mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-08 10:07:01 +00:00
enc-dec : compose wip
ggml-ci
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -30,8 +30,7 @@ public:
|
||||
|
||||
virtual void synchronize() = 0;
|
||||
|
||||
virtual const llama_model & get_model() const = 0;
|
||||
virtual const llama_cparams & get_cparams() const = 0;
|
||||
virtual const llama_model & get_model() const = 0;
|
||||
|
||||
virtual uint32_t n_ctx() const = 0;
|
||||
virtual uint32_t n_ctx_per_seq() const = 0;
|
||||
@@ -42,8 +41,6 @@ public:
|
||||
virtual uint32_t n_threads() const = 0;
|
||||
virtual uint32_t n_threads_batch() const = 0;
|
||||
|
||||
virtual int32_t max_nodes() const = 0;
|
||||
|
||||
// self-attention:
|
||||
|
||||
// if the context does not have a KV cache, return nullptr
|
||||
@@ -62,8 +59,6 @@ public:
|
||||
virtual float * get_embeddings_ith(int32_t i) = 0;
|
||||
virtual float * get_embeddings_seq(llama_seq_id seq_id) = 0;
|
||||
|
||||
virtual int64_t n_pos_per_token() const = 0; // vision
|
||||
|
||||
virtual void attach_threadpool(
|
||||
ggml_threadpool_t threadpool,
|
||||
ggml_threadpool_t threadpool_batch) = 0;
|
||||
@@ -190,8 +185,7 @@ protected:
|
||||
virtual void reserve();
|
||||
|
||||
public:
|
||||
const llama_model & get_model() const override;
|
||||
const llama_cparams & get_cparams() const override;
|
||||
const llama_model & get_model() const override;
|
||||
|
||||
uint32_t n_ctx() const override;
|
||||
uint32_t n_ctx_per_seq() const override;
|
||||
@@ -202,15 +196,9 @@ public:
|
||||
uint32_t n_threads() const override;
|
||||
uint32_t n_threads_batch() const override;
|
||||
|
||||
int32_t max_nodes() const override;
|
||||
|
||||
// self-attention:
|
||||
|
||||
// if the context does not have a KV cache, return nullptr
|
||||
llama_kv_cache * get_kv_self() override;
|
||||
const llama_kv_cache * get_kv_self() const override;
|
||||
|
||||
// if the context does not have a KV cache, noop
|
||||
void kv_self_update() override;
|
||||
|
||||
enum llama_pooling_type pooling_type() const override;
|
||||
@@ -222,8 +210,6 @@ public:
|
||||
float * get_embeddings_ith(int32_t i) override;
|
||||
float * get_embeddings_seq(llama_seq_id seq_id) override;
|
||||
|
||||
int64_t n_pos_per_token() const override; // vision
|
||||
|
||||
void attach_threadpool(
|
||||
ggml_threadpool_t threadpool,
|
||||
ggml_threadpool_t threadpool_batch) override;
|
||||
@@ -261,6 +247,8 @@ protected:
|
||||
// input
|
||||
//
|
||||
|
||||
virtual int64_t n_pos_per_token() const; // vision
|
||||
|
||||
// when the compute graph is built, it creates the input tensors that it needs
|
||||
// the contents of the input tensors are set by the input_set() function
|
||||
|
||||
@@ -299,6 +287,8 @@ protected:
|
||||
// graph
|
||||
//
|
||||
|
||||
virtual int32_t graph_max_nodes() const;
|
||||
|
||||
// zero-out inputs and create the ctx_compute for the compute graph
|
||||
virtual ggml_cgraph * graph_init();
|
||||
|
||||
@@ -477,11 +467,11 @@ public:
|
||||
size_t n_token_count) override;
|
||||
|
||||
protected:
|
||||
virtual size_t state_get_data(llama_io_write_i & io);
|
||||
virtual size_t state_set_data(llama_io_read_i & io);
|
||||
virtual size_t state_write_data(llama_io_write_i & io);
|
||||
virtual size_t state_read_data (llama_io_read_i & io);
|
||||
|
||||
virtual size_t state_seq_get_data(llama_io_write_i & io, llama_seq_id seq_id);
|
||||
virtual size_t state_seq_set_data(llama_io_read_i & io, llama_seq_id seq_id);
|
||||
virtual size_t state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id);
|
||||
virtual size_t state_seq_read_data (llama_io_read_i & io, llama_seq_id seq_id);
|
||||
|
||||
//
|
||||
// members
|
||||
@@ -625,39 +615,15 @@ protected:
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) override;
|
||||
|
||||
// =======================================================
|
||||
// === encoder-decoder ===
|
||||
//
|
||||
// TODO: this is temporary here, it will be moved
|
||||
//
|
||||
|
||||
// whether we are computing encoder output or decoder output
|
||||
bool is_encoding = false;
|
||||
|
||||
// output of the encoder part of the encoder-decoder models
|
||||
std::vector<float> embd_enc;
|
||||
std::vector<std::set<llama_seq_id>> seq_ids_enc;
|
||||
|
||||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_kq_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
|
||||
ggml_tensor * build_inp_embd_enc(
|
||||
ggml_context * ctx0) override;
|
||||
|
||||
ggml_tensor * build_inp_kq_mask_cross(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens) override;
|
||||
// ======================================================
|
||||
|
||||
//
|
||||
// state save/load
|
||||
//
|
||||
|
||||
size_t state_get_data(llama_io_write_i & io) override;
|
||||
size_t state_set_data(llama_io_read_i & io) override;
|
||||
size_t state_write_data(llama_io_write_i & io) override;
|
||||
size_t state_read_data (llama_io_read_i & io) override;
|
||||
|
||||
size_t state_seq_get_data(llama_io_write_i & io, llama_seq_id seq_id) override;
|
||||
size_t state_seq_set_data(llama_io_read_i & io, llama_seq_id seq_id) override;
|
||||
size_t state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) override;
|
||||
size_t state_seq_read_data (llama_io_read_i & io, llama_seq_id seq_id) override;
|
||||
|
||||
private:
|
||||
//
|
||||
@@ -767,11 +733,11 @@ protected:
|
||||
// state save/load
|
||||
//
|
||||
|
||||
size_t state_get_data(llama_io_write_i & io) override;
|
||||
size_t state_set_data(llama_io_read_i & io) override;
|
||||
size_t state_write_data(llama_io_write_i & io) override;
|
||||
size_t state_read_data (llama_io_read_i & io) override;
|
||||
|
||||
size_t state_seq_get_data(llama_io_write_i & io, llama_seq_id seq_id) override;
|
||||
size_t state_seq_set_data(llama_io_read_i & io, llama_seq_id seq_id) override;
|
||||
size_t state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) override;
|
||||
size_t state_seq_read_data (llama_io_read_i & io, llama_seq_id seq_id) override;
|
||||
|
||||
private:
|
||||
//
|
||||
@@ -782,21 +748,206 @@ private:
|
||||
llama_kv_cache_recurrent kv_self;
|
||||
};
|
||||
|
||||
// TODO: tmp - need something better
|
||||
struct llama_cross {
|
||||
int32_t n_outputs;
|
||||
float * embd_enc;
|
||||
|
||||
std::vector<std::set<llama_seq_id>> seq_ids_enc;
|
||||
};
|
||||
|
||||
class llama_context_enc : public llama_context_base {
|
||||
public:
|
||||
using llama_context_base::llama_context_base;
|
||||
|
||||
int encode(llama_batch & inp_batch) override;
|
||||
|
||||
llama_cross * cross = nullptr;
|
||||
};
|
||||
|
||||
class llama_context_enc_dec : public llama_context_enc {
|
||||
class llama_context_dec : public llama_context_kv_self {
|
||||
public:
|
||||
using llama_context_kv_self::llama_context_kv_self;
|
||||
|
||||
protected:
|
||||
void reserve() override;
|
||||
|
||||
//
|
||||
// input
|
||||
//
|
||||
|
||||
void input_set(const llama_ubatch & ubatch) override;
|
||||
|
||||
private:
|
||||
struct {
|
||||
ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]
|
||||
ggml_tensor * cross_kq_mask; // F32 [n_outputs_enc, n_batch]
|
||||
ggml_tensor * cross_kq_mask_cnv; // F32 [n_outputs_enc, n_batch]
|
||||
} inp;
|
||||
|
||||
protected:
|
||||
//
|
||||
// graph
|
||||
//
|
||||
|
||||
ggml_cgraph * graph_init() override;
|
||||
|
||||
ggml_tensor * build_inp_cross_embd(
|
||||
ggml_context * ctx0) override;
|
||||
|
||||
void build_attn_inp(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens,
|
||||
bool causal,
|
||||
bool swa) override;
|
||||
|
||||
ggml_tensor * build_attn_cross(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * q_cur,
|
||||
ggml_tensor * k_cur,
|
||||
ggml_tensor * v_cur,
|
||||
ggml_tensor * kq_b,
|
||||
float kq_scale,
|
||||
int il) override;
|
||||
|
||||
public:
|
||||
llama_cross * cross = nullptr;
|
||||
};
|
||||
|
||||
class llama_context_enc_dec : public llama_context_i {
|
||||
public:
|
||||
llama_context_enc_dec(
|
||||
const llama_model & model,
|
||||
llama_context_params params);
|
||||
|
||||
virtual ~llama_context_enc_dec();
|
||||
~llama_context_enc_dec();
|
||||
|
||||
void init() override;
|
||||
|
||||
void synchronize() override;
|
||||
|
||||
const llama_model & get_model() const override;
|
||||
|
||||
// TODO: the default implementation of these getters calls the corresponding getter of the enc or dec context
|
||||
// in the future, the public API in llama.h should allow to get references to the context that the user wants
|
||||
// this will allow to specify the desired context explicitly
|
||||
// for example:
|
||||
//
|
||||
// // this can be an enc-dec context
|
||||
// llama_context_t ctx = llama_init_from_model(...);
|
||||
//
|
||||
// ...
|
||||
//
|
||||
// llama_context_t ctx_enc = llama_get_ctx_enc(ctx);
|
||||
// llama_set_embeddings(ctx_enc, true);
|
||||
//
|
||||
// llama_context_t ctx_dec = llama_get_ctx_dec(ctx);
|
||||
// llama_set_causal_attn(ctx_dec, true);
|
||||
//
|
||||
uint32_t n_ctx() const override;
|
||||
uint32_t n_ctx_per_seq() const override;
|
||||
uint32_t n_batch() const override;
|
||||
uint32_t n_ubatch() const override;
|
||||
uint32_t n_seq_max() const override;
|
||||
|
||||
uint32_t n_threads() const override;
|
||||
uint32_t n_threads_batch() const override;
|
||||
|
||||
llama_kv_cache * get_kv_self() override;
|
||||
const llama_kv_cache * get_kv_self() const override;
|
||||
|
||||
void kv_self_update() override;
|
||||
|
||||
enum llama_pooling_type pooling_type() const override;
|
||||
|
||||
float * get_logits() override;
|
||||
float * get_logits_ith(int32_t i) override;
|
||||
|
||||
float * get_embeddings() override;
|
||||
float * get_embeddings_ith(int32_t i) override;
|
||||
float * get_embeddings_seq(llama_seq_id seq_id) override;
|
||||
|
||||
void attach_threadpool(
|
||||
ggml_threadpool_t threadpool,
|
||||
ggml_threadpool_t threadpool_batch) override;
|
||||
|
||||
void detach_threadpool() override;
|
||||
|
||||
void set_n_threads(int32_t n_threads, int32_t n_threads_batch) override;
|
||||
|
||||
void set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data) override;
|
||||
|
||||
void set_embeddings (bool value) override;
|
||||
void set_causal_attn(bool value) override;
|
||||
|
||||
void set_adapter_lora(
|
||||
llama_adapter_lora * adapter,
|
||||
float scale) override;
|
||||
|
||||
bool rm_adapter_lora(
|
||||
llama_adapter_lora * adapter) override;
|
||||
|
||||
void clear_adapter_lora() override;
|
||||
|
||||
bool apply_adapter_cvec(
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end) override;
|
||||
|
||||
int encode(llama_batch & inp_batch) override;
|
||||
int decode(llama_batch & inp_batch) override;
|
||||
|
||||
//
|
||||
// perf
|
||||
//
|
||||
|
||||
llama_perf_context_data perf_get_data() const override;
|
||||
void perf_reset() override;
|
||||
|
||||
//
|
||||
// state save/load
|
||||
//
|
||||
|
||||
size_t state_get_size() override;
|
||||
size_t state_get_data( uint8_t * dst, size_t size) override;
|
||||
size_t state_set_data(const uint8_t * src, size_t size) override;
|
||||
|
||||
size_t state_seq_get_size(llama_seq_id seq_id) override;
|
||||
size_t state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) override;
|
||||
size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) override;
|
||||
|
||||
bool state_load_file(
|
||||
const char * filepath,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out) override;
|
||||
|
||||
bool state_save_file(
|
||||
const char * filepath,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count) override;
|
||||
|
||||
size_t state_seq_load_file(
|
||||
llama_seq_id seq_id,
|
||||
const char * filepath,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out) override;
|
||||
|
||||
size_t state_seq_save_file(
|
||||
llama_seq_id seq_id,
|
||||
const char * filepath,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count) override;
|
||||
|
||||
private:
|
||||
llama_context_kv_self ctx_dec;
|
||||
std::unique_ptr<llama_context_enc> ctx_enc;
|
||||
std::unique_ptr<llama_context_dec> ctx_dec;
|
||||
|
||||
llama_cross cross;
|
||||
};
|
||||
|
||||
// For internal test use
|
||||
|
||||
@@ -26,7 +26,29 @@ ggml_tensor * llama_graph_i::build_attn(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_tensor * llama_graph_i::build_inp_embd_enc(
|
||||
ggml_tensor * llama_graph_i::build_attn_cross(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * q_cur,
|
||||
ggml_tensor * k_cur,
|
||||
ggml_tensor * v_cur,
|
||||
ggml_tensor * kq_b,
|
||||
float kq_scale,
|
||||
int il) {
|
||||
GGML_UNUSED(ctx0);
|
||||
GGML_UNUSED(gf);
|
||||
GGML_UNUSED(q_cur);
|
||||
GGML_UNUSED(k_cur);
|
||||
GGML_UNUSED(v_cur);
|
||||
GGML_UNUSED(kq_b);
|
||||
GGML_UNUSED(kq_scale);
|
||||
GGML_UNUSED(il);
|
||||
|
||||
LLAMA_LOG_ERROR("%s: not implemented\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_tensor * llama_graph_i::build_inp_cross_embd(
|
||||
ggml_context * ctx0) {
|
||||
GGML_UNUSED(ctx0);
|
||||
|
||||
@@ -34,7 +56,7 @@ ggml_tensor * llama_graph_i::build_inp_embd_enc(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_tensor * llama_graph_i::build_inp_kq_mask_cross(
|
||||
ggml_tensor * llama_graph_i::build_inp_cross_kq_mask(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens) {
|
||||
GGML_UNUSED(ctx0);
|
||||
|
||||
@@ -114,10 +114,20 @@ public:
|
||||
float kq_scale,
|
||||
int il);
|
||||
|
||||
virtual ggml_tensor * build_inp_embd_enc(
|
||||
virtual ggml_tensor * build_attn_cross(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * q_cur,
|
||||
ggml_tensor * k_cur,
|
||||
ggml_tensor * v_cur,
|
||||
ggml_tensor * kq_b,
|
||||
float kq_scale,
|
||||
int il);
|
||||
|
||||
virtual ggml_tensor * build_inp_cross_embd(
|
||||
ggml_context * ctx0);
|
||||
|
||||
virtual ggml_tensor * build_inp_kq_mask_cross(
|
||||
virtual ggml_tensor * build_inp_cross_kq_mask(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens);
|
||||
|
||||
|
||||
@@ -3964,16 +3964,16 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
// TODO: tmp
|
||||
struct ggml_tensor * build_inp_embd_enc() {
|
||||
ggml_tensor * cur = lgf->build_inp_embd_enc(ctx0);
|
||||
struct ggml_tensor * build_inp_cross_embd() {
|
||||
ggml_tensor * cur = lgf->build_inp_cross_embd(ctx0);
|
||||
cb(cur, "embd_enc", -1);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
// TODO: tmp
|
||||
struct ggml_tensor * build_inp_kq_mask_cross() {
|
||||
ggml_tensor * cur = lgf->build_inp_kq_mask_cross(ctx0, n_tokens);
|
||||
struct ggml_tensor * build_inp_cross_kq_mask() {
|
||||
ggml_tensor * cur = lgf->build_inp_cross_kq_mask(ctx0, n_tokens);
|
||||
cb(cur, "KQ_mask_cross", -1);
|
||||
|
||||
return cur;
|
||||
@@ -4294,6 +4294,42 @@ struct llm_build_context {
|
||||
return cur;
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_attn_cross(
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * wo,
|
||||
struct ggml_tensor * wo_b,
|
||||
struct ggml_tensor * q_cur,
|
||||
struct ggml_tensor * k_cur,
|
||||
struct ggml_tensor * v_cur,
|
||||
int32_t n_tokens, // TODO: remove
|
||||
float kq_scale,
|
||||
int il) {
|
||||
GGML_UNUSED(n_tokens);
|
||||
|
||||
// these nodes are added to the graph together so that they are not reordered
|
||||
// by doing so, the number of splits in the graph is reduced
|
||||
ggml_build_forward_expand(gf, q_cur);
|
||||
ggml_build_forward_expand(gf, k_cur);
|
||||
ggml_build_forward_expand(gf, v_cur);
|
||||
|
||||
ggml_tensor * cur = lgf->build_attn_cross(ctx0, gf, q_cur, k_cur, v_cur, nullptr, kq_scale, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
|
||||
if (wo) {
|
||||
cur = lgf->build_lora_mm(ctx0, wo, cur);
|
||||
}
|
||||
|
||||
if (wo_b) {
|
||||
//cb(cur, "kqv_wo", il);
|
||||
}
|
||||
|
||||
if (wo_b) {
|
||||
cur = ggml_add(ctx0, cur, wo_b);
|
||||
}
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_attn_with_kq_b(
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * wo,
|
||||
@@ -9762,209 +9798,173 @@ struct llm_build_context {
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
//void build_t5_dec(ggml_cgraph * gf) {
|
||||
// const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
// const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
void build_t5_dec(ggml_cgraph * gf) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
//const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
// GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
// struct ggml_tensor * cur;
|
||||
// struct ggml_tensor * inpL;
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
// inpL = build_inp_embd(model.tok_embd);
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// GGML_ASSERT(!lctx.is_encoding);
|
||||
// GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
|
||||
struct ggml_tensor * embd_enc = build_inp_cross_embd();
|
||||
struct ggml_tensor * pos_bucket_dec = build_pos_bucket();
|
||||
|
||||
// struct ggml_tensor * embd_enc = build_inp_embd_enc();
|
||||
// struct ggml_tensor * pos_bucket_dec = build_pos_bucket(true);
|
||||
const int64_t n_outputs_enc = embd_enc->ne[1];
|
||||
|
||||
// struct ggml_tensor * KQ_mask_dec = build_inp_kq_mask();
|
||||
// struct ggml_tensor * KQ_mask_cross = build_inp_kq_mask_cross();
|
||||
lgf->build_attn_inp(ctx0, n_tokens, true, false);
|
||||
|
||||
// for (int il = 0; il < n_layer; ++il) {
|
||||
// struct ggml_tensor * inpSA = inpL;
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// // norm
|
||||
// cur = build_norm(inpL,
|
||||
// model.layers[il].attn_norm, NULL,
|
||||
// LLM_NORM_RMS, il);
|
||||
// cb(cur, "attn_norm", il);
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// // self-attention
|
||||
// {
|
||||
// struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
// cb(Qcur, "Qcur", il);
|
||||
// self-attention
|
||||
{
|
||||
struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
// struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
// cb(Kcur, "Kcur", il);
|
||||
struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
// struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
// cb(Vcur, "Vcur", il);
|
||||
struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
// build_kv_store(gf, Kcur, Vcur, il);
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
// struct ggml_tensor * k =
|
||||
// ggml_view_3d(ctx0, kv_self.k_l[il],
|
||||
// n_embd_head_k, n_kv, n_head_kv,
|
||||
// ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||||
// ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
|
||||
// 0);
|
||||
// cb(k, "k", il);
|
||||
struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
|
||||
struct ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
|
||||
|
||||
// struct ggml_tensor * v =
|
||||
// ggml_view_3d(ctx0, kv_self.v_l[il],
|
||||
// n_kv, n_embd_head_v, n_head_kv,
|
||||
// ggml_element_size(kv_self.v_l[il])*n_ctx,
|
||||
// ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
|
||||
// 0);
|
||||
// cb(v, "v", il);
|
||||
cur = build_attn_with_kq_b(gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, kq_b, n_tokens, 1.0f, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
// Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
cur = ggml_add(ctx0, cur, inpSA);
|
||||
cb(cur, "cross_inp", il);
|
||||
|
||||
// struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||
struct ggml_tensor * inpCA = cur;
|
||||
|
||||
// struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
|
||||
// cb(kq, "kq", il);
|
||||
// norm
|
||||
cur = build_norm(cur,
|
||||
model.layers[il].attn_norm_cross, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm_cross", il);
|
||||
|
||||
// struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
|
||||
// struct ggml_tensor * pos_bias = build_pos_bias(pos_bucket_dec, attn_rel_b);
|
||||
// struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
|
||||
// cb(kq_b, "kq_b", il);
|
||||
// cross-attention
|
||||
{
|
||||
struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
// kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
|
||||
// cb(kq, "kq_soft_max_ext", il);
|
||||
struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
// struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
|
||||
// cb(kqv, "kqv", il);
|
||||
struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
// struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||||
// cb(kqv_merged, "kqv_merged", il);
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
|
||||
|
||||
// cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
||||
// cb(cur, "kqv_merged_cont", il);
|
||||
cur = build_attn_cross(gf,
|
||||
model.layers[il].wo_cross, nullptr,
|
||||
Qcur, Kcur, Vcur, n_tokens, 1.0f, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
|
||||
// ggml_build_forward_expand(gf, cur);
|
||||
//struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||
//struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||||
|
||||
// cur = build_lora_mm(model.layers[il].wo, cur);
|
||||
// cb(cur, "kqv_out", il);
|
||||
// }
|
||||
//struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
|
||||
//cb(kq, "kq", il);
|
||||
|
||||
// cur = ggml_add(ctx0, cur, inpSA);
|
||||
// cb(cur, "cross_inp", il);
|
||||
//kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
|
||||
//cb(kq, "kq_soft_max_ext", il);
|
||||
|
||||
// struct ggml_tensor * inpCA = cur;
|
||||
//struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
|
||||
//cb(v, "v", il);
|
||||
|
||||
// // norm
|
||||
// cur = build_norm(cur,
|
||||
// model.layers[il].attn_norm_cross, NULL,
|
||||
// LLM_NORM_RMS, il);
|
||||
// cb(cur, "attn_norm_cross", il);
|
||||
//struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
|
||||
//cb(kqv, "kqv", il);
|
||||
|
||||
// // cross-attention
|
||||
// {
|
||||
// struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
|
||||
// cb(Qcur, "Qcur", il);
|
||||
//struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||||
//cb(kqv_merged, "kqv_merged", il);
|
||||
|
||||
// struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
|
||||
// cb(Kcur, "Kcur", il);
|
||||
//cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
||||
//cb(cur, "kqv_merged_cont", il);
|
||||
|
||||
// struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
|
||||
// cb(Vcur, "Vcur", il);
|
||||
//ggml_build_forward_expand(gf, cur);
|
||||
|
||||
// Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
// Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
|
||||
//cur = build_lora_mm(model.layers[il].wo_cross, cur);
|
||||
//cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
// struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||
// struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
|
||||
}
|
||||
|
||||
// struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
|
||||
// cb(kq, "kq", il);
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
|
||||
// cb(kq, "kq_soft_max_ext", il);
|
||||
// feed-forward network
|
||||
{
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
// struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
|
||||
// cb(v, "v", il);
|
||||
// T5 uses relu, flan-T5 uses gelu-gated
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
|
||||
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
|
||||
il);
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
|
||||
// struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
|
||||
// cb(kqv, "kqv", il);
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
// struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||||
// cb(kqv_merged, "kqv_merged", il);
|
||||
cur = lgf->build_cvec(ctx0, cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
||||
// cb(cur, "kqv_merged_cont", il);
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
// ggml_build_forward_expand(gf, cur);
|
||||
cur = inpL;
|
||||
cb(cur, "result_embd", -1);
|
||||
|
||||
// cur = build_lora_mm(model.layers[il].wo_cross, cur);
|
||||
// cb(cur, "kqv_out", il);
|
||||
// }
|
||||
cur = build_norm(cur,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
// if (il == n_layer - 1) {
|
||||
// // skip computing output for unused tokens
|
||||
// struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
// cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
// inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
// inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
|
||||
// }
|
||||
cb(cur, "result_norm", -1);
|
||||
res.t_embd = cur;
|
||||
|
||||
// struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
|
||||
// cb(ffn_inp, "ffn_inp", il);
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
// // feed-forward network
|
||||
// {
|
||||
// cur = build_norm(ffn_inp,
|
||||
// model.layers[il].ffn_norm, NULL,
|
||||
// LLM_NORM_RMS, il);
|
||||
// cb(cur, "ffn_norm", il);
|
||||
cb(cur, "result_output", -1);
|
||||
res.t_logits = cur;
|
||||
|
||||
// // T5 uses relu, flan-T5 uses gelu-gated
|
||||
// cur = build_ffn(cur,
|
||||
// model.layers[il].ffn_up, NULL, NULL,
|
||||
// model.layers[il].ffn_gate, NULL, NULL,
|
||||
// model.layers[il].ffn_down, NULL, NULL,
|
||||
// NULL,
|
||||
// model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
|
||||
// model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
|
||||
// il);
|
||||
// cb(cur, "ffn_out", il);
|
||||
// }
|
||||
|
||||
// cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
// cb(cur, "ffn_out", il);
|
||||
|
||||
// ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
||||
// if (layer_dir != nullptr) {
|
||||
// cur = ggml_add(ctx0, cur, layer_dir);
|
||||
// }
|
||||
// cb(cur, "l_out", il);
|
||||
|
||||
// // input for next layer
|
||||
// inpL = cur;
|
||||
// }
|
||||
|
||||
// cur = inpL;
|
||||
// cb(cur, "result_embd", -1);
|
||||
|
||||
// cur = build_norm(cur,
|
||||
// model.output_norm, NULL,
|
||||
// LLM_NORM_RMS, -1);
|
||||
|
||||
// cb(cur, "result_norm", -1);
|
||||
// res.t_embd = cur;
|
||||
|
||||
// // lm_head
|
||||
// cur = build_lora_mm(model.output, cur);
|
||||
|
||||
// cb(cur, "result_output", -1);
|
||||
// res.t_logits = cur;
|
||||
|
||||
// ggml_build_forward_expand(gf, cur);
|
||||
|
||||
// return gf;
|
||||
//}
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
void build_jais(ggml_cgraph * gf) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
@@ -11119,7 +11119,7 @@ llama_graph_result llama_model::build_graph(
|
||||
llm.build_t5_enc(gf);
|
||||
break;
|
||||
case LLAMA_GRAPH_TYPE_DECODER:
|
||||
//llm.build_t5_dec(gf);
|
||||
llm.build_t5_dec(gf);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("invalid graph type");
|
||||
|
||||
Reference in New Issue
Block a user