q5-mlx
mlx_lm.convert --hf ./${org}/${mid} --mlx-path ./${mid}-q5-mlx --quantize --q-bits 5
get_size ./${mid}-q5-mlx > ./${mid}-q5-mlx-size.txt
if [[ "$no_ppl" == false ]]; then
python ./mlx-ppl.py --model ./${mid}-q5-mlx --raw-path "$raw_path" --num-samples "$num_samples" --sequence-length "$sequence_length" 2>&1 | tee ./${mid}-q5-mlx-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
mlx_lm.benchmark --model ./${mid}-q5-mlx -p 2048 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q5-mlx-perf-2048.txt
mlx_lm.benchmark --model ./${mid}-q5-mlx -p 4096 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q5-mlx-perf-4096.txt
mlx_lm.benchmark --model ./${mid}-q5-mlx -p 8192 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q5-mlx-perf-8192.txt
mlx_lm.benchmark --model ./${mid}-q5-mlx -p 16384 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q5-mlx-perf-16384.txt
mlx_lm.benchmark --model ./${mid}-q5-mlx -p 32768 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q5-mlx-perf-32768.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q5-mlx
fi
# I think this is something similar to q4_k
rm -rfv ./${mid}-q4p-mlx
mlx_lm.convert --hf ./${org}/${mid} --mlx-path ./${mid}-q4p-mlx --quantize --quant-predicate mixed_4_6
get_size ./${mid}-q4p-mlx > ./${mid}-q4p-mlx-size.txt
if [[ "$no_ppl" == false ]]; then
python ./mlx-ppl.py --model ./${mid}-q4p-mlx --raw-path "$raw_path" --num-samples "$num_samples" --sequence-length "$sequence_length" 2>&1 | tee ./${mid}-q4p-mlx-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
mlx_lm.benchmark --model ./${mid}-q4p-mlx -p 2048 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4p-mlx-perf-2048.txt
mlx_lm.benchmark --model ./${mid}-q4p-mlx -p 4096 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4p-mlx-perf-4096.txt
mlx_lm.benchmark --model ./${mid}-q4p-mlx -p 8192 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4p-mlx-perf-8192.txt
mlx_lm.benchmark --model ./${mid}-q4p-mlx -p 16384 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4p-mlx-perf-16384.txt
mlx_lm.benchmark --model ./${mid}-q4p-mlx -p 32768 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4p-mlx-perf-32768.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q4p-mlx
fi
rm -rfv ./${mid}-q4-mlx
mlx_lm.convert --hf ./${org}/${mid} --mlx-path ./${mid}-q4-mlx --quantize --q-bits 4
get_size ./${mid}-q4-mlx > ./${mid}-q4-mlx-size.txt
if [[ "$no_ppl" == false ]]; then
python ./mlx-ppl.py --model ./${mid}-q4-mlx --raw-path "$raw_path" --num-samples "$num_samples" --sequence-length "$sequence_length" 2>&1 | tee ./${mid}-q4-mlx-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
mlx_lm.benchmark --model ./${mid}-q4-mlx -p 2048 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4-mlx-perf-2048.txt
mlx_lm.benchmark --model ./${mid}-q4-mlx -p 4096 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4-mlx-perf-4096.txt
mlx_lm.benchmark --model ./${mid}-q4-mlx -p 8192 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4-mlx-perf-8192.txt
mlx_lm.benchmark --model ./${mid}-q4-mlx -p 16384 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4-mlx-perf-16384.txt
mlx_lm.benchmark --model ./${mid}-q4-mlx -p 32768 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q4-mlx-perf-32768.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q4-mlx
fi
rm -rfv ./${mid}-q3-mlx
mlx_lm.convert --hf ./${org}/${mid} --mlx-path ./${mid}-q3-mlx --quantize --q-bits 3
get_size ./${mid}-q3-mlx > ./${mid}-q3-mlx-size.txt
if [[ "$no_ppl" == false ]]; then
python ./mlx-ppl.py --model ./${mid}-q3-mlx --raw-path "$raw_path" --num-samples "$num_samples" --sequence-length "$sequence_length" 2>&1 | tee ./${mid}-q3-mlx-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
mlx_lm.benchmark --model ./${mid}-q3-mlx -p 2048 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q3-mlx-perf-2048.txt
mlx_lm.benchmark --model ./${mid}-q3-mlx -p 4096 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q3-mlx-perf-4096.txt
mlx_lm.benchmark --model ./${mid}-q3-mlx -p 8192 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q3-mlx-perf-8192.txt
mlx_lm.benchmark --model ./${mid}-q3-mlx -p 16384 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q3-mlx-perf-16384.txt
mlx_lm.benchmark --model ./${mid}-q3-mlx -p 32768 -g 128 --num-trials 1 2>&1 | tee ./${mid}-q3-mlx-perf-32768.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q3-mlx
fi
fi
# generate and process llama.cpp GGUF models
if [[ "$no_compute" == true ]]; then
echo "Skipping computation"
else
# the F32 model is the reference - we generate all other models from it
mkdir -p ./${mid}-f32-gguf
python ${lcpp_dir}/convert_hf_to_gguf.py ./${org}/${mid} --outtype f32 --outfile ./${mid}-f32-gguf/model.gguf
get_size ./${mid}-f32-gguf > ./${mid}-f32-gguf-size.txt
if [[ "$no_ppl" == false ]]; then
${llama_perplexity} $args_lcpp -m ./${mid}-f32-gguf/model.gguf -f "$raw_path" --chunks "${num_samples}" -c "${sequence_length}" 2>&1 | tee ./${mid}-f32-gguf-ppl.txt
fi
# no need for F32 perf benchmarks
#if [[ "$no_perf" == false ]]; then
# ${llama_batched_bench} $args_lcpp -m ./${mid}-f32-gguf/model.gguf -c 33768 -b 2048 -ub 2048 -npp 2048,4096,8192,16384,32768 -ntg 128 -npl 1 2>&1 | tee ./${mid}-f32-gguf-perf.txt
#fi
# this requires to explicitly build llama.cpp with BF16 support
rm -rfv ./${mid}-bf16-gguf && mkdir -p ./${mid}-bf16-gguf
${llama_quantize} ./${mid}-f32-gguf/model.gguf ./${mid}-bf16-gguf/model.gguf bf16
get_size ./${mid}-bf16-gguf > ./${mid}-bf16-gguf-size.txt
if [[ "$no_ppl" == false ]]; then
${llama_perplexity} $args_lcpp -m ./${mid}-bf16-gguf/model.gguf -f "$raw_path" --chunks "${num_samples}" -c "${sequence_length}" 2>&1 | tee ./${mid}-bf16-gguf-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
${llama_batched_bench} $args_lcpp -m ./${mid}-bf16-gguf/model.gguf -c 33768 -b 2048 -ub 2048 -npp 2048,4096,8192,16384,32768 -ntg 128 -npl 1 2>&1 | tee ./${mid}-bf16-gguf-perf.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-bf16-gguf
fi
rm -rfv ./${mid}-f16-gguf && mkdir -p ./${mid}-f16-gguf
${llama_quantize} ./${mid}-f32-gguf/model.gguf ./${mid}-f16-gguf/model.gguf f16
get_size ./${mid}-f16-gguf > ./${mid}-f16-gguf-size.txt
if [[ "$no_ppl" == false ]]; then
${llama_perplexity} $args_lcpp -m ./${mid}-f16-gguf/model.gguf -f "$raw_path" --chunks "${num_samples}" -c "${sequence_length}" 2>&1 | tee ./${mid}-f16-gguf-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
${llama_batched_bench} $args_lcpp -m ./${mid}-f16-gguf/model.gguf -c 33768 -b 2048 -ub 2048 -npp 2048,4096,8192,16384,32768 -ntg 128 -npl 1 2>&1 | tee ./${mid}-f16-gguf-perf.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-f16-gguf
fi
rm -rfv ./${mid}-q8-gguf && mkdir -p ./${mid}-q8-gguf
${llama_quantize} ./${mid}-f32-gguf/model.gguf ./${mid}-q8-gguf/model.gguf q8_0
get_size ./${mid}-q8-gguf > ./${mid}-q8-gguf-size.txt
if [[ "$no_ppl" == false ]]; then
${llama_perplexity} $args_lcpp -m ./${mid}-q8-gguf/model.gguf -f "$raw_path" --chunks "${num_samples}" -c "${sequence_length}" 2>&1 | tee ./${mid}-q8-gguf-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
${llama_batched_bench} $args_lcpp -m ./${mid}-q8-gguf/model.gguf -c 33768 -b 2048 -ub 2048 -npp 2048,4096,8192,16384,32768 -ntg 128 -npl 1 2>&1 | tee ./${mid}-q8-gguf-perf.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q8-gguf
fi
rm -rfv ./${mid}-q6-gguf && mkdir -p ./${mid}-q6-gguf
${llama_quantize} ./${mid}-f32-gguf/model.gguf ./${mid}-q6-gguf/model.gguf q6_k
get_size ./${mid}-q6-gguf > ./${mid}-q6-gguf-size.txt
if [[ "$no_ppl" == false ]]; then
${llama_perplexity} $args_lcpp -m ./${mid}-q6-gguf/model.gguf -f "$raw_path" --chunks "${num_samples}" -c "${sequence_length}" 2>&1 | tee ./${mid}-q6-gguf-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
${llama_batched_bench} $args_lcpp -m ./${mid}-q6-gguf/model.gguf -c 33768 -b 2048 -ub 2048 -npp 2048,4096,8192,16384,32768 -ntg 128 -npl 1 2>&1 | tee ./${mid}-q6-gguf-perf.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q6-gguf
fi
rm -rfv ./${mid}-q5-gguf && mkdir -p ./${mid}-q5-gguf
${llama_quantize} ./${mid}-f32-gguf/model.gguf ./${mid}-q5-gguf/model.gguf q5_k_s
get_size ./${mid}-q5-gguf > ./${mid}-q5-gguf-size.txt
if [[ "$no_ppl" == false ]]; then
${llama_perplexity} $args_lcpp -m ./${mid}-q5-gguf/model.gguf -f "$raw_path" --chunks "${num_samples}" -c "${sequence_length}" 2>&1 | tee ./${mid}-q5-gguf-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
${llama_batched_bench} $args_lcpp -m ./${mid}-q5-gguf/model.gguf -c 33768 -b 2048 -ub 2048 -npp 2048,4096,8192,16384,32768 -ntg 128 -npl 1 2>&1 | tee ./${mid}-q5-gguf-perf.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q5-gguf
fi
rm -rfv ./${mid}-q4p-gguf && mkdir -p ./${mid}-q4p-gguf
${llama_quantize} ./${mid}-f32-gguf/model.gguf ./${mid}-q4p-gguf/model.gguf q4_k
get_size ./${mid}-q4p-gguf > ./${mid}-q4p-gguf-size.txt
if [[ "$no_ppl" == false ]]; then
${llama_perplexity} $args_lcpp -m ./${mid}-q4p-gguf/model.gguf -f "$raw_path" --chunks "${num_samples}" -c "${sequence_length}" 2>&1 | tee ./${mid}-q4p-gguf-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
${llama_batched_bench} $args_lcpp -m ./${mid}-q4p-gguf/model.gguf -c 33768 -b 2048 -ub 2048 -npp 2048,4096,8192,16384,32768 -ntg 128 -npl 1 2>&1 | tee ./${mid}-q4p-gguf-perf.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q4p-gguf
fi
# note: we use --pure here to match the MLX quantization of the embeddings
rm -rfv ./${mid}-q4-gguf && mkdir -p ./${mid}-q4-gguf
${llama_quantize} --pure ./${mid}-f32-gguf/model.gguf ./${mid}-q4-gguf/model.gguf q4_0
get_size ./${mid}-q4-gguf > ./${mid}-q4-gguf-size.txt
if [[ "$no_ppl" == false ]]; then
${llama_perplexity} $args_lcpp -m ./${mid}-q4-gguf/model.gguf -f "$raw_path" --chunks "${num_samples}" -c "${sequence_length}" 2>&1 | tee ./${mid}-q4-gguf-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
${llama_batched_bench} $args_lcpp -m ./${mid}-q4-gguf/model.gguf -c 33768 -b 2048 -ub 2048 -npp 2048,4096,8192,16384,32768 -ntg 128 -npl 1 2>&1 | tee ./${mid}-q4-gguf-perf.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q4-gguf
fi
rm -rfv ./${mid}-q3-gguf && mkdir -p ./${mid}-q3-gguf
${llama_quantize} ./${mid}-f32-gguf/model.gguf ./${mid}-q3-gguf/model.gguf q3_k_s
get_size ./${mid}-q3-gguf > ./${mid}-q3-gguf-size.txt
if [[ "$no_ppl" == false ]]; then
${llama_perplexity} $args_lcpp -m ./${mid}-q3-gguf/model.gguf -f "$raw_path" --chunks "${num_samples}" -c "${sequence_length}" 2>&1 | tee ./${mid}-q3-gguf-ppl.txt
fi
if [[ "$no_perf" == false ]]; then
${llama_batched_bench} $args_lcpp -m ./${mid}-q3-gguf/model.gguf -c 33768 -b 2048 -ub 2048 -npp 2048,4096,8192,16384,32768 -ntg 128 -npl 1 2>&1 | tee ./${mid}-q3-gguf-perf.txt
fi
if [[ "$no_keep" == true ]]; then
echo "Deleting intermediate model files"
rm -rfv ./${mid}-q3-gguf
fi
# remove the f32 model at the end
if [[ "$no_keep" == true ]]; then
rm -rfv ./${mid}-f32-gguf
fi
fi
set +x
# analyze results
types=("f32" "bf16" "f16" "q8" "q6" "q5" "q4p" "q4" "q3")
mlx_ppls=()
mlx_ppl_deltas=()
mlx_sizes=()
mlx_pps2k=()
mlx_tgs2k=()
mlx_pps4k=()
mlx_tgs4k=()
mlx_pps8k=()
mlx_tgs8k=()
mlx_pps16k=()
mlx_tgs16k=()
mlx_pps32k=()
mlx_tgs32k=()
# mlx:
for t in ${types[*]}; do
cur_ppl="N/A"
cur_ppl_delta="N/A"
cur_size="N/A"
cur_pp2k="N/A"
cur_tg2k="N/A"
cur_pp4k="N/A"
cur_tg4k="N/A"
cur_pp8k="N/A"
cur_tg8k="N/A"
cur_pp16k="N/A"
cur_tg16k="N/A"
cur_pp32k="N/A"
cur_tg32k="N/A"
if [[ -f ./${mid}-${t}-mlx-ppl.txt ]]; then
cur_ppl=$(grep -o 'Perplexity: [0-9.]*' ./${mid}-${t}-mlx-ppl.txt | cut -d' ' -f2)
cur_ppl_delta=$(grep -o 'Perplexity: [0-9.]* ± [0-9.]*' ./${mid}-${t}-mlx-ppl.txt | cut -d' ' -f4)
cur_size=$(cat ./${mid}-${t}-mlx-size.txt)
cur_pp2k=$(grep -o 'Averages.*prompt_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-2048.txt | cut -d'=' -f2)
cur_tg2k=$(grep -o 'Averages.*generation_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-2048.txt | cut -d'=' -f3)
cur_pp4k=$(grep -o 'Averages.*prompt_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-4096.txt | cut -d'=' -f2)
cur_tg4k=$(grep -o 'Averages.*generation_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-4096.txt | cut -d'=' -f3)
cur_pp8k=$(grep -o 'Averages.*prompt_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-8192.txt | cut -d'=' -f2)
cur_tg8k=$(grep -o 'Averages.*generation_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-8192.txt | cut -d'=' -f3)
cur_pp16k=$(grep -o 'Averages.*prompt_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-16384.txt | cut -d'=' -f2)
cur_tg16k=$(grep -o 'Averages.*generation_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-16384.txt | cut -d'=' -f3)
cur_pp32k=$(grep -o 'Averages.*prompt_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-32768.txt | cut -d'=' -f2)
cur_tg32k=$(grep -o 'Averages.*generation_tps=[0-9.]*' ./${mid}-${t}-mlx-perf-32768.txt | cut -d'=' -f3)
fi
mlx_ppls+=("${cur_ppl}")
mlx_ppl_deltas+=("${cur_ppl_delta}")
mlx_sizes+=("${cur_size}")
mlx_pps2k+=("${cur_pp2k}")
mlx_tgs2k+=("${cur_tg2k}")
mlx_pps4k+=("${cur_pp4k}")
mlx_tgs4k+=("${cur_tg4k}")
mlx_pps8k+=("${cur_pp8k}")
mlx_tgs8k+=("${cur_tg8k}")
mlx_pps16k+=("${cur_pp16k}")
mlx_tgs16k+=("${cur_tg16k}")
mlx_pps32k+=("${cur_pp32k}")
mlx_tgs32k+=("${cur_tg32k}")
done
gguf_ppls=()
gguf_ppl_deltas=()
gguf_sizes=()
gguf_pps2k=()
gguf_tgs2k=()
gguf_pps4k=()
gguf_tgs4k=()
gguf_pps8k=()
gguf_tgs8k=()
gguf_pps16k=()
gguf_tgs16k=()
gguf_pps32k=()
gguf_tgs32k=()
# gguf:
for t in ${types[*]}; do
cur_ppl="N/A"
cur_ppl_delta="N/A"
cur_size="N/A"
cur_pp2k="N/A"
cur_tg2k="N/A"
cur_pp4k="N/A"
cur_tg4k="N/A"
cur_pp8k="N/A"
cur_tg8k="N/A"
cur_pp16k="N/A"
cur_tg16k="N/A"
cur_pp32k="N/A"
cur_tg32k="N/A"
if [[ -f ./${mid}-${t}-gguf-ppl.txt ]]; then
cur_ppl=$(grep -o 'Final estimate: PPL = [0-9.]*' ./${mid}-${t}-gguf-ppl.txt | sed -e "s/.*Final//" | cut -d' ' -f5)
cur_ppl_delta=$(grep -o 'Final estimate: PPL = [0-9.]* +/- [0-9.]*' ./${mid}-${t}-gguf-ppl.txt | sed -e "s/.*Final//" | cut -d' ' -f7)
cur_size=$(cat ./${mid}-${t}-gguf-size.txt)
cur_pp2k=$(grep -o '| 2048 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $12}')
cur_tg2k=$(grep -o '| 2048 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $16}')
cur_pp4k=$(grep -o '| 4096 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $12}')
cur_tg4k=$(grep -o '| 4096 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $16}')
cur_pp8k=$(grep -o '| 8192 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $12}')
cur_tg8k=$(grep -o '| 8192 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $16}')
cur_pp16k=$(grep -o '| 16384 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $12}')
cur_tg16k=$(grep -o '| 16384 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $16}')
cur_pp32k=$(grep -o '| 32768 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $12}')
cur_tg32k=$(grep -o '| 32768 |.*' ./${mid}-${t}-gguf-perf.txt | awk '{print $16}')
fi
gguf_ppls+=("${cur_ppl}")
gguf_ppl_deltas+=("${cur_ppl_delta}")
gguf_sizes+=("${cur_size}")
gguf_pps2k+=("${cur_pp2k}")
gguf_tgs2k+=("${cur_tg2k}")
gguf_pps4k+=("${cur_pp4k}")
gguf_tgs4k+=("${cur_tg4k}")
gguf_pps8k+=("${cur_pp8k}")
gguf_tgs8k+=("${cur_tg8k}")
gguf_pps16k+=("${cur_pp16k}")
gguf_tgs16k+=("${cur_tg16k}")
gguf_pps32k+=("${cur_pp32k}")
gguf_tgs32k+=("${cur_tg32k}")
done
res="${mid}-results.txt"
echo "Results for ${org}/${mid} saved to ${res}"
printf "\n" | tee ${res}
printf "Model ID: ${org}/${mid}\n" | tee -a ${res}
#printf "Samples: ${num_samples}\n" | tee -a ${res}
#printf "Sequence Length: ${sequence_length}\n" | tee -a ${res}
printf "\n" | tee -a ${res}
printf "| Type | MLX PPL | GGUF PPL | MLX Size | GGUF Size | MLX PP 2K | GGUF PP 2K | MLX TG 2K | GGUF TG 2K | MLX PP 4K | GGUF PP 4K | MLX TG 4K | GGUF TG 4K | MLX PP 8K | GGUF PP 8K | MLX TG 8K | GGUF TG 8K | MLX PP 16K | GGUF PP 16K | MLX TG 16K | GGUF TG 16K | MLX PP 32K | GGUF PP 32K | MLX TG 32K | GGUF TG 32K |\n" | tee -a ${res}
printf "|-------|---------------------|------------------------|----------|-----------| ---------- | ----------- | ---------- | ----------- | ---------- | ----------- | ---------- | ----------- | ---------- | ----------- | ---------- | ----------- | ---------- | ----------- | ---------- | ----------- | ---------- | ----------- | ---------- | ----------- |\n" | tee -a ${res}
for i in "${!types[@]}"; do
printf "| %-5s | %10s ± %6s | %10s ± %9s | %8s | %9s | %10s | %11s | %10s | %11s | %10s | %11s | %10s | %11s | %10s | %11s | %10s | %11s | %10s | %11s | %10s | %11s | %10s | %11s | %10s | %11s |\n" \
"${types[i]}" \
"${mlx_ppls[i]}" \
"${mlx_ppl_deltas[i]}" \
"${gguf_ppls[i]}" \
"${gguf_ppl_deltas[i]}" \
"${mlx_sizes[i]}" \
"${gguf_sizes[i]}" \
"${mlx_pps2k[i]}" \
"${gguf_pps2k[i]}" \
"${mlx_tgs2k[i]}" \
"${gguf_tgs2k[i]}" \
"${mlx_pps4k[i]}" \
"${gguf_pps4k[i]}" \
"${mlx_tgs4k[i]}" \
"${gguf_tgs4k[i]}" \
"${mlx_pps8k[i]}" \
"${gguf_pps8k[i]}" \
"${mlx_tgs8k[i]}" \
"${gguf_tgs8k[i]}" \
"${mlx_pps16k[i]}" \
"${gguf_pps16k[i]}" \
"${mlx_tgs16k[i]}" \
"${gguf_tgs16k[i]}" \
"${mlx_pps32k[i]}" \
"${gguf_pps32k[i]}" \
"${mlx_tgs32k[i]}" \
"${gguf_tgs32k[i]}" | tee -a ${res}
done
}
eval_model "meta-llama" "Llama-3.2-1B"
eval_model "meta-llama" "Llama-3.2-3B"
eval_model "meta-llama" "Llama-3.1-8B"
eval_model "google" "gemma-3-270m"
eval_model "google" "gemma-3-1b-pt"
eval_model "google" "gemma-3-4b-pt"
# the mlx-ppl.y script does not work with these models - not sure why
#eval_model "google" "gemma-3n-E2B"
#eval_model "google" "gemma-3n-E4B"
eval_model "Qwen" "Qwen3-0.6B-Base"
eval_model "Qwen" "Qwen3-1.7B-Base"
eval_model "Qwen" "Qwen3-4B-Base"
eval_model "Qwen" "Qwen3-8B-Base"
eval_model "Qwen" "Qwen3-30B-A3B-Base"

View File

@@ -0,0 +1,120 @@
#!/usr/bin/env python3
# generated by Claude
"""
Script to inspect SafeTensors model files and print tensor information.
"""
import json
from safetensors import safe_open
import os
from pathlib import Path
def inspect_safetensors_model(model_dir="."):
"""Inspect all SafeTensors files in the model directory."""
# First, let's read the index file to see the file structure
index_file = Path(model_dir) / "model.safetensors.index.json"
if index_file.exists():
with open(index_file, 'r') as f:
index_data = json.load(f)
print("=== Model Structure ===")
print(f"Total parameters: {index_data.get('metadata', {}).get('total_size', 'Unknown')}")
print()
# Get all safetensor files
safetensor_files = set(index_data.get('weight_map', {}).values())
else:
# If no index file, look for safetensor files directly
safetensor_files = [f for f in os.listdir(model_dir) if f.endswith('.safetensors')]
# Sort files for consistent output
safetensor_files = sorted(safetensor_files)
print("=== Tensor Information ===")
print(f"{'Tensor Name':<50} {'Shape':<25} {'Data Type':<15} {'File'}")
print("-" * 110)
total_tensors = 0
for filename in safetensor_files:
filepath = Path(model_dir) / filename
if not filepath.exists():
continue
print(f"\n--- {filename} ---")
# Open and inspect the safetensor file
with safe_open(filepath, framework="pt") as f: # Use PyTorch framework for better dtype support
tensor_names = f.keys()
for tensor_name in sorted(tensor_names):
# Get tensor metadata without loading the full tensor
tensor_slice = f.get_slice(tensor_name)
shape = tensor_slice.get_shape()
dtype = tensor_slice.get_dtype()
shape_str = str(tuple(shape))
dtype_str = str(dtype)
print(f"{tensor_name:<50} {shape_str:<25} {dtype_str:<15} {filename}")
total_tensors += 1
print(f"\nTotal tensors found: {total_tensors}")
def main():
import argparse
parser = argparse.ArgumentParser(description="Inspect SafeTensors model files")
parser.add_argument("--model-dir", "-d", default=".",
help="Directory containing the model files (default: current directory)")
parser.add_argument("--summary", "-s", action="store_true",
help="Show only summary statistics")
args = parser.parse_args()
if args.summary:
print_summary_only(args.model_dir)
else:
inspect_safetensors_model(args.model_dir)
def print_summary_only(model_dir="."):
"""Print only summary statistics."""
safetensor_files = [f for f in os.listdir(model_dir) if f.endswith('.safetensors')]
total_tensors = 0
dtype_counts = {}
total_params = 0
for filename in sorted(safetensor_files):
filepath = Path(model_dir) / filename
if not filepath.exists():
continue
with safe_open(filepath, framework="pt") as f: # Use PyTorch framework
for tensor_name in f.keys():
tensor_slice = f.get_slice(tensor_name)
shape = tensor_slice.get_shape()
dtype = tensor_slice.get_dtype()
total_tensors += 1
dtype_str = str(dtype)
dtype_counts[dtype_str] = dtype_counts.get(dtype_str, 0) + 1
# Calculate parameter count
param_count = 1
for dim in shape:
param_count *= dim
total_params += param_count
print("=== Model Summary ===")
print(f"Total tensors: {total_tensors}")
print(f"Total parameters: {total_params:,}")
print(f"Data type distribution:")
for dtype, count in sorted(dtype_counts.items()):
print(f" {dtype}: {count} tensors")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,305 @@
# Copyright © 2025 Apple Inc.
# modified: https://github.com/ml-explore/mlx-lm/blob/60320dc2347d45dc3ca08be90e5255fb9424bb09/mlx_lm/perplexity.py
"""
Evaluate perplexity (PPL) of pre-trained MLX models in the same way as llama.cpp's llama-perplexity.
"""
import argparse
import math
import os
import time
import types
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx_lm.tuner.datasets import load_dataset
from mlx_lm.tuner.utils import get_total_parameters
from mlx_lm.utils import load
def load_data(
tokenizer,
data_path: str,
num_samples: int,
sequence_length: int,
):
"""
Load a HuggingFace dataset (via mlxlms dataset utilities) and convert it
into a token tensor of shape (N, sequence_length).
"""
args = types.SimpleNamespace(
hf_dataset={
"path": data_path,
"train_split": "train",
"valid_split": "train[:1]",
},
train=True,
test=False,
)
dataset = load_dataset(args, tokenizer)[0]
perm = np.random.permutation(len(dataset)).tolist()
num_tokens = sequence_length * num_samples if num_samples > 0 else float("inf")
data = []
i = 0
while len(data) < num_tokens:
tokens, _ = dataset.process(dataset[perm[i]])
i += 1
data.extend(tokens)
# Convert to MX array, truncate to a multiple of `sequence_length`
data = mx.array(data[: (len(data) // sequence_length) * sequence_length])
data = data.reshape(-1, sequence_length)
if num_samples > 0:
data = data[:num_samples]
return data
def _tokenize_text(tokenizer, text: str):
"""
Helper that tokenises a string using the MLXLM tokenizer.
Supports the common `encode` method or a callable tokenizer.
"""
# Most mlxlm tokenizers expose an `encode` method.
if hasattr(tokenizer, "encode"):
tokens = tokenizer.encode(text)
elif callable(tokenizer):
tokens = tokenizer(text)
else:
raise AttributeError(
"Tokenizer does not have an `encode` method nor is it callable."
)
# Normalise the output to a Python list of ints.
if isinstance(tokens, mx.array):
tokens = tokens.tolist()
return tokens
# load a raw text file and tokenize it
# generated with gpt-oss-120b
def load_raw_data(
tokenizer,
raw_path: str,
num_samples: int,
sequence_length: int,
):
"""
Load a raw text file, tokenize it, and reshape into a (N, sequence_length)
tensor suitable for perplexity evaluation.
"""
if not os.path.isfile(raw_path):
raise FileNotFoundError(f"Raw text file not found: {raw_path}")
# Read the whole file (UTF8). Users can supply any plaintext corpus.
with open(raw_path, "r", encoding="utf-8") as fp:
raw_text = fp.read()
# Tokenise the complete text.
token_list = _tokenize_text(tokenizer, raw_text)
if len(token_list) == 0:
raise ValueError("Tokenisation of the raw file produced no tokens.")
# Convert to MX array (int32 is sufficient for token IDs).
token_array = mx.array(token_list, dtype=mx.int32)
# Trim to a length that is an exact multiple of `sequence_length`.
total_len = (token_array.shape[0] // sequence_length) * sequence_length
token_array = token_array[:total_len]
# Reshape into (num_sequences, sequence_length)
data = token_array.reshape(-1, sequence_length)
if num_samples > 0:
data = data[:num_samples]
#print(f"First 4 samples of the data:")
#for j in range(min(4, len(data))):
# print(f" Sample {j}: {tokenizer.decode(data[j].tolist())}\n\n-------------------\n\n")
return data
def eval_ppl(model, tokenizer, data, batch_size=8):
"""
Evaluate perplexity on a dataset with standard error calculation.
Args:
model: The model to evaluate.
data: Tokenized data tensor (shape: N x L).
batch_size: Batch size for evaluation.
Returns:
tuple: (perplexity, standard_error_of_perplexity)
"""
all_losses = []
num_batches = (len(data) + batch_size - 1) // batch_size
for i, s in enumerate(range(0, len(data), batch_size)):
batch = data[s : s + batch_size]
# Set the first token of all samples to the BOS token
if tokenizer.bos_token_id:
batch[:, 0] = tokenizer.bos_token_id
# compute cross entropy only with the second half of the sequence to match llama.cpp behavior
# ref: https://github.com/ggml-org/llama.cpp/blob/696fccf354e9dbdfbce135bc40b44c9dcc64dda9/tools/perplexity/perplexity.cpp#L527-L541
#
#start = 0
start = batch.shape[1] // 2
# Forward pass: get logits for all tokens except last
logits = model(batch[:, :-1]).astype(mx.float32)
# Calculate crossentropy loss with next tokens
#losses = nn.losses.cross_entropy(logits, batch[:, 1:], reduction="none")
losses = nn.losses.cross_entropy(logits[:, start:, :], batch[:, start+1:], reduction="none")
mx.eval(losses)
# Store individual token losses
all_losses.append(losses.flatten())
# Progress indicator
if (i + 1) % 1 == 0 or (i + 1) == num_batches:
print(f" Processed {i + 1}/{num_batches} batches...", end="\r")
print() # New line after progress
# Concatenate all losses into a single array
all_losses = mx.concatenate(all_losses)
# Calculate mean loss and perplexity
mean_loss = all_losses.mean().item()
ppl = math.exp(mean_loss)
# Calculate standard error
std_dev = mx.sqrt(mx.var(all_losses, ddof=1)).item()
num_tokens = all_losses.size
standard_error = std_dev / math.sqrt(num_tokens)
# Delta approximation for standard error of perplexity
standard_error_ppl = ppl * standard_error
return ppl, standard_error_ppl
def main():
parser = argparse.ArgumentParser(description="Evaluate perplexity of MLX models")
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to model or Hugging Face model ID",
)
parser.add_argument(
"--batch-size", type=int, default=8, help="Batch size for evaluation"
)
parser.add_argument(
"--sequence-length",
type=int,
default=512,
help="Sequence length for evaluation",
)
parser.add_argument(
"--num-samples",
type=int,
default=256,
help="Number of samples to use (-1 for all available)",
)
parser.add_argument(
"--data-path",
type=str,
default="allenai/tulu-3-sft-mixture",
help=(
"A Hugging Face dataset compatible with mlxlm. "
"Ignored if --raw-path is provided."
),
)
parser.add_argument(
"--raw-path",
type=str,
default=None,
help=(
"Path to a local rawtext file to use for evaluation. "
"If specified, the script skips loading a HF dataset."
),
)
parser.add_argument(
"--seed", type=int, default=123, help="Random seed for data sampling"
)
args = parser.parse_args()
# Set random seed (used for HF dataset shuffling)
mx.random.seed(args.seed)
# Load model
print(f"Loading model from {args.model}...")
model, tokenizer = load(args.model)
# Count parameters
total_params = get_total_parameters(model)
print(f"Model loaded: {total_params/1e6:.1f}M parameters")
# ----------------------------------------------------------------------
# Load evaluation data (raw file vs. HF dataset)
# ----------------------------------------------------------------------
print("\nLoading dataset...")
print(f" Sequence length: {args.sequence_length}")
if args.raw_path:
print(f" Using raw text file: {args.raw_path}")
data = load_raw_data(
tokenizer,
raw_path=args.raw_path,
num_samples=args.num_samples,
sequence_length=args.sequence_length,
)
else:
print(f" Using HF dataset: {args.data_path}")
data = load_data(
tokenizer,
data_path=args.data_path,
num_samples=args.num_samples,
sequence_length=args.sequence_length,
)
print(f" Loaded {len(data)} samples")
# ----------------------------------------------------------------------
# Evaluate perplexity
# ----------------------------------------------------------------------
print(f"\nEvaluating perplexity with batch size {args.batch_size}...")
start_time = time.time()
ppl, se = eval_ppl(model, tokenizer, data, batch_size=args.batch_size)
eval_time = time.time() - start_time
tokens_evaluated = data.shape[0] * (data.shape[1] - 1) # B * (L - 1)
# Print results
print("\n" + "=" * 60)
print("EVALUATION RESULTS")
print("=" * 60)
print(f"Model: {args.model}")
print(f"Perplexity: {ppl:.3f} ± {se:.3f}")
print(f"Evaluation time: {eval_time:.2f} seconds")
print(f"Peak memory: {mx.get_peak_memory() / 1e9:.2f} GB")
print(f"Tokens per second: {tokens_evaluated / eval_time:.0f}")
# Additional statistics
print(f"\nDataset statistics:")
print(f" Total samples: {len(data)}")
print(f" Total tokens: {data.size}")
# ----------------------------------------------------------------------
# Done
# ----------------------------------------------------------------------
if __name__ == "__main__":
main()