convert : parse safetensors directly

This commit is contained in:
Francis Couture-Harpin
2025-08-29 11:49:09 -04:00
parent 0d5cfed596
commit ca8f736fe4
2 changed files with 93 additions and 9 deletions

View File

@@ -195,8 +195,7 @@ class ModelBase:
logger.info(f"gguf: indexing model part '{part_name}'")
ctx: ContextManager[Any]
if is_safetensors:
from safetensors import safe_open
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
else:
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
@@ -205,18 +204,18 @@ class ModelBase:
for name in model_part.keys():
if is_safetensors:
data: gguf.utility.LocalTensor = model_part[name]
if self.lazy:
data = model_part.get_slice(name)
data_gen = lambda data=data: LazyTorchTensor.from_safetensors_slice(data) # noqa: E731
data_gen = lambda data=data: LazyTorchTensor.from_safetensors_meta(data) # noqa: E731
else:
data = model_part.get_tensor(name)
data_gen = lambda data=data: data # noqa: E731
dtype = LazyTorchTensor._dtype_str_map[data.dtype]
data_gen = lambda data=data: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
else:
data = model_part[name]
data_torch: Tensor = model_part[name]
if self.lazy:
data_gen = lambda data=data: LazyTorchTensor.from_eager(data) # noqa: E731
data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
else:
data_gen = lambda data=data: data # noqa: E731
data_gen = lambda data=data_torch: data # noqa: E731
tensors[name] = data_gen
# verify tensor name presence and identify potentially missing files
@@ -8860,6 +8859,16 @@ class LazyTorchTensor(gguf.LazyBase):
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
return cast(torch.Tensor, lazy)
@classmethod
def from_safetensors_meta(cls, t: gguf.utility.LocalTensor) -> Tensor:
def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
dtype = cls._dtype_str_map[tensor.dtype]
return torch.from_numpy(tensor.mmap_bytes()).view(dtype).reshape(tensor.shape)
dtype = cls._dtype_str_map[t.dtype]
shape = t.shape
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
return cast(torch.Tensor, lazy)
@classmethod
def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
dtype = cls._dtype_str_map[remote_tensor.dtype]

View File

@@ -1,10 +1,12 @@
from __future__ import annotations
from dataclasses import dataclass
from pathlib import Path
from typing import Literal
import os
import json
import numpy as np
def fill_templated_filename(filename: str, output_type: str | None) -> str:
@@ -266,3 +268,76 @@ class SafetensorRemote:
if os.environ.get("HF_TOKEN"):
headers["Authorization"] = f"Bearer {os.environ['HF_TOKEN']}"
return headers
@dataclass
class LocalTensorRange:
filename: Path
offset: int
size: int
@dataclass
class LocalTensor:
dtype: str
shape: tuple[int, ...]
data_range: LocalTensorRange
def mmap_bytes(self) -> np.ndarray:
return np.memmap(self.data_range.filename, offset=self.data_range.offset, shape=self.data_range.size)
class SafetensorsLocal:
"""
Read a safetensors file from the local filesystem.
Custom parsing gives a bit more control over the memory usage.
The official safetensors library doesn't expose file ranges.
"""
ALIGNMENT = 8 # bytes
tensors: dict[str, LocalTensor]
def __init__(self, filename: Path):
with open(filename, "rb") as f:
metadata_length = int.from_bytes(f.read(8), byteorder='little')
file_size = os.stat(filename).st_size
if file_size < 8 + metadata_length:
raise ValueError(f"Could not read complete metadata. Need {8 + metadata_length} bytes, got {file_size}")
metadata_str = f.read(metadata_length).decode('utf-8')
try:
metadata = json.loads(metadata_str)
except json.JSONDecodeError as e:
raise ValueError(f"Failed to parse safetensors metadata as JSON: {e}")
data_start_offset = f.tell()
alignment = self.ALIGNMENT
if data_start_offset % alignment != 0:
data_start_offset += alignment - (data_start_offset % alignment)
tensors: dict[str, LocalTensor] = {}
for name, meta in metadata.items():
if name == "__metadata__":
# ignore metadata, it's not a tensor
continue
tensors[name] = LocalTensor(
dtype=meta["dtype"],
shape=tuple(meta["shape"]),
data_range=LocalTensorRange(
filename,
data_start_offset + meta["data_offsets"][0],
meta["data_offsets"][1] - meta["data_offsets"][0],
),
)
# order by offset
self.tensors = dict(sorted(tensors.items(), key=lambda t: t[1].data_range.offset))
def __enter__(self, *args, **kwargs):
del args, kwargs # unused
return self.tensors
def __exit__(self, *args, **kwargs):
del args, kwargs # unused