mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : remove shards weight file support (#2000)
* Remove multiple shards * Remove multiple file loaders * Remove llama_load_tensor_shard class * Simplify load logic * Remove dead code guess_n_parts function * Remove vocab_only from constructor of llama_model_loader * Remove alignment_prevents_mmap which is not more needed. * Remove useless check
This commit is contained in:
		
							
								
								
									
										233
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										233
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -364,96 +364,14 @@ static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml | ||||
|     return size / ggml_blck_size(type); | ||||
| } | ||||
|  | ||||
| struct llama_load_tensor_shard { | ||||
|     std::vector<uint32_t> ne; | ||||
|     size_t size; | ||||
|     enum ggml_type type; | ||||
|     size_t file_idx; | ||||
|     size_t file_off; | ||||
|  | ||||
|     void calc_size() { | ||||
|         size = llama_calc_tensor_size(ne, type); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| enum llama_split_type { | ||||
|     SPLIT_NONE, | ||||
|     SPLIT_BY_COLUMNS, | ||||
|     SPLIT_BY_ROWS | ||||
| }; | ||||
|  | ||||
| struct llama_load_tensor { | ||||
|     std::vector<llama_load_tensor_shard> shards; | ||||
|  | ||||
|     std::string name; | ||||
|     enum ggml_type type = GGML_TYPE_F32; | ||||
|     llama_split_type split_type = SPLIT_NONE; | ||||
|     std::vector<uint32_t> ne; | ||||
|     size_t file_off; | ||||
|     size_t size; | ||||
|     struct ggml_tensor * ggml_tensor = NULL; | ||||
|     uint8_t * data; | ||||
|  | ||||
|     llama_load_tensor(const std::string & name) : name(name) {} | ||||
|  | ||||
|     void calc_all() { | ||||
|         calc_type(); | ||||
|         calc_split_type(); | ||||
|         calc_ne(); | ||||
|         calc_size(); | ||||
|     } | ||||
|  | ||||
|     void calc_type() { | ||||
|         const auto & first_shard = shards.at(0); | ||||
|         for (const auto & shard : shards) { | ||||
|             if (shard.type != first_shard.type) { | ||||
|                 throw std::runtime_error(format("inconsistent tensor shard type in '%s'", name.c_str())); | ||||
|             } | ||||
|         } | ||||
|         type = first_shard.type; | ||||
|     } | ||||
|  | ||||
|     void calc_split_type() { | ||||
|         if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file | ||||
|             shards.size() == 1) { // only one file? | ||||
|             split_type = SPLIT_NONE; | ||||
|         } else if (name.find("tok_embeddings.") == 0 || | ||||
|             name.find(".attention.wo.weight") != std::string::npos || | ||||
|             name.find(".feed_forward.w2.weight") != std::string::npos) { | ||||
|             split_type = SPLIT_BY_COLUMNS; | ||||
|         } else { | ||||
|             split_type = SPLIT_BY_ROWS; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     void calc_ne() { | ||||
|         const auto & first_shard = shards.at(0); | ||||
|         for (const auto & shard : shards) { | ||||
|             if (shard.ne != first_shard.ne) { | ||||
|                 throw std::runtime_error(format("inconsistent tensor shard shape in '%s': first was %s, other was %s", | ||||
|                              name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str())); | ||||
|             } | ||||
|         } | ||||
|         ne = first_shard.ne; | ||||
|         LLAMA_ASSERT(shards.size() <= UINT32_MAX); | ||||
|         uint32_t n_shards = (uint32_t) shards.size(); | ||||
|         switch (split_type) { | ||||
|             case SPLIT_NONE: | ||||
|                 ne = first_shard.ne; | ||||
|                 break; | ||||
|             case SPLIT_BY_COLUMNS: | ||||
|                 ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards), | ||||
|                       first_shard.ne[1]}; | ||||
|                 break; | ||||
|             case SPLIT_BY_ROWS: | ||||
|                 ne = {first_shard.ne[0], | ||||
|                       checked_mul<uint32_t>(first_shard.ne[1], n_shards)}; | ||||
|                 break; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     void calc_size() { | ||||
|         size = llama_calc_tensor_size(ne, type); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| struct llama_load_tensors_map { | ||||
| @@ -476,13 +394,13 @@ struct llama_file_loader { | ||||
|     llama_hparams hparams; | ||||
|     llama_vocab vocab; | ||||
|  | ||||
|     llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map) | ||||
|     llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map) | ||||
|         : file(fname, "rb") { | ||||
|         fprintf(stderr, "llama.cpp: loading model from %s\n", fname); | ||||
|         read_magic(); | ||||
|         read_hparams(); | ||||
|         read_vocab(); | ||||
|         read_tensor_metadata(file_idx, tensors_map); | ||||
|         read_tensor_metadata(tensors_map); | ||||
|     } | ||||
|     void read_magic() { | ||||
|         uint32_t magic = file.read_u32(); | ||||
| @@ -539,19 +457,19 @@ struct llama_file_loader { | ||||
|             tok_score.score = score; | ||||
|         } | ||||
|     } | ||||
|     void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) { | ||||
|     void read_tensor_metadata(llama_load_tensors_map & tensors_map) { | ||||
|         while (file.tell() < file.size) { | ||||
|             llama_load_tensor_shard shard; | ||||
|             llama_load_tensor tensor; | ||||
|             uint32_t n_dims = file.read_u32(); | ||||
|             uint32_t name_len = file.read_u32(); | ||||
|             shard.type = (enum ggml_type) file.read_u32(); | ||||
|             shard.ne.resize(n_dims); | ||||
|             file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims); | ||||
|             tensor.type = (enum ggml_type) file.read_u32(); | ||||
|             tensor.ne.resize(n_dims); | ||||
|             file.read_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * n_dims); | ||||
|             std::string name = file.read_string(name_len); | ||||
|             if (n_dims < 1 || n_dims > 2) { | ||||
|                 throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims)); | ||||
|             } | ||||
|             switch (shard.type) { | ||||
|             switch (tensor.type) { | ||||
|                 case GGML_TYPE_F32: | ||||
|                 case GGML_TYPE_F16: | ||||
|                 case GGML_TYPE_Q4_0: | ||||
| @@ -566,30 +484,20 @@ struct llama_file_loader { | ||||
|                 case GGML_TYPE_Q6_K: | ||||
|                     break; | ||||
|                 default: { | ||||
|                     throw std::runtime_error(format("unrecognized tensor type %u\n", shard.type)); | ||||
|                     throw std::runtime_error(format("unrecognized tensor type %u\n", tensor.type)); | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) { | ||||
|                 // skip to the next multiple of 32 bytes | ||||
|                 file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR); | ||||
|             } | ||||
|             shard.file_idx = file_idx; | ||||
|             shard.file_off = file.tell(); | ||||
|             // skip to the next multiple of 32 bytes | ||||
|             file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR); | ||||
|  | ||||
|             shard.calc_size(); | ||||
|             file.seek(shard.size, SEEK_CUR); | ||||
|             tensor.file_off = file.tell(); | ||||
|             tensor.name = name; | ||||
|             tensor.size = llama_calc_tensor_size(tensor.ne, tensor.type); | ||||
|             file.seek(tensor.size, SEEK_CUR); | ||||
|  | ||||
|             auto it = tensors_map.name_to_idx.find(name); | ||||
|             size_t idx; | ||||
|             if (it != tensors_map.name_to_idx.end()) { | ||||
|                 idx = it->second; | ||||
|             } else { | ||||
|                 tensors_map.tensors.emplace_back(name); | ||||
|                 idx = tensors_map.tensors.size() - 1; | ||||
|                 tensors_map.name_to_idx.emplace(name, idx); | ||||
|             } | ||||
|             tensors_map.tensors.at(idx).shards.push_back(shard); | ||||
|             tensors_map.tensors.push_back(tensor); | ||||
|             tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1; | ||||
|         } | ||||
|     } | ||||
| }; | ||||
| @@ -659,56 +567,19 @@ struct llama_file_saver { | ||||
| }; | ||||
|  | ||||
| struct llama_model_loader { | ||||
|     std::vector<std::unique_ptr<llama_file_loader>> file_loaders; | ||||
|     std::unique_ptr<llama_file_loader> file_loader; | ||||
|     llama_load_tensors_map tensors_map; | ||||
|     bool use_mmap; | ||||
|     size_t num_ggml_tensors_created = 0; | ||||
|     struct ggml_context * ggml_ctx = NULL; | ||||
|     std::unique_ptr<llama_mmap> mapping; | ||||
|  | ||||
|     llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) { | ||||
|         auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map); | ||||
|         file_loaders.emplace_back(first_file); | ||||
|         uint32_t n_parts = vocab_only ? 1 : guess_n_parts(); | ||||
|         for (uint32_t i = 1; i < n_parts; i++) { | ||||
|             std::string fname = fname_base + "." + std::to_string(i); | ||||
|             auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map); | ||||
|             file_loaders.emplace_back(ith_file); | ||||
|             if (ith_file->hparams != first_file->hparams) { | ||||
|                 throw std::runtime_error(format("llama.cpp: hparams inconsistent between files")); | ||||
|             } | ||||
|         } | ||||
|     llama_model_loader(const std::string & fname_base, bool use_mmap) { | ||||
|         file_loader = std::unique_ptr<llama_file_loader>(new llama_file_loader(fname_base.c_str(), tensors_map)); | ||||
|         if (!llama_mmap::SUPPORTED) { | ||||
|             use_mmap = false; | ||||
|         } | ||||
|         if (use_mmap && alignment_prevents_mmap()) { | ||||
|             fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n"); | ||||
|             use_mmap = false; | ||||
|         } | ||||
|         this->use_mmap = use_mmap; | ||||
|         for (llama_load_tensor & lt : tensors_map.tensors) { | ||||
|             lt.calc_all(); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     bool alignment_prevents_mmap() { | ||||
|         for (const llama_load_tensor & lt : tensors_map.tensors) { | ||||
|             for (const llama_load_tensor_shard & shard : lt.shards) { | ||||
|                 if (shard.file_off & 3) { | ||||
|                     return true; | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|         return false; | ||||
|     } | ||||
|  | ||||
|     uint32_t guess_n_parts() const { | ||||
|         auto it = tensors_map.name_to_idx.find("tok_embeddings.weight"); | ||||
|         if (it == tensors_map.name_to_idx.end()) { | ||||
|             throw std::runtime_error(std::string("missing tok_embeddings.weight")); | ||||
|         } | ||||
|         const llama_load_tensor & lt = tensors_map.tensors.at(it->second); | ||||
|         return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0); | ||||
|     } | ||||
|  | ||||
|     void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const { | ||||
| @@ -774,7 +645,7 @@ struct llama_model_loader { | ||||
|         } | ||||
|  | ||||
|         if (use_mmap) { | ||||
|             mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size, ggml_is_numa())); | ||||
|             mapping.reset(new llama_mmap(&file_loader->file, prefetch_size, ggml_is_numa())); | ||||
|             if (lmlock) { | ||||
|                 lmlock->init(mapping->addr); | ||||
|             } | ||||
| @@ -830,45 +701,13 @@ struct llama_model_loader { | ||||
|  | ||||
|     void load_data_for(llama_load_tensor & lt) { | ||||
|         if (use_mmap) { | ||||
|             LLAMA_ASSERT(lt.shards.size() == 1); | ||||
|             lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off; | ||||
|         } else if (lt.split_type == SPLIT_NONE) { | ||||
|             llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file; | ||||
|             file.seek(lt.shards.at(0).file_off, SEEK_SET); | ||||
|             lt.data = (uint8_t *) mapping->addr + lt.file_off; | ||||
|         } else { | ||||
|             llama_file & file = file_loader->file; | ||||
|             file.seek(lt.file_off, SEEK_SET); | ||||
|             file.read_raw(lt.data, lt.size); | ||||
|         } else if (lt.split_type == SPLIT_BY_ROWS) { | ||||
|             size_t offset = 0; | ||||
|             for (llama_load_tensor_shard & shard : lt.shards) { | ||||
|                 llama_file & file = file_loaders.at(shard.file_idx)->file; | ||||
|                 file.seek(shard.file_off, SEEK_SET); | ||||
|                 file.read_raw(lt.data + offset, shard.size); | ||||
|                 offset += shard.size; | ||||
|             } | ||||
|             LLAMA_ASSERT(offset == lt.size); | ||||
|         } else if (lt.split_type == SPLIT_BY_COLUMNS) { | ||||
|             // Let's load the data into temporary buffers to ensure the OS performs large loads. | ||||
|             std::vector<llama_buffer> tmp_bufs(lt.shards.size()); | ||||
|             for (size_t i = 0; i < lt.shards.size(); i++) { | ||||
|                 llama_load_tensor_shard & shard = lt.shards.at(i); | ||||
|                 llama_file & file = file_loaders.at(shard.file_idx)->file; | ||||
|                 file.seek(shard.file_off, SEEK_SET); | ||||
|                 tmp_bufs.at(i).resize(shard.size); | ||||
|                 file.read_raw(tmp_bufs.at(i).addr, shard.size); | ||||
|             } | ||||
|             // Then reshape. | ||||
|             size_t num_rows = lt.ne.at(1); | ||||
|             size_t per_shard_row_size = lt.shards.at(0).size / num_rows; | ||||
|             size_t out_offset = 0; | ||||
|             for (size_t row = 0; row < num_rows; row++) { | ||||
|                 for (llama_buffer & tmp_buf : tmp_bufs) { | ||||
|                     memcpy(lt.data + out_offset, | ||||
|                            tmp_buf.addr + row * per_shard_row_size, | ||||
|                            per_shard_row_size); | ||||
|                     out_offset += per_shard_row_size; | ||||
|                 } | ||||
|             } | ||||
|             LLAMA_ASSERT(out_offset == lt.size); | ||||
|         } | ||||
|  | ||||
|         if (0) { | ||||
|             print_checksum(lt); | ||||
|         } | ||||
| @@ -1067,12 +906,12 @@ static void llama_model_load_internal( | ||||
|  | ||||
|     model.t_start_us = ggml_time_us(); | ||||
|  | ||||
|     std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only)); | ||||
|     std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap)); | ||||
|  | ||||
|     vocab = std::move(ml->file_loaders.at(0)->vocab); | ||||
|     model.hparams = ml->file_loaders.at(0)->hparams; | ||||
|     vocab = std::move(ml->file_loader->vocab); | ||||
|     model.hparams = ml->file_loader->hparams; | ||||
|     model.n_gpu_layers = n_gpu_layers; | ||||
|     llama_file_version file_version = ml->file_loaders.at(0)->file_version; | ||||
|     llama_file_version file_version = ml->file_loader->file_version; | ||||
|     auto & hparams = model.hparams; | ||||
|  | ||||
|     { | ||||
| @@ -1106,7 +945,6 @@ static void llama_model_load_internal( | ||||
|         fprintf(stderr, "%s: n_rot      = %u\n",  __func__, hparams.n_rot); | ||||
|         fprintf(stderr, "%s: ftype      = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); | ||||
|         fprintf(stderr, "%s: n_ff       = %u\n",  __func__, n_ff); | ||||
|         fprintf(stderr, "%s: n_parts    = %zu\n", __func__, ml->file_loaders.size()); | ||||
|         fprintf(stderr, "%s: model size = %s\n",  __func__, llama_model_type_name(model.type)); | ||||
|     } | ||||
|  | ||||
| @@ -2461,9 +2299,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s | ||||
|         nthread = std::thread::hardware_concurrency(); | ||||
|     } | ||||
|  | ||||
|     std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false, | ||||
|                                                                             /*vocab_only*/ false)); | ||||
|     llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype); | ||||
|     std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false)); | ||||
|     llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype); | ||||
|  | ||||
| #ifdef GGML_USE_K_QUANTS | ||||
|     int n_attention_wv    = 0; | ||||
| @@ -2897,7 +2734,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const | ||||
|     llama_buffer base_buf; | ||||
|     if (path_base_model) { | ||||
|         fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model); | ||||
|         model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false)); | ||||
|         model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true)); | ||||
|  | ||||
|         size_t ctx_size; | ||||
|         size_t mmapped_size; | ||||
| @@ -2915,7 +2752,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const | ||||
|  | ||||
|         // maybe this should in llama_model_loader | ||||
|         if (model_loader->use_mmap) { | ||||
|             model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0, ggml_is_numa())); | ||||
|             model_loader->mapping.reset(new llama_mmap(&model_loader->file_loader->file, /* prefetch */ 0, ggml_is_numa())); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Howard Su
					Howard Su